Common text mining visuals
Why make visuals?

- Good visuals lead to quick conclusions
- The brain efficiently processes visual information
Setting the scene

Term Document Matrix (TDM)

<table>
<thead>
<tr>
<th></th>
<th>Tweet1</th>
<th>Tweet2</th>
<th>Tweet3</th>
<th>…</th>
<th>Tweet_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Term2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Term3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Term_N</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Summed vector

<table>
<thead>
<tr>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Term frequency plots with tm

> # Convert TDM to matrix
> coffee_m <- as.matrix(coffee_tdm)

> # Sum rows and sort by frequency
> term_frequency <- rowSums(coffee_m)
> term_frequency <- sort(term_frequency, decreasing = TRUE)

> # Create a barplot
> barplot(term_frequency[1:10], col = "tan", las = 2)
Term frequency plots with qdap

```r
# Load qdap package
library(qdap)

# Find term frequencies
frequency <- freq_terms(
  tweets$text,
  top = 10,
  at.least = 3,
  stopwords = "Top200Words"
)

# Plot term frequencies
plot(frequency)
```
Let’s practice!
Intro to word clouds
A simple word cloud

```r
> # Convert TDM to matrix
> chardonnay_tdm <- TermDocumentMatrix(clean_chardonnay)
> chardonnay_m <- as.matrix(chardonnay_tdm)

> # Sum rows and sort by frequency
> term_frequency <- rowSums(chardonnay_m)
> word_freqs <- data.frame(term = names(term_frequency),
                          num = term_frequency)

> # Make word cloud
> wordcloud(word_freqs$term, word_freqs$num,
            max.words = 100, colors = "red")
```
The impact of stop words

clean_corpus <- function(corpus){
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, stripWhitespace)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeWords,
 c(stopwords("en"), "amp"))
return(corpus)
}
clean_corpus <- function(corpus){
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, stripWhitespace)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeWords,
 c(stopwords("en"), "amp",
 "chardonnay", "wine", "glass"))
return(corpus)
}
Let’s practice!
Other word clouds and word networks
Commonality clouds

> # Combine both corpora: all_tweets
> all_coffee <- paste(coffee_tweets$text, collapse = "")
> all_chardonnay <- paste(chardonnay_tweets$text, collapse = "")
> all_tweets <- c(all_coffee, all_chardonnay)

> # Clean all_tweets
> all_tweets <- VectorSource(all_tweets)
> all_corpus <- VCorpus(all_tweets)
> all_clean <- clean_corpus(all_corpus)
> all_dm <- TermDocumentMatrix(all_clean)
> all_m <- as.matrix(all_tdm)

> # Make commonality cloud
> commonality.cloud(all_m, colors = "steelblue1", max.words = 100)
Comparison clouds

> # Combine both corpora: all_tweets
> all_coffee <- paste(coffee_tweets$text, collapse = "")
> all_chardonnay <- paste(chardonnay_tweets$text, collapse = "")
> all_tweets <- c(all_coffee, all_chardonnay)

> # Clean all_tweets
> all_tweets <- VectorSource(all_tweets)
> all_corpus <- VCorpus(all_tweets)
> all_clean <- clean_corpus(all_corpus)
> all_tdm <- TermDocumentMatrix(all_clean)
> colnames(all_tdm) <- c("coffee", "chardonnay")
> all_m <- as.matrix(all_tdm)

> # Make comparison cloud
> comparison.cloud(all_m,
> colors = c("orange", "blue"),
> max.words = 50)
Pyramid plots

```r
# Identify terms shared by both documents
common_words <- subset(
  all_tdm_m,
  all_tdm_m[, 1] > 0 & all_tdm_m[, 2] > 0
)

# Find most commonly shared words
difference <- abs(common_words[, 1] - common_words[, 2])
common_words <- cbind(common_words, difference)
common_words <- common_words[order(common_words[, 3], decreasing = TRUE), ]

# Create a data frame for the pyramid plot
top25_df <- data.frame(x = common_words[1:25, 1],
                       y = common_words[1:25, 2],
                       labels = rownames(common_words[1:25, ]))
```
Pyramid plots

```r
> # Make pyramid plot
> pyramid.plot(top25_df$x, top25_df$y,
>               labels = top25_df$labels,
>               main = "Words in Common",
>               gap = 8, laxly = NULL,
>               raxlab = NULL, unit = NULL,
>               top.labels = c("Chardonnay",
>                               "Words",
>                               "Coffee"))
```
Word networks

Create word network
word_associate(coffee_tweets$text, match.string = c("barista"),
 stopwords = c(Top200Words, "coffee", "amp"),
 network.plot = TRUE,
 cloud.colors = c("gray85", "darkred"))

Add title
title(main = "Barista Coffee Tweet Associations")
Let’s practice!