Ginny Ruffner
Reforestation of the Imagination

Reforestation of the Imagination combines traditional sculpture with augmented reality (AR). By using technology to overlay digital information onto sculptural objects, two disparate environments are portrayed.

The setting is an apocalyptic landscape far in the future. The initial environment consists of five landmasses, which support the glass stumps. Except for the painted shelf mushrooms and tree rings on the stumps and logs, the scene is colorless. The landmasses surround a sixth rocky outcropping that features a large fiberglass stump. The central stump sprouts beautifully grotesque bronze, then glass appendages. This improbable growth has survived the devastation to create a new botany.

Other than the central stump, the landscape appears at first glance to be barren. Yet, upon viewing the tree rings aided by AR technology a second environment is revealed. Plants appear (both fruit and flowers) which have evolved from existing flora. They have developed dramatic appendages and the skills necessary to adapt and flourish in this radically different environment. From accessing nutrients in ways that symbiotically improve their surrounding conditions, to cultivating protections from new threats, these adaptations are unexpected, beautiful, and optimistic. This is nature reimagining itself. The imagination cannot be exterminated. It just re-creates itself.

—Ginny Ruffner

Installation created by Ginny Ruffner, in collaboration with Grant Kirkpatrick and with support of MadArt, Seattle. It was first exhibited at MadArt Studio in 2018.

Artworks courtesy of Ginny Ruffner Studio, dated 2017. Tree stumps are handblown glass with acrylic paint tree rings; “island” supports are plywood, low-density foam, fiberglass, epoxy, sand, pebbles, and acrylic paint; drawings are watercolor, pencil, and image transfer on paper.

Ginny Ruffner: Reforestation of the Imagination is organized by the Renwick Gallery of the Smithsonian American Art Museum. Generous support has been provided by:

- The Smithsonian
- American
- Women’s History Initiative
- Elizabeth and James Renwick
- Ed and Kathy Fries
- Shelby and Frederick Gans
- James Renwick
- Colleen and John Kotelly
- Betty and Whitney MacMillan
- Jacqueline B. Mars
- Kim and Jon
- Myra and Harold Weiss
- James Renwick Alliance
- Shirley Foundation
- Colleen and John Kotelly
- Myra and Harold Weiss
- Betty and Whitney MacMillan
Supporters of the Smithsonian American Women’s History Initiative:

Acton Family Giving Julie and Greg Flynn Christine and
Mary and David Ford Foundation William Ragland
Boies Bill & Melinda Gates David M. Rubenstein
Booz Allen Hamilton Foundation Alison Wrigley
The Case Foundation Rick and Susan Rusack
Dick and Betsy Goings Foundation Deborah Sara
DeVos Family HISTORY/A+E Santana
Foundation Networks Elaine P. Wynn &
Melissa and Trevor Mrs. Kathleen K. Family Foundation
Fetter Manatt and Michele
Sakurako, Remy, A. Manatt
Rose and Jess Fisher

About the Artist

Seattle-based artist Ginny Ruffner trained at the University of Georgia, graduating with honors and an MFA in drawing and painting. Ruffner has had more than eighty-five solo exhibitions and several hundred group shows, and her flameworked and mixed-media sculptures and installations can be found in numerous national and international collections. Seattle public art installations include a 30-foot tall kinetic water feature downtown and a permanent installation in the Seattle Art Museum's Olympic Sculpture Park. Recent augmented reality projects, in collaboration with Grant Kirkpatrick, include Weston Riff at Photo Center NW; Branches at Seattle International Film Festival; and Poetic Hybrids at the Seattle Art Museum. She has written two books and been the subject of an award-winning full-length documentary, A Not So Still Life: The Ginny Ruffner Story (2010). Ruffner has lectured and taught extensively and has served as artist-in-residence at schools and universities around the world.

Grant Kirkpatrick is an emerging animator and new media artist based in Seattle. After studying at Cornish College of the Arts for three years, he graduated with a focus on motion design and animation. Coming from a fine arts background, Kirkpatrick has considerable interest in the intersection of art and technology, particularly VR/AR, game design, and mixed-media work.
Island A

Liriodendrum plausus (Flapping tulip)
Naming conventions: *Liriodendrum* = tulip, *plausus* = flapping
Description: *Liriodendrum plausus* is a lovely specimen, thought to have evolved from an ancient twenty-first-century animal and plant gene—sharing experiment. Originally hybridized in an attempt to increase stem flexibility for the tulip industry, it subsequently evolved very active and flexible foliage.

