
Informed Search:
Coarse to Fine

H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Alex Scriven
Data Scientist

HYPERPARAMETER TUNING IN PYTHON

Informed vs Uninformed Search

So far everything we have done has been uninformed search:

Uninformed search: Where each iteration of hyperparameter tuning does not learn from the previous

iterations.

This is what allows us to parallelize our work. Though this doesn't sound very ef�cient?

HYPERPARAMETER TUNING IN PYTHON

Informed vs Uninformed
The process so far: An alternate way:

HYPERPARAMETER TUNING IN PYTHON

Coarse to Fine Tuning
A basic informed search methodology:

Start out with a rough, random approach and iteratively re�ne your search.

The process is:

1. Random search

2. Find promising areas

3. Grid search in the smaller area

4. Continue until optimal score obtained

You could substitute (3) with further random searches before the grid search

HYPERPARAMETER TUNING IN PYTHON

Why Coarse to Fine?
Coarse to �ne tuning has some advantages:

Utilizes the advantages of grid and random search.

Wide search to begin with

Deeper search once you know where a good spot is likely to be

Better spending of time and computational efforts mean you can iterate quicker

No need to waste time on search spaces that are not giving good results!

Note: This isn't informed on one model but batches

HYPERPARAMETER TUNING IN PYTHON

Undertaking Coarse to Fine
Let's take an example with the following hyperparameter ranges:

max_depth_list between 1 and 65

min_sample_list between 3 and 17

learn_rate_list 150 values between 0.01 and 150

How many possible models do we have?

combinations_list = [list(x) for x in product(max_depth_list, min_sample_list, learn_rate_list)]

print(len(combinations_list))

134400

HYPERPARAMETER TUNING IN PYTHON

Visualizing Coarse to Fine
Let's do a random search on just 500 combinations.

Here we plot our accuracy scores:

Which models were the good ones?

HYPERPARAMETER TUNING IN PYTHON

Visualizing Coarse to Fine
Top results:

max_depth min_samples_leaf learn_rate accuracy

10 7 0.01 96

19 7 0.023355705 96

30 6 1.038389262 93

27 7 1.11852349 91

16 7 0.597651007 91

HYPERPARAMETER TUNING IN