Liver Enzyme Elevations in Dogs: Physiology and Pathophysiology*

Abstract: Increased liver enzyme activities are sensitive indicators of primary hepatic disease, but they are also associated with extrahepatic diseases. The patient’s signalment, clinical status, and pattern of liver enzyme activity can help in interpreting findings. The three basic liver enzyme patterns are (1) cholestatic, (2) hepatocellular leakage, and (3) mixed. Predominant increases in the activities of the cholestatic or inducible enzymes, alkaline phosphatase and \(\gamma \)-glutamyl transpeptidase, occur with endocrine disorders, cholestasis, neoplasia, benign nodular hepatic hyperplasia, and administration of certain drugs and occur idiosyncratically in certain breeds. Predominant increases in the activities of the hepatocellular leakage enzymes, alanine aminotransferase and aspartate aminotransferase, occur with circulatory disturbances, hepatotoxicties, infectious diseases, hepatitis, and neoplasia. A mixed pattern of increased liver enzyme activities may occur with hepatotoxicity or concurrent cholestasis and hepatocellular injury or necrosis.

Primary liver disease is often diagnosed after hepatic damage is irreversible. Biochemical screening during routine wellness visits facilitates detection of hepatopathies in asymptomatic patients, when medical intervention is more likely to be successful.

Increased liver enzyme activities are common in dogs. Serum biochemistry testing conducted on 1022 samples from dogs showed that 39.1% and 17.4% had increased alkaline phosphatase (ALP) and alanine aminotransferase (ALT) activities, respectively.1 Although liver enzyme activity increases are highly sensitive biomarkers of hepatobiliary disorders, interpretation of these increases is complicated by the fact that breed variations and extrahepatic diseases often cause similar laboratory findings. Discerning which abnormal findings warrant further investigation can be challenging.

This article reviews the physiology of the inducible liver enzymes, ALP and \(\gamma \)-glutamyl transpeptidase (GGT), and the hepatocellular leakage enzymes, ALT and aspartate aminotransferase (AST). Breed-specific abnormalities and underlying etiologies associated with cholestatic, hepatocellular leakage, and mixed patterns of injury are presented.

Inducible Liver Enzymes

The activities of ALP and GGT, the inducible or cholestatic liver enzymes, increase with a variety of conditions (BOX 1). Both enzymes are found along the canalicular membrane of hepatocytes; their expression is increased with intrahepatic or extrahepatic cholestasis. Inducible ALP isoenzymes are found in intestine, kidney, liver, and bone tissue.2 Measured ALP activity in serum or plasma generally comprises liver (L-ALP), bone (B-ALP), and corticosteroid (C-ALP) isoenzymes.3 In healthy dogs, L-ALP accounts for the...

**Lucía Alvarez, DVM
Jacqueline C. Whittemore, DVM, PhD, DACVIM**

University of Tennessee
largest fraction of measured ALP activity. B-ALP activity is highest in growing animals and animals with osteolytic disorders. Little or no C-ALP activity is found in normal dogs. Because corticosteroids may increase the activity of multiple ALP isoenzymes, determination of the predominant isoenzyme increase rarely aids in identification of the underlying pathophysiologic disorder. There are no commercially available tests for the differentiation of ALP isoenzymes.2

GGT is a membrane-bound protein found lining biliary surfaces and within periportal hepatocytes. Although high concentrations are present in the kidney and pancreas, circulating GGT activity principally originates from liver tissue. GGT has a lower sensitivity but higher specificity than ALP for primary hepatobiliary disease5 and is exquisitely sensitive to cholestasis. The specificity of concurrent increased activities of ALP and GGT for hepatobiliary disease is >90%, versus 51% for increased ALP activity alone and approximately 80% for GGT alone.6

