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Accessing Keras layers
# Acessing the first layer of a Keras model

first_layer = model.layers[0]  
# Printing the layer, and its input, output and weights

print(first_layer.input) 

print(first_layer.output) 

print(first_layer.weights) 

<tf.Tensor 'dense_1_input:0' shape=(?, 3) dtype=float32> 

<tf.Tensor 'dense_1/Relu:0' shape=(?, 2) dtype=float32> 

[<tf.Variable 'dense_1/kernel:0' shape=(3, 2) dtype=float32_ref>, 

 <tf.Variable 'dense_1/bias:0' shape=(2,) dtype=float32_ref>] 
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What are tensors?
# Defining a rank 2 tensor (2 dimensions) 

T2 = [[1,2,3], 

      [4,5,6], 

      [7,8,9]]  
# Defining a rank 3 tensor (3 dimensions) 

T3 = [[1,2,3], 

      [4,5,6], 

      [7,8,9], 

 

      [10,11,12], 

      [13,14,15], 

      [16,17,18], 

 

      [19,20,21], 

      [22,23,24], 

      [25,26,27]] 
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# Import Keras backend 

import keras.backend as K  

# Get the input and output tensors of a model layer 

inp = model.layers[0].input 

out = model.layers[0].output  

# Function that maps layer inputs to outputs 

inp_to_out = K.function([inp], [out])  

# We pass and input and get the output we'd get in that first layer 

print(inp_to_out([X_train]) 

# Outputs of the first layer per sample in X_train 

[array([[0.7, 0],...,[0.1, 0.3]])] 
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Autoencoders!
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Autoencoders!
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Autoencoder use cases
Dimensionality reduction:

Smaller dimensional space representation

of our inputs.

De-noising data:

If trained with clean data, irrelevant noise

will be �ltered out during reconstruction.

Anomaly detection:

A poor reconstruction will result when the

model is fed with unseen inputs.

...



INTRODUCTION TO DEEP LEARNING WITH KERAS

Building a simple autoencoder

# Instantiate a sequential model 

autoencoder = Sequential()  

# Add a hidden layer of 4 neurons and an input layer of 100 

autoencoder.add(Dense(4, input_shape=(100,), activation='relu'))  

# Add an output layer of 100 neurons 

autoencoder.add(Dense(100, activation='sigmoid'))  

# Compile your model with the appropiate loss 

autoencoder.compile(optimizer='adam', loss='binary_crossentropy') 
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Breaking it into an encoder

# Building a separate model to encode inputs 

encoder = Sequential() 

encoder.add(autoencoder.layers[0])  

# Predicting returns the four hidden layer neuron outputs 

encoder.predict(X_test) 

# Four numbers for each observation in X_test 

array([10.0234375, 5.833543, 18.90444, 9.20348],...) 



Let's experiment!
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# Import Conv2D layer and Flatten from keras layers 
from keras.layers import Dense, Conv2D, Flatten  
# Instantiate your model as usual 
model = Sequential() 

# Add a convolutional layer with 32 filters of size 3x3 
model.add(Conv2D(filters=32, 
                kernel_size=3, 
                input_shape=(28, 28, 1), 
                activation='relu'))  

# Add another convolutional layer 
model.add(Conv2D(8, kernel_size=3, activation='relu')) 

# Flatten the output of the previous layer 
model.add(Flatten())  
# End this multiclass model with 3 outputs and softmax 
model.add(Dense(3, activation='softmax')) 
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Pre-processing images for ResNet50
# Import image from keras preprocessing 

from keras.preprocessing import image  
# Import preprocess_input from keras applications resnet50 

from keras.applications.resnet50 import preprocess_input  
# Load the image with the right target size for your model 

img = image.load_img(img_path, target_size=(224, 224))  
# Turn it into an array 

img = image.img_to_array(img)  
# Expand the dimensions so that it's understood by our network: 

# img.shape turns from (224, 224, 3) into (1, 224, 224, 3) 

img = np.expand_dims(img, axis=0)  
# Pre-process the img in the same way training images were 

img = preprocess_input(img) 
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Using the ResNet50 model in Keras

# Import ResNet50 and decode_predictions from keras.applications.resnet50 

from keras.applications.resnet50 import ResNet50, decode_predictions  

# Instantiate a ResNet50 model with imagenet weights 

model = ResNet50(weights='imagenet')  

# Predict with ResNet50 on our img 

preds = model.predict(img)  

# Decode predictions and print it 

print('Predicted:', decode_predictions(preds, top=1)[0]) 

Predicted: [('n07697313', 'cheeseburger', 0.9868016)] 
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Let's experiment!
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What are RNNs?
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When to use LSTMs?
Image captioning

Speech to text

Text translation

Document summarization

Text generation

Musical composition

...

 Karpathy, A., & Fei  Fei, L. (2015). Deep visual  semantic alignments for generating image descriptions.1 2 3
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text = 'Hi this is a small sentence'
 
# We choose a sequence length 
seq_len = 3 
 
# Split text into a list of words 
words = text.split() 

['Hi', 'this', 'is', 'a', 'small', 'sentence'] 

# Make lines 
lines = [] 
for i in range(seq_len, len(words) + 1):
  line = ' '.join(words[i-seq_len:i]) 
  lines.append(line) 

['Hi this is', 'this is a', 'is a small', 'a small sentence'] 
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# Import Tokenizer from keras preprocessing text

from keras.preprocessing.text import Tokenizer  
# Instantiate Tokenizer

tokenizer = Tokenizer() 
# Fit it on the previous lines

tokenizer.fit_on_texts(lines)  
# Turn the lines into numeric sequences 

sequences = tokenizer.texts_to_sequences(lines)

array([[5, 3, 1], [3, 1, 2], [1, 2, 4], [2, 4, 6]]) 

print(tokenizer.index_word)

{1: 'is', 2: 'a', 3: 'this', 4: 'small', 5: 'hi', 6: 'sentence'} 
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# Import Dense, LSTM and Embedding layers 

from keras.layers import Dense, LSTM, Embedding

model = Sequential()  
# Vocabulary size 

vocab_size = len(tokenizer.index_word) + 1 
# Starting with an embedding layer 

model.add(Embedding(input_dim=vocab_size, output_dim=8, input_length=2)) 
# Adding an LSTM layer 

model.add(LSTM(8)) 

 

# Adding a Dense hidden layer 

model.add(Dense(8, activation='relu')) 
# Adding an output layer with softmax 

model.add(Dense(vocab_size, activation='softmax'))



Let's do it!
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You're done!
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Congratulations!
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You've learned a lot
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What you've learned
Basics of neural networks

Building sequential models

Building models for regression

Approaching binary classi�cation, multi-class

and multi-label problems with neural networks

Activation functions

Hyperparameter optimization

Autoencoders

De-noising images

CNN concepts

Use pre-trained models

Visualize convolutions

LSTMs concepts

Work with LSTMs and text

All this by using many different datasets and

learning a lot of Keras utility functions.
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What could you learn next?
Go deeper into CNNs

Go deeper into LSTMs

Keras Functional API

Models that share layers, models with several branches

GANs: Generative Adversarial Networks

Deeplearning projects
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Have a good one!
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