Anthurium vinifera (Grape flower)
Naming conventions: *Anthurium* = phallic flower, *vinifera* = grapes
Description: *Anthurium vinifera* is typically cultivated in semiarid rolling hills and was first discovered in vineyards. Scientists do not know when or how the *Anthurium vinifera* evolved from traditional grape cultivars into this unusual varietal, which produces a grape-colored vessel that encases and protects each fruit cluster.

Taraxacum genu varum (Dandelion carrot)
Naming conventions: *Taraxacum* = dandelion, *genu varum* = knee
Description: *Taraxacum genu varum* is usually found in the arid, windswept, moderately hilly and formerly abundant environments known as prairies. Identifiable by its short hard trunk and shallow claw-shaped root, the *Taraxacum genu varum*’s pink springtime blossom perches atop a cactus-like seasonal growth. The seeds, produced by its tassel-shaped flower parts, are wind pollinated.

Serpens primula nubes (Blue flower with snakes)
Naming conventions: *Serpens* = snakes, *primula* = daisy, *nubes* = cloud
Description: *Serpens primula nubes* produces two distinct flowers. Protruding from openings in the bulbous woody stalk, the uppermost blossom is usually yellow. The lower blossoms, typically blue, develop pistils, which wriggle energetically in the presence of avian predators. After being ingested, these pollen-covered worm-like appendages are digested and subsequently scattered via bird droppings.

Island B

Pyrus fenestrata (Pear with windows)
Naming conventions: *Pyrus* = pear, *fenestrata* = windows
Description: *Pyrus fenestrata* is common in the formerly deciduous woods of the Eastern Seaboard. The evolution of its inhabitable fruit is thought to have been a means of protecting its major pollinator, a small bee that uses it as a resting station between pollen-gathering journeys. The edible pear-shaped fruit produces transparent waxy apertures that also guard against predators, causing them to flee upon seeing their own reflection in the “windows.” The plant produces a fragrant pale yellow blossom in the spring and bears fruit year-round.
Ventus ingenero (Windmill flower)
Naming conventions: Ventus = wind, ingenero = generate
Description: *Ventus ingenero* is indigenous to the barren windswept plains of the more arid latitudes. It is easily identified by the moving parts of its bright blue flowers. Originally cultivated and still prized for its power-generating capabilities, the *Ventus ingenero* is often found planted in rows surrounding inhabited areas, where it can be used as a power source thanks to its unique “plug-root.”

Canna grandiflora (Magnolia gondola)
Naming conventions: Canna = gondola, grandiflora = magnolia
Description: *Canna grandiflora* has evolved a unique method of seed dissemination. Due to its aqueous habitat, its large nut-like seeds floated upon falling into the water and most were unable to find enough soil to germinate safely. Over time, a novel solution to this problem evolved. The plant’s large boat-shaped blooms were able to transport the seeds to solid earth, where they could bud and grow again.

Island C

Cibus devoradum (Carnivorous pitcher plant)
Naming conventions: Cibus = bait, devoradum = devour
Description: *Cibus devoradum* was originally found in low-lying boggy areas. This hardy species has a thick fibrous stem that has allowed it to thrive in arid environments. After attracting insect pollinators with its sticky “bait” pistils, it places the trapped prey in its central digestive bath, where they are slowly dissolved. The undigested remains of the exoskeleton are secreted out the waste port on the underside of the bath.

Digitalis artherium (Double art flowers)
Naming conventions: Digitalis = foxglove, artherium = art
Description: *Digitalis artherium* is an extremely rare plant that produces a wide variety of brightly colored petal patterns. Formerly abundant in Manhattan, it now grows only under carefully controlled conditions. It has evolved an elaborate series of unusual flower petal patterns to attract human pollinators. It blooms once a month, for one evening. When carefully harvested, dried, powdered, and dissolved in expensive bottled water, its petals can be used as an hallucinogenic.