Increased cholestatic enzyme activity is associated with a number of breeds. Marked increases in ALP activity may occur with benign familial hyperphosphatasemia, described in Siberian huskies and Scottish terriers.7,8 Scottish terriers may have ALP activity that is five times higher than that in other breeds; ALP activity increases with age in this breed, independent of ALP-inducing disease.9 Other breed associations with increased ALP activity may reflect underlying disease. Moderate to severe hypertriglyceridemia in miniature schnauzers has been associated with moderate increases in ALP and mild increases in ALT activity.10 It is unknown whether these increases correlate with underlying primary diseases such as biliary mucoceles or secondary processes such as vacuolar hepatopathy. Activity increases greater than two times the reference interval in miniature schnauzers warrant further investigation.10 Shetland sheepdogs may have increased concentrations of triglycerides and cholesterol and increased cholestatic liver enzyme activities due to clinically silent gallbladder disorders.11

Cholestatic enzyme activity may be increased by numerous extrahepatic conditions. Increased activities of ALP and GGT secondary to hepatic lipid or glycogen accumulation have been reported with hyperadrenocorticism, diabetes mellitus, and hypothyroidism.12,13 Increased concentrations of progesterone and 17-hydroxyprogesterone may cause similar enzyme changes.15 ALP and GGT activities increase with altered bile flow secondary to pancreatitis, inflammatory bowel disease, cholangitis, cholecystitis, and biliary obstruction. Sepsis can cause cholestasis through multifactorial mechanisms, including altered hepatocyte function.14 Benign nodular hepatic hyperplasia may stimulate inducible enzyme activity increases. Canine hepatocellular carcinoma cells have been demonstrated

Conditions/Factors Associated With Enzyme Activity Increases in Cholestatic Patterns

<table>
<thead>
<tr>
<th>Breed</th>
<th>Scottish terrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniature schnauzer</td>
<td></td>
</tr>
<tr>
<td>Siberian husky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug administration</th>
<th>Corticosteroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenobarbital</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endocrine disorders</th>
<th>Diabetes mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperadrenocorticism</td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neoplastic enzyme induction</th>
<th>Osteosarcoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammary carcinoma</td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td></td>
</tr>
<tr>
<td>Biliary or hepatocellular carcinoma</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intrahepatic cholestasis</th>
<th>Portal systemic vascular anomalies, microvascular dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacular hepatopathy</td>
<td></td>
</tr>
<tr>
<td>Nodular hepatic hyperplasia</td>
<td></td>
</tr>
<tr>
<td>Neoplasia</td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extrahepatic cholestasis</th>
<th>Gallbladder disease or neoplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatitis</td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td></td>
</tr>
<tr>
<td>High intestinal obstruction</td>
<td></td>
</tr>
</tbody>
</table>

QuickNotes

An increase in the activities of ALP and GGT in tandem has greater specificity but lower sensitivity for primary hepatobiliary disease than an increase in either enzyme activity alone.
Exogenous substances may also induce cholestatic enzyme increases. Glucocorticoid administration in dogs causes moderate to marked increases in serum GGT and ALP activities and mild increases in ALT and AST activities. Phenobarbital can increase ALP activity without causing liver injury. Infrequently, phenobarbital causes idiosyncratic hepatotoxicity with attendant clinical signs.

Hepatocellular Leakage Enzymes

ALT and AST are hepatocellular leakage enzymes. Found primarily in the cytosol of hepatocytes, ALT is released into circulation after hepatocellular membrane disruption. The magnitude of ALT activity increase approximates the degree of hepatocyte damage. Because the liver has a remarkable regenerative capacity, the degree of ALT increase should not be used as a prognostic indicator. In dogs, ALT generally has a circulating half-life of 2 to 3 days. Decreases in serum ALT activity of 50% every 2 to 3 days suggest that hepatocyte damage is resolving. Normalization of ALT activity with the concurrent appearance of biomarkers for hepatobiliary dysfunction, such as hypoalbuminemia, hypoglycemia, or hypocholesterolemia, suggests loss of functional hepatic parenchyma.

