Bulk Viscous Effects on Relativistic Hydrodynamic Models of the Quark-Gluon Plasma

Akihiko Monnai
Department of Physics, The University of Tokyo
Collaborator: Tetsufumi Hirano

3rd Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS
October 15th 2009, Hawaii USA

AM and T. Hirano,
Outline

- **Introduction**
 Relativistic viscous hydrodynamics

- **Distortion of Distribution**
 How to express δf^i in terms of dissipative currents

- **Numerical Estimation**
 Effects of δf^i on observables

- **Summary and Outlook**
 Summary and constitutive equations
Introduction

Success of ideal hydrodynamic models
at relativistic heavy ion collisions

Development of viscous hydrodynamic models
to correctly extract information from experimental data

How does bulk viscosity affects observables?
It has almost been neglected, BUT bulk viscosity is not so small near T_c

Bulk viscosity = response of pressure to volume change

- Mizutani et al. (‘88)
- Paech & Pratt (‘06)
- Kharzeev & Tuchin (’08) ...
Introduction

How does bulk viscosity affect observables?

- One needs a translator of flow field into particles at freezeout

Cooper-Frye formula

\[
\frac{d^2 N_i}{d^2 p_T dy} = \frac{g_i}{(2\pi)^3} \int \sum p_i^\mu \delta \sigma_\mu (f_0^i + \delta f^i)
\]

Modification of the distribution

Express \(\delta f^i \) with dissipative currents in a multi-component system
Macroscopic to Microscopic

Express δf^i in terms of dissipative currents

Macroscopic quantities

Dissipative currents (given from hydro)

Microscopic quantities

Distortion of distribution (unknown)

14 “bridges” from Relativistic Kinetic Theory

\[
\Pi = -\frac{1}{3} \Delta_{\mu \nu} \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu p_i^\nu \delta f^i
\]

\[
W^\mu = \Delta^\mu_\nu u_\rho \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\nu p_i^\rho \delta f^i
\]

\[
V^\mu = \Delta^\mu_\nu \sum_i \int \frac{b_i g_i d^3 p}{(2\pi)^3 E_i} p_i^\nu \delta f^i
\]

\[
\pi^{\mu \nu} = \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^{\langle \mu} p_i^{\nu \rangle} \delta f^i
\]

\[
0 = u_\mu \sum_i \int \frac{b_i g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu \delta f^i
\]

\[
0 = u_\mu u_\nu \sum_i \int \frac{g_i d^3 p}{(2\pi)^3 E_i} p_i^\mu p_i^\nu \delta f^i
\]
\[\delta f^i \text{ in Multi-Component System} \]

- Grad’s 14-moment method \leftrightarrow 14 unknowns ε_{μ}^{i}, $\varepsilon_{\mu\nu}^{i}$

\[\delta f^i = -f^i_0 (1 \pm f^i_0) [p_{i\mu}^{\mu} \varepsilon_{\mu}^{i} + p_{i\mu}^{\mu} p_{i\nu}^{\nu} \varepsilon_{\mu\nu}^{i}] \]

No scalar, but non-zero trace tensor

\[\partial_{\mu} s^\mu = \varepsilon_{\mu\nu} \partial_{\alpha} I_{\mu\nu\alpha} \geq 0 : 2^{\text{nd}} \text{ law of thermodynamics} \]

+ constitutive equation $\partial_{\alpha} I_{\mu}^{\mu\alpha} \neq 0 \Rightarrow \varepsilon_{\mu}^{i} \neq 0$

- The distortion is uniquely obtained:

\[\varepsilon_{\mu}^{i} = D_0 \Pi u_{\mu} + D_1 W_{\mu} + \tilde{D}_1 V_{\mu} \]

\[\varepsilon_{\mu\nu}^{i} = (B_0 \Delta_{\mu\nu} + \tilde{B}_0 u_{\mu} u_{\nu}) \Pi + 2B_1 u_{(\mu} W_{\nu)} + 2\tilde{B}_1 u_{(\mu} V_{\nu)} + B_2 \pi_{\mu\nu} \]

where D_i and B_i are calculated in kinetic theory.
Models Inputs

- Estimation of particle spectra (with bulk viscosity in δf^i):

\[
\frac{d^2 N_i}{d^2 p_T dy} = \frac{g_i}{(2\pi)^3} \int \frac{1}{\Sigma} p^\mu d\sigma_\mu \left[f^i_0 - f^i_0(1 \pm f^i_0)(D_0 \Pi_{\mu\nu}p^\mu + (B_0 \Delta_{\mu\nu} + \tilde{B}_0 u_{\mu}u_{\nu})p^\mu p^\nu)\right]
\]

Flow u^μ, freezeout hypersurface $d\sigma_\mu$:
(3+1)-D ideal hydrodynamic model
- Hirano et al. (’06)

Equation of State: 16-component hadron resonance gas
(hadrons up to $\Delta(1232)$, under $\mu \to 0$)

