Complex recoding with case_when

WORKING WITH DATA IN THE TIDYVERSE

Alison Hill
Professor & Data Scientist

Generations and age

¹ http://www.pewresearch.org/topics/generations-and-age/

?case_when

Usage

```
case_when(...)
```

Arguments

... A sequence of two-sided formulas. The left hand side (LHS) determines which values match this case. The right hand side (RHS) provides the replacement value.

The LHS must evaluate to a logical vector. Each logical vector can either have length 1 or a common length. All RHSs must evaluate to the same type of vector.

These dots are evaluated with explicit splicing.

Bakers

bakers

```
# A tibble: 10 x 2
   baker
           birth_year
                <dbl>
   <chr>
 1 Liam
                1998.
 2 Martha
                1997.
 3 Jason
                1992.
 4 Stuart
                1986.
 5 Manisha
                1985.
 6 Simon
                1980.
 7 Natasha
                1976.
 8 Richard
                1976.
 9 Robert
                1959.
10 Diana
                1945.
```

Simple if_else()

```
# A tibble: 10 x 3
   baker
           birth_year gen
   <chr>
                <dbl> <chr>
1 Liam
                1998. not millenial
2 Martha
                1997. not millenial
                1992. millenial
3 Jason
                1986. millenial
 4 Stuart
                1985. millenial
 5 Manisha
 6 Simon
                1980. not millenial
7 Natasha
                1976. not millenial
8 Richard
                1976. not millenial
 9 Robert
                1959. not millenial
10 Diana
                1945. not millenial
```


Multiple if_else() pairs

```
bakers %>%
mutate(gen = case_when(
  between(birth_year, 1965, 1980) ~ "gen_x",
  between(birth_year, 1981, 1996) ~ "millenial"))
```

```
# A tibble: 10 x 3
          birth_year gen
  baker
              <dbl> <chr>
  <chr>
          1998. NA
1 Liam
2 Martha
          1997. NA
          1992. millenial
3 Jason
           1986. millenial
4 Stuart
5 Manisha
             1985. millenial
6 Simon
              1980. gen_x
7 Natasha
              1976. gen_x
8 Richard
              1976. gen_x
9 Robert
              1959. NA
10 Diana
              1945. NA
```


Make multiple bins

```
bakers %>% mutate(gen = case_when(
    between(birth_year, 1928, 1945) ~ "silent",
    between(birth_year, 1946, 1964) ~ "boomer",
    between(birth_year, 1965, 1980) ~ "gen_x",
    between(birth_year, 1981, 1996) ~ "millenial",
    TRUE ~ "gen_z"))
```

```
# A tibble: 10 x 3
   baker
          birth_year gen
               <dbl> <chr>
   <chr>
1 Liam
               1998. gen_z
 2 Martha
               1997. gen_z
               1992. millenial
 3 Jason
               1986. millenial
 4 Stuart
 5 Manisha
               1985. millenial
 6 Simon
               1980. gen_x
 7 Natasha
               1976. gen_x
 8 Richard
               1976. gen_x
 9 Robert
               1959. boomer
10 Diana
               1945. silent
```


List of "if-then" pairs

```
bakers %>%
    mutate(gen = case_when(

if TRUE

between(birth_year, 1928, 1945) ~ "silent",
    between(birth_year, 1946, 1964) ~ "boomer",
    between(birth_year, 1965, 1980) ~ "gen_x",
    between(birth_year, 1981, 1996) ~ "millenial",
    TRUE ~ "gen_z"
    ))
```

The last "if-then" pair

Know your new variable!

bakers

```
# A tibble: 95 x 3
           birth_year gen
  baker
               <dbl> <chr>
  <chr>
               1998. gen_z
1 Liam
2 Martha
           1997. gen_z
3 Flora
           1996. millenial
4 Michael
          1996. millenial
           1996. millenial
5 Julia
6 Ruby
            1993. millenial
7 Benjamina
           1993. millenial
           1992. millenial
8 Jason
           1991. millenial
9 James
10 Andrew
          1991. millenial
# ... with 85 more rows
```


Count bakers by generation

```
bakers %>%
  count(gen, sort = TRUE) %>%
  mutate(prop = n / sum(n))
```


Plot bakers by generation

```
ggplot(bakers, aes(x = gen)) + geom_bar()
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Factors

WORKING WITH DATA IN THE TIDYVERSE

Alison Hill
Professor & Data Scientist

The forcats package

library(forcats) # once per work session

¹ http://forcats.tidyverse.org

What is a factor?

"In R, factors are used to work with categorical variables, variables that have a fixed and known set of possible values."

¹ Garrett Grolemund & Hadley Wickham, http://r4ds.had.co.nz/factors.html

Count bakers by generation

```
bakers %>%
count(gen, sort = TRUE) %>%
mutate(prop = n / sum(n))
```

Plot bakers by generation

```
ggplot(bakers, aes(x = gen)) +
   geom_bar()
```


Reorder from most to least bakers

```
ggplot(bakers, aes(x = fct_infreq(gen))) +
  geom_bar()
```


Reorder from least to most bakers

```
ggplot(bakers, aes(x = fct_rev(fct_infreq(gen)))) +
  geom_bar()
```


Re-level using natural order

¹ http://www.pewresearch.org/topics/generations-and-age/

Reorder by hand

```
"silent" "boomer" "gen_x" "millenial" "gen_z"
```


Reorder generations chronologically

Fill fail

```
ggplot(bakers, aes(x = gen, fill = series_winner)) +
    geom_bar()
```


Fill win!

```
bakers <- bakers %>%
    mutate(series_winner = as.factor(series_winner))
ggplot(bakers, aes(x = gen, fill = series_winner)) + geom_bar()
```


Fill win!

```
ggplot(bakers, aes(x = gen, fill = as.factor(series_winner))) +
    geom_bar()
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Dates

WORKING WITH DATA IN THE TIDYVERSE

Alison Hill
Professor & Data Scientist

The lubridate package

library(lubridate) # once per work session

¹ http://lubridate.tidyverse.org

Cast character as a date

?ymd

Usage

```
ymd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)

ydm(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)

mdy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)

myd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)

dmy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)

dym(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),truncated = 0)
```


ymd() arguments

?ymd

Arguments

... a character or numeric vector of suspected dates

Examples

```
ymd("2010-08-17")
mdy(c("08/17/2010", "January 01, 2018"))
dmy("17 08 2010")
```

Parse Dates

```
dmy("17 August 2010") # does this work?
```

```
"2010-08-17"
```

```
mdy("17 August 2010") # what about this?
```

NA

Warning message: All formats failed to parse. No formats found.

```
ymd("17 August 2010") # what about this?
```

Warning message: All formats failed to parse. No formats found.

Dates in a data frame

```
hosts <- tibble::tribble(~host, ~bday, ~premiere, "Mary", "24 March 1935", "August 17th, 2010", "Paul", "1 March 1966", "August 17th, 2010")
```

hosts

Cast as dates

hosts

```
hosts <- hosts %>% mutate(bday = dmy(bday),premiere = mdy(premiere))
```

Types of timespans

- interval: time spans bound by two real date-times.
- duration: the exact number of seconds in an interval.
- period: the change in the clock time in an interval.

¹ Lubridate Reference Manual (http://lubridate.tidyverse.org/reference/timespan.html)

Calculating an interval

```
hosts <- hosts %>%
mutate(age_int = interval(bday, premiere))
```

hosts

```
# A tibble: 2 x 4
host bday premiere age_int
<chr> <chr> <date> <date> <S4: Interval>

Mary 1935-03-24 2010-08-17 1935-03-24 UTC--2010-08-17 UTC
Paul 1966-03-01 2010-08-17 1966-03-01 UTC--2010-08-17 UTC
```


Converting units of timespans

```
years(1)
"1y 0m 0d 0H 0M 0S"
hosts %>%
 mutate(years_decimal = age_int / years(1),
        years_whole = age_int %/% years(1))
# A tibble: 2 x 4
 host age_int
                                     years_decimal years_whole
 <chr> <S4: Interval>
                                             <dbl>
                                                        <dbl>
                                             75.4
1 Mary 1935-03-24 UTC--2010-08-17 UTC
                                                          75.
2 Paul 1966-03-01 UTC--2010-08-17 UTC
                                             44.5
                                                          44.
```


Converting units of timespans

```
hosts %>%
  mutate(age_y = age_int %/% years(1),
     age_m = age_int %/% months(12))
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Strings

WORKING WITH DATA IN THE TIDYVERSE

Alison Hill
Professor & Data Scientist

String wrangling

series5

```
# A tibble: 7 x 3
          about
  baker
                                          showstopper
  <chr>
         <chr>
                                          <chr>
1 Chetna 35 years, Fashion designer
                                          Fusion Tiered Pies
         42 years, Graphic designer
                                          Four Fruity Seasons Tower
2 Luis
3 Martha 17 years, Student
                                          Three Little Pigs Pie
4 Nancy
         60 years, Retired manager
                                         Trio of Apple Pies
5 Richard 38 years, Builder
                                          Three Course Autumn Pie Feast
6 Norman 66 years, Retired naval officer Pieful Tower
         41 years, Furniture restorer
7 Kate
                                          Rhubarb, Prune & Apple Pork Pies
```


tidyr::separate()

```
series5 <- series5 %>%
separate(about, into = c("age", "occupation"), sep = ", ")
```

```
series5
# A tibble: 7 x 4
  baker
                  occupation
                                       showstopper
         age
         <chr>
  <chr>
                  <chr>
                                       <chr>
1 Chetna 35 years Fashion designer
                                   Fusion Tiered Pies
         42 years Graphic designer
2 Luis
                                     Four Fruity Seasons Tower
                                      Three Little Pigs Pie
3 Martha 17 years Student
4 Nancy
         60 years Retired manager Trio of Apple Pies
5 Richard 38 years Builder
                                       Three Course Autumn Pie Feast
6 Norman 66 years Retired naval officer Pieful Tower
         41 years Furniture restorer
                                       Rhubarb, Prune & Apple Pork Pies
7 Kate
```


readr::parse_number()

```
series5 <- series5 %>%
  separate(about, into = c("age", "occupation"), sep = ", ") %>%
  mutate(age = parse_number(age))
```

series5

```
# A tibble: 7 x 4
 baker
           age occupation
                                   showstopper
        <dbl> <chr>
 <chr>
                                   <chr>
1 Chetna
           35. Fashion designer Fusion Tiered Pies
           42. Graphic designer Four Fruity Seasons Tower
2 Luis
3 Martha
           17. Student
                                   Three Little Pigs Pie
4 Nancy
           60. Retired manager Trio of Apple Pies
5 Richard
           38. Builder
                                   Three Course Autumn Pie Feast
6 Norman
           66. Retired naval officer Pieful Tower
7 Kate
           41. Furniture restorer
                                    Rhubarb, Prune & Apple Pork Pies
```


The stringr package

library(stringr) # once per work session

¹ http://stringr.tidyverse.org

String basics

series5

```
# A tibble: 7 x 4
  baker
            age occupation
                                     showstopper
         <dbl> <chr>
  <chr>
                                     <chr>
1 CHETNA
           35. Fashion designer fusion tiered pies
           42. Graphic designer
                                     four fruity seasons tower
2 LUIS
                                     three little pigs pie
3 MARTHA
           17. Student
            60. Retired manager
                                     trio of apple pies
4 NANCY
5 RICHARD
           38. Builder
                                     three course autumn pie feast
6 NORMAN
            66. Retired naval officer pieful tower
7 KATE
            41. Furniture restorer
                                     rhubarb, prune & apple pork pies
```


Detect string patterns

```
series5 %>%
mutate(pie = str_detect(showstopper, "pie"))
```

```
# A tibble: 7 x 5
  baker
            age occupation
                                      showstopper
                                                                       pie
          <dbl> <chr>
                                                                       <lql>
  <chr>
                                      <chr>
1 CHETNA
                                                                       TRUE
            35. Fashion designer
                                   fusion tiered pies
            42. Graphic designer
2 LUIS
                                      four fruity seasons tower
                                                                       FALSE
3 MARTHA
            17. Student
                                      three little pigs pie
                                                                       TRUE
            60. Retired manager
                                      trio of apple pies
4 NANCY
                                                                       TRUE
5 RICHARD
            38. Builder
                                      three course autumn pie feast
                                                                       TRUE
6 NORMAN
            66. Retired naval officer pieful tower
                                                                       TRUE
7 KATE
            41. Furniture restorer
                                      rhubarb, prune & apple pork pies TRUE
```


Replace string patterns

```
series5 %>%
mutate(showstopper = str_replace(showstopper, "pie", "tart"))
```

```
# A tibble: 7 x 4
 baker
           age occupation
                                     showstopper
         <dbl> <chr>
 <chr>
                                     <chr>
           35. Fashion designer fusion tiered tarts
1 CHETNA
           42. Graphic designer
                                four fruity seasons tower
2 LUIS
3 MARTHA
           17. Student
                                    three little pigs tart
                               trio of apple tarts
4 NANCY
           60. Retired manager
5 RICHARD
           38. Builder
                                     three course autumn tart feast
           66. Retired naval officer tartful tower
6 NORMAN
7 KATE
           41. Furniture restorer
                                     rhubarb, prune & apple pork tarts
```


Remove string patterns

```
series5 %>%
mutate(showstopper = str_remove(showstopper, "pie"))
```

```
# A tibble: 7 x 4
 baker
           age occupation
                                     showstopper
         <dbl> <chr>
 <chr>
                                     <chr>
1 CHETNA
                                fusion tiered s
           35. Fashion designer
           42. Graphic designer
                                 four fruity seasons tower
2 LUIS
                                    "three little pigs "
3 MARTHA
           17. Student
           60. Retired manager
                                trio of apple s
4 NANCY
5 RICHARD
           38. Builder
                                     three course autumn feast
6 NORMAN
           66. Retired naval officer ful tower
7 KATE
           41. Furniture restorer
                                     rhubarb, prune & apple pork s
```


Trim whitespace

```
# A tibble: 7 x 4
  baker
           age occupation
                                     showstopper
         <dbl> <chr>
  <chr>
                                    <chr>
1 CHETNA
           35. Fashion designer
                                fusion tiered s
2 LUIS
           42. Graphic designer
                                four fruity seasons tower
                                    three little pigs
3 MARTHA
           17. Student
           60. Retired manager trio of apple s
4 NANCY
5 RICHARD
           38. Builder
                                    three course autumn feast
6 NORMAN
           66. Retired naval officer ful tower
7 KATE
           41. Furniture restorer
                                    rhubarb, prune & apple pork s
```


Let's practice!

WORKING WITH DATA IN THE TIDYVERSE

Final thoughts

WORKING WITH DATA IN THE TIDYVERSE

Alison Hill
Professor & Data Scientist

Explore your data

```
bakeoff <- read_csv("bakeoff.csv")
glimpse(bakeoff)
skim(bakeoff)</pre>
```

```
bakeoff %>%
  count(series, baker) %>%
  count(series)
```

```
ggplot(bakeoff, aes(episode)) +
    geom_bar() +
    facet_wrap(~series)
```

```
?read_csv
```


Tame your data

Tidy your data

Transform your data

```
bakers <- bakers %>%
 mutate(gen = case_when(
   between(birth_year, 1928, 1945) ~ "silent",
   between(birth_year, 1946, 1964) ~ "boomer",
   between(birth_year, 1965, 1980) ~ "gen_x",
   between(birth_year, 1981, 1996) ~ "millenial",
   TRUE ~ "gen_z"
   ))
bakers <- bakers %>%
   mutate(gen = fct_relevel(gen, "silent", "boomer",
                             "gen_x", "millenial", "gen_z"))
ggplot(bakers, aes(x = gen)) + geom_bar()
bakers <- bakers %>%
 mutate(last_date_appeared_us = dmy(last_date_appeared_us),
         occupation = str_to_lower(occupation),
         student = str_detect(occupation, "student"))
```


On your own

R Projects in RStudio

Project-oriented workflows

```
bakeoff
|-- bakeoff.Rproj
|-- data
| |-- bakers.csv <-- this is my file!
|-- figures</pre>
```

```
# install.packages("here")
library(here)
bakers <- read_csv(here("data", "bakers.csv"))</pre>
```

The here package: https://here.r-lib.org/

What's next?

What's next?

- Working with Dates and Times in R
- String Manipulation with stringr in R
- Categorical Data in the Tidyverse
- Communicating with Data in the Tidyverse
- Modeling with Data in the Tidyverse

Congratulations!

WORKING WITH DATA IN THE TIDYVERSE