AST is found in the cytosol and mitochondria of hepatocytes and myocytes. Given the presence of AST in myocytes, increased AST activity is less specific for hepatic damage than ALT. When increased AST activity is secondary to hepatic damage, it generally increases proportionally to ALT activity. If AST activity is increased disproportionately, especially when creatine kinase (CK) activity is increased, primary muscle damage should be suspected. Because increased AST activity is more sensitive than ALT activity for some types of liver damage, hepatocellular membrane disruption should be considered when AST activity is increased and CK and ALT activities are within their reference intervals.

A variety of extrahepatic and hepatic disorders can cause increased hepatocellular leakage enzyme activity (BOX 2). Because the portal circulation provides at least half of the hepatic blood flow, the liver is particularly vulnerable to vascular compromise. Anemia, congestive heart failure, and shock can moderately increase ALT and AST activities. Mild

QuickNotes

Although ALT activity increases proportionally to hepatocyte damage, a single measurement of severely increased ALT activity should not be used for prognosis because of the regenerative capacity of the liver.

BOX 2

Conditions Associated With Enzyme Activity Increases in Hepatocellular Injury or Necrosis Patterns

Infection
- Canine adenovirus 1
- *Leptospira* spp, ascending or hematogenous bacterial infection
- *Leishmania*, *Toxoplasma, Neospora, Hepatozoon* spp
- *Histoplasma capsulatum*
- *Dirofilaria immitis*

Cardiovascular disturbance
- Congestive heart failure
- Anemia
- Shock

Neoplasia
- Primary (hepatocellular or biliary carcinoma)
- Metastatic

Hepatobiliary disease
- Hepatotoxicity
- Chronic hepatitis
- Inborn errors of metabolism (copper storage disorders)
- Amyloidosis
- Portosystemic vascular anomalies, microvascular dysplasia
- Reactive hepatopathy
- Liver lobe torsion
- Hepatic abscesses

Liver Enzyme Elevations in Dogs

Hepatotoxins Reported in Veterinary and Human Medicine

Dose-dependent
- **Herbal supplements:** Chaparral leaf, germander, jin bu huan, kava, pennyroyal oil
- **Drugs:** Acetaminophen, amiodarone, lomustine (CCNU), stanozolol
- **Environmental:** Aflatoxins, Amanita mushrooms, bacterial lipopolysaccharides, blue-green algae, carbon tetrachloride, cycad (sago) palm, heavy metals, phosphorus

Idiosyncratic
- **Drugs:** Azathioprine, chloramphenicol, clindamycin, clopidogrel, cyclosporine, fluconazole, fluoroquinolones, gluccorticoids, griseofulvin, halothane, ketoconazole, mirtazapine, mitotane, nitrofurantoin, NSAIDs, phenobarbital, potentiated sulfonamides, synthetic penicillins, tetracyclines

Environmental
- Copper-associated hepatopathy has inborn errors of metabolism, immune-recessive disorder in Bedlington terriers. 20,21 Heritability of copper-associated hepatopathy has recently been demonstrated for Labrador retrievers, which also have an increased prevalence of idiopathic chronic hepatitis. 23 Rarely, liver lobe torsion has been described in large-breed dogs presenting with nonspecific clinical signs (vomiting, anorexia, lethargy) and increased liver damage associated with intravenous glucocorticoid pulse therapy in patients with Graves’ ophthalmopathy. Thyroid 2004;14:403-406.
- Topical administration of chloramphenicol is inhibitory to aflatoxin B1 hepatotoxicity in rats by a mechanism that depends on tumor necrosis factor-alpha (TNF-α) and lipopolysaccharide enhances aflatoxin B1 hepatotoxicity in rats through TNF-α. Hepatotoxic AFLATOXINS: 72 CASES (2005-2006). JAVMA 2006;28:553-557.

