
Tensors, layers and
autoencoders

I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Miguel Esteban
Data Scientist & Founder

INTRODUCTION TO DEEP LEARNING WITH KERAS

Accessing Keras layers
Acessing the first layer of a Keras model

first_layer = model.layers[0]
Printing the layer, and its input, output and weights

print(first_layer.input)

print(first_layer.output)

print(first_layer.weights)

<tf.Tensor 'dense_1_input:0' shape=(?, 3) dtype=float32>

<tf.Tensor 'dense_1/Relu:0' shape=(?, 2) dtype=float32>

[<tf.Variable 'dense_1/kernel:0' shape=(3, 2) dtype=float32_ref>,

 <tf.Variable 'dense_1/bias:0' shape=(2,) dtype=float32_ref>]

INTRODUCTION TO DEEP LEARNING WITH KERAS

What are tensors?
Defining a rank 2 tensor (2 dimensions)

T2 = [[1,2,3],

 [4,5,6],

 [7,8,9]]
Defining a rank 3 tensor (3 dimensions)

T3 = [[1,2,3],

 [4,5,6],

 [7,8,9],

 [10,11,12],

 [13,14,15],

 [16,17,18],

 [19,20,21],

 [22,23,24],

 [25,26,27]]

INTRODUCTION TO DEEP LEARNING WITH KERAS

Import Keras backend

import keras.backend as K

Get the input and output tensors of a model layer

inp = model.layers[0].input

out = model.layers[0].output

Function that maps layer inputs to outputs

inp_to_out = K.function([inp], [out])

We pass and input and get the output we'd get in that first layer

print(inp_to_out([X_train])

Outputs of the first layer per sample in X_train

[array([[0.7, 0],...,[0.1, 0.3]])]

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

Autoencoders!

INTRODUCTION TO DEEP LEARNING WITH KERAS

Autoencoders!

INTRODUCTION TO DEEP LEARNING WITH KERAS

Autoencoder use cases
Dimensionality reduction:

Smaller dimensional space representation

of our inputs.

De-noising data:

If trained with clean data, irrelevant noise

will be �ltered out during reconstruction.

Anomaly detection:

A poor reconstruction will result when the

model is fed with unseen inputs.

...

INTRODUCTION TO DEEP LEARNING WITH KERAS

Building a simple autoencoder

Instantiate a sequential model

autoencoder = Sequential()

Add a hidden layer of 4 neurons and an input layer of 100

autoencoder.add(Dense(4, input_shape=(100,), activation='relu'))

Add an output layer of 100 neurons

autoencoder.add(Dense(100, activation='sigmoid'))

Compile your model with the appropiate loss

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

INTRODUCTION TO DEEP LEARNING WITH KERAS

Breaking it into an encoder

Building a separate model to encode inputs

encoder = Sequential()

encoder.add(autoencoder.layers[0])

Predicting returns the four hidden layer neuron outputs

encoder.predict(X_test)

Four numbers for each observation in X_test

array([10.0234375, 5.833543, 18.90444, 9.20348],...)

Let's experiment!
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Intro to CNNs
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Miguel Esteban
Data Scientist & Founder

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

Import Conv2D layer and Flatten from keras layers
from keras.layers import Dense, Conv2D, Flatten
Instantiate your model as usual
model = Sequential()

Add a convolutional layer with 32 filters of size 3x3
model.add(Conv2D(filters=32,
 kernel_size=3,
 input_shape=(28, 28, 1),
 activation='relu'))

Add another convolutional layer
model.add(Conv2D(8, kernel_size=3, activation='relu'))

Flatten the output of the previous layer
model.add(Flatten())
End this multiclass model with 3 outputs and softmax
model.add(Dense(3, activation='softmax'))

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

Pre-processing images for ResNet50
Import image from keras preprocessing

from keras.preprocessing import image
Import preprocess_input from keras applications resnet50

from keras.applications.resnet50 import preprocess_input
Load the image with the right target size for your model

img = image.load_img(img_path, target_size=(224, 224))
Turn it into an array

img = image.img_to_array(img)
Expand the dimensions so that it's understood by our network:

img.shape turns from (224, 224, 3) into (1, 224, 224, 3)

img = np.expand_dims(img, axis=0)
Pre-process the img in the same way training images were

img = preprocess_input(img)