Lacertus vespertilio (Flapping lizard bat flower)
Naming conventions: Lacertus = lizard, vespertilio = bat
Description: *Lacertus vespertilio* is as useful as it is beautiful, and is a favorite of gardeners worldwide. The energetic movement of its foliage is prized both for its striking visual display and for the protection it offers from foraging predators, which is why the plant is so often found in borders around cultivated areas.
Island D

Musa saponifica (Soapy muse)
Naming conventions: *Musa =* banana, *saponifica =* saponify, to make bubbly
Description: *Musa saponifica* is found in hot, moist, formerly jungle environments. It is easily identified by the sighing sound it makes as it exhales after inflating its air bladder. The soapy muse (as it is commonly known) evolved this unusual combination of sight and sound signals as a way of attracting human pollinators. Following a series of showy inflations, the bladder bursts, scattering pollen into the air and onto the surrounding surfaces. Human observers inadvertently transport the pollen to other locations on their feet and clothing.

Picus germinabunt (Woodpecker flower)
Naming conventions: *Picus =* woodpecker, *germinabunt =* blossom
Description: *Picus germinabunt* is a small but captivating plant, distinguished by its bulbous stem and striped, claw-like roots. Originally propagated via bird droppings containing ingested seeds that were encased in tree sap cast on the ground, the woodpecker flower now employs a more preemptive method of reproduction. After selecting a seed from the storage sac in its stem, it digs a small hole with its claw-like root and, using the beak-shaped central pistil, deposits the seed into the freshly dug opening.

Scandent vinea clayaria (Morning glory with Paul Klee leaf)
Naming conventions: *Scandent =* trailing, *vinea =* vine, *clayaria =* Paul Klee
Description: *Scandent vinea clayaria* is a prolific vine that produces a colorful leaf-like blossom on its growing tip. It is typically found in deforested, windy environments where it attracts raptor pollinators by the continual motion of its elaborately patterned bloom, which mimics the activity of a rodent feeding off its succulent roots. The tenacious grip that these roots maintain on the rocky landscape prevents uprooting by overzealous raptors as they search for the prey they have been tricked into believing are feeding underground.

Tulipia kandinskiana torquem (Kandinsky tulip)
Naming conventions: *Tulipia =* tulip, *kandinskiana =* Wassily Kandinsky, *torquem =* collar
Description: *Tulipia kandinskiana torquem* is a classic example of mutually beneficial evolution. The tulip-shaped blossom originates in a collar-style organ similar to common sepals. During growth, the bud’s surface provides nourishment for a symbiotically parasitic insect, the Afy mite. The mite’s strict pattern of consuming the outer layer of the developing flower results in a highly ornamental design on its petals. Obsessively cultivated for generations by humans, the plant, and by extension the mites, would not survive in the wild.

Island E

Avem iridis illuricae (Hummingbird flower)
Naming conventions: *Avem =* bird, *iridis illuricae =* iris
Description: *Avem iridis illuricae*, exotic and vibrant, is native to formerly subtropical wooded areas. Facing extinction due to a shortage of other pollinators, it creatively adapted by providing its major pollinator, the two-toned hummingbird, with a protected nest within its blossom. The nest entry opens and closes in response to the presence of that particular species.
Astromaria zentada lillium (Blue/purple flowering vine)
Naming conventions: zentada = yin/yang, lillium = lily
Description: *Astromaria zentada lillium* is found in high-altitude mountainous locales where it blooms morning and evening in the spring. The bright blue petal tops and the deep violet undersides provide a diurnal/nocturnal camouflage that protects against predators. The unpleasant taste and texture of its woody stem also discourages hungry herbivores. When its extravagant petals become completely unfurled, the *Astromaria*’s hidden seeds are fully exposed and scattered by the wind.

Navis tabula senex (Connect the dots flower)
Naming conventions: Navis = boat, tabula = map, senex = old
Description: *Navis tabula senex* is descended from an ancient tuberous succulent. This nomadic species can be found in a multitude of environments due to its unusual locomotive ability. Originally found solely on the edges of bodies of water, the plant gradually developed appendages, which allowed it to relocate and colonize drier habitats. The succulent stem allows it to transport water as needed.

Rosa cilliabunda (Rose with eyelashes)
Naming conventions: Rosa = rose, cilliabunda = lots of cilia
Description: *Rosa cilliabunda*, native to the middle latitudes, has evolved a highly unusual method of pest control to protect its delicious buds: curly, thistle-like thorns cover the stalk and the buds, thus limiting foraging by predators.

Island F

Bronze Tree (center island)
drawing: watercolor and pencils on paper
island: plywood, low-density foam, fiberglass, sand, pebbles, acrylic paint, bronze, and lampworked glass