Freezeout temperature: $T_f = 0.16$ GeV

Bulk pressure: $\Pi = -\zeta \nabla_{\mu} u^\mu$
- Navier-Stokes limit

Transport coefficients:
\[
\zeta = \alpha \left(\frac{1}{3} - c_s^2 \right)^2 \eta, \quad \eta = \frac{1}{4\pi} s
\]
where $c_s \equiv \sqrt{\frac{\partial p}{\partial e}}$: sound velocity
s: entropy density
- Weinberg (’71)
- Kovtun et al. (’05)
Bulk Viscosity and Particle Spectra

- \(Au+Au, \sqrt{s_{NN}} = 200(\text{GeV}), b = 7.2(\text{fm}), p_T\)-spectra and \(v_2(p_T) \) of \(\pi^- \)

\[p_T\)-spectra \quad \rightarrow \quad \text{suppressed} \]

\[v_2(p_T) \quad \rightarrow \quad \text{enhanced} \]

*Possible overestimations due to... (i) Navier-Stokes limit (no relaxation effects) (ii) ideal hydro flow (derivatives are larger)
Summary and Outlook

- Determination of δf^i in a multi-component system
 - Viscous correction $\varepsilon_{\mu\nu}$ has non-zero trace.
- Visible effects of δf_{bulk} on particle spectra
 - p_T-spectra is *suppressed*; $v_2(p_T)$ is *enhanced*

- Bulk viscosity can be important in extracting information (e.g. transport coefficients) from experimental data.
- **Full Viscous** hydrodynamic models need to be developed to see more realistic behavior of the particle spectra.
Estimation of Dissipative Currents

- 2nd order Israel-Stewart theory

Naïve generalization to a multi-component system does NOT work

Constitutive equations in a multi-component system:

Bulk pressure

\[
\Pi = -\zeta \theta \\
- \tau_\Pi D \Pi + \chi^{a}_{\Pi W} W_{\mu} D u^{\mu} + \chi^{a}_{\Pi V} V_{\mu} D u^{\mu} \\
+ \chi^{b}_{\Pi W} \nabla^{\mu} W_{\mu} + \chi^{b}_{\Pi V} \nabla^{\mu} V_{\mu} \\
+ \chi^{c}_{\Pi \Pi} + \chi^{c}_{\Pi \Pi} \Pi \theta + \chi^{c}_{\Pi W} W_{\mu} \nabla^{\mu} \phi_{\Pi W} \\
+ \chi^{c}_{\Pi V} V_{\mu} \nabla^{\mu} \phi_{\Pi V} + \chi_{\Pi \pi} \pi_{\mu \nu} \sigma^{\mu \nu}
\]

Shear tensor \(\pi^{\mu \nu} \) in conformal limit reduces to AdS/CFT result (Baier et al. ’08)

Navier-Stokes term

Israel-Stewart

2nd order terms

Post Israel-Stewart

2nd order terms
Thank You

- The numerical code will become available at

 http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/distributions.html
Appendix
Shear Viscosity and Particle Spectra

- p_T-spectra and $v_2(p_T)$ of π^- with shear viscous correction

Non-triviality of shear viscosity; both p_T-spectra and $v_2(p_T)$ suppressed

Akihiko Monnai
Shear & Bulk Viscosity on Spectra

- p_T-spectra and $v_2(p_T)$ of π^- with corrections from shear and bulk viscosity

Accidental cancellation in viscous corrections in $v_2(p_T)$
Quadratic Ansatz

- p_T-spectra and $v_2(p_T)$ of π^- when $\varepsilon_{\mu\nu} = C_1 \pi_{\mu\nu} + C_2 \Delta_{\mu\nu} \Pi$

Effects of the bulk viscosity is underestimated in the quadratic ansatz.
Bjorken Model

- p_T-spectra and $v_2(p_T)$ of π^- in Bjorken model with cylindrical geometry: $R_0 = 10.0\text{fm}, \tau = 7.5\text{fm}$

 $u^\tau = 1$, $u^r = u^\phi = u^\eta = 0$

 $d\sigma_\tau = \tau d\eta r dr d\phi$, $d\sigma_\tau = d\sigma_\phi = d\sigma_\eta = 0$

Bulk viscosity suppresses p_T-spectra

Shear viscosity enhances p_T-spectra
Blast wave model

\[u^r = u_0 \frac{r}{R_0} \left[1 + u_2 \cos(2\phi) \right] \Theta(R_0 - r) \]
\[u^\tau = \sqrt{1 + (u^r)^2} \]
\[u^\phi = u^{\eta_s} = 0 \]

Shear viscosity *enhances* \(p_T \)-spectra and suppresses \(v_2(p_T) \).

\[R_0 = 7.5 \text{ fm}, \quad \tau = 5.25 \text{ fm} \]
\[u_0 = 0.55, \quad u_2 = 0.2 \]