Mixed Liver Enzyme Patterns
A mixed pattern of increased cholestatic and hepatocellular leakage enzyme activities suggests concurrent disorders, hepatocellular inflammation and necrosis with secondary cholestasis, or drug

to moderate increases may occur with strenous exercise and should resolve consistent with their half-lives after exer-
tion is discontinued. Hepatotoxicity and hepatitis result in hepatocellular mem-
brane disruption. Underlying etiologies for hepatitis include infectious agents, inborn errors of metabolism, immune-
mediated inflammation, and reactive hepatopathies. Copper-associated hepatopathy occurs as an autosomal recessive disorder in Bedlington ter-
ers and has been described in West Highland white terriers, Skye ter-
iers, dalmatians, Doberman pinschers, and Labrador retrievers. 20,21 Heritability of copper-associated hepatopathy has recently been demonstrated for Labrador
induction resulting in concomitant mild cholestatic and hepatocellular leakage enzyme activity increases. Serial monitoring may aid in identification of the primary pattern, and a comprehensive diagnostic workup is often warranted. Portosystemic vascular anomalies and microvascular dysplasia may cause hepatocellular, cholestatic, or mixed patterns of injury.25

Hepatotoxins (BOX 3) can cause hepatocellular, cholestatic, or mixed patterns of injury. Because nutrients, bacteria, drugs, and other xenobiotic agents are delivered hematogenously from the gastrointestinal tract to the liver, the liver is at higher risk than other organs for toxic insult.26 A drug may cause dose-dependent (predictable), idiosyncratic (unpredictable), or both types of toxicity. Dogs with low glutathione transferase activity or decreased inherent protective mechanisms may be predisposed to liver injury.26

Conclusion

Given their high sensitivity and limited specificity for hepatic disease, liver enzyme activity increases may be difficult to interpret. The patient’s signalment, clinical status, and pattern of liver enzyme activity increase may aid practitioners in ranking diagnostic differentials. Predominant increases in ALP and GGT activities characterize a cholestatic liver enzyme pattern. Causes include breed-specific abnormalities, endocrine disorders, hepatic and posthepatic cholestasis, neoplasia, benign nodular hepatic hyperplasia, and induction by drugs. A hepatocellular leakage pattern is characterized by increases in ALT and AST activities. Etiologies include circulatory disturbances, hepatotoxins, hepatic infection and inflammation, and primary hepatic neoplasia. Mixed patterns occur with hepatotoxicity, progressive hepatic disease, and concurrent disorders. C

References

Liver Enzyme Elevations in Dogs

1. Which breed has been documented to have increased ALP activity independent of underlying disease?
 a. Scottish terrier
 b. miniature schnauzer
 c. Siberian husky
 d. Shetland sheepdog

2. ALP isoenzymes are not found in the
 a. intestines.
 b. kidneys.
 c. bones.
 d. lungs.

3. GGT has ______ sensitivity and ______ specificity than ALP for hepatobiliary disease.
 a. higher; higher
 b. lower; lower
 c. higher; lower
 d. lower; higher

4. Which endocrine disorder has not been associated with increased cholestatic enzyme activities?
 a. diabetes mellitus
 b. hypothyroidism
 c. hyperadrenocorticism
 d. hypoadrenocorticism

5. Which type of neoplasia has not been associated with ALP induction?
 a. mammary carcinoma
 b. insulinoma
 c. osteosarcoma
 d. lymphosarcoma

6. Increase in the activity of ______ best approximates the degree of hepatocyte damage.
 a. ALP c. AST
 b. ALT d. GGT

7. CK activity needs to be considered when interpreting the activities of which enzymes?
 a. ALP and ALT
 b. ALT and AST
 c. AST and GGT
 d. GGT and ALP

8. Which statement is correct with regard to AST?
 a. It is more specific for liver damage than ALT.
 b. It is released from osteocytes and hepatocytes.
 c. Increases in activity occur secondary to membrane disruption.
 d. Its production in myocytes is induced.

9. Copper-associated hepatopathy has a proven heritable basis in which breed?
 a. dalmatian
 b. Labrador retriever
 c. Scottish terrier
 d. West Highland white terrier

10. ______ does not result in a mixed liver enzyme pattern.
 a. The presence of concurrent cholestatic and hepatocellular disorders
 b. Hepatocellular damage with secondary cholestasis
 c. Drug induction leading to cholestasis with secondary hepatocyte damage
 d. Osteolytic disease and paraneoplastic expression of ALP by hepatocellular carcinoma cells