INTRODUCTION TO DEEP LEARNING WITH KERAS

Using the ResNet50 model in Keras

Import ResNet50 and decode_predictions from keras.applications.resnet50

from keras.applications.resnet50 import ResNet50, decode_predictions

Instantiate a ResNet50 model with imagenet weights

model = ResNet50(weights='imagenet')

Predict with ResNet50 on our img

preds = model.predict(img)

Decode predictions and print it

print('Predicted:', decode_predictions(preds, top=1)[0])

Predicted: [('n07697313', 'cheeseburger', 0.9868016)]

INTRODUCTION TO DEEP LEARNING WITH KERAS

Let's experiment!
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Intro to LSTMs
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Miguel Esteban
Data Scientist & Founder

INTRODUCTION TO DEEP LEARNING WITH KERAS

What are RNNs?

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

When to use LSTMs?
Image captioning

Speech to text

Text translation

Document summarization

Text generation

Musical composition

...

 Karpathy, A., & Fei Fei, L. (2015). Deep visual semantic alignments for generating image descriptions.1 2 3

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

INTRODUCTION TO DEEP LEARNING WITH KERAS

text = 'Hi this is a small sentence'

We choose a sequence length
seq_len = 3

Split text into a list of words
words = text.split()

['Hi', 'this', 'is', 'a', 'small', 'sentence']

Make lines
lines = []
for i in range(seq_len, len(words) + 1):
 line = ' '.join(words[i-seq_len:i])
 lines.append(line)

['Hi this is', 'this is a', 'is a small', 'a small sentence']

INTRODUCTION TO DEEP LEARNING WITH KERAS

Import Tokenizer from keras preprocessing text

from keras.preprocessing.text import Tokenizer
Instantiate Tokenizer

tokenizer = Tokenizer()
Fit it on the previous lines

tokenizer.fit_on_texts(lines)
Turn the lines into numeric sequences

sequences = tokenizer.texts_to_sequences(lines)

array([[5, 3, 1], [3, 1, 2], [1, 2, 4], [2, 4, 6]])

print(tokenizer.index_word)

{1: 'is', 2: 'a', 3: 'this', 4: 'small', 5: 'hi', 6: 'sentence'}

INTRODUCTION TO DEEP LEARNING WITH KERAS

Import Dense, LSTM and Embedding layers

from keras.layers import Dense, LSTM, Embedding

model = Sequential()
Vocabulary size

vocab_size = len(tokenizer.index_word) + 1
Starting with an embedding layer

model.add(Embedding(input_dim=vocab_size, output_dim=8, input_length=2))
Adding an LSTM layer

model.add(LSTM(8))

Adding a Dense hidden layer

model.add(Dense(8, activation='relu'))
Adding an output layer with softmax

model.add(Dense(vocab_size, activation='softmax'))

Let's do it!
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

You're done!
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

Miguel Esteban
Data Scientist & Founder

INTRODUCTION TO DEEP LEARNING WITH KERAS

Congratulations!

INTRODUCTION TO DEEP LEARNING WITH KERAS

You've learned a lot

INTRODUCTION TO DEEP LEARNING WITH KERAS

What you've learned
Basics of neural networks

Building sequential models

Building models for regression

Approaching binary classi�cation, multi-class

and multi-label problems with neural networks

Activation functions

Hyperparameter optimization

Autoencoders

De-noising images

CNN concepts

Use pre-trained models

Visualize convolutions

LSTMs concepts

Work with LSTMs and text

All this by using many different datasets and

learning a lot of Keras utility functions.

INTRODUCTION TO DEEP LEARNING WITH KERAS

What could you learn next?
Go deeper into CNNs

Go deeper into LSTMs

Keras Functional API

Models that share layers, models with several branches

GANs: Generative Adversarial Networks

Deeplearning projects

INTRODUCTION TO DEEP LEARNING WITH KERAS

Have a good one!
I N T R O D U C T I O N TO D E E P L E A R N I N G W I T H K E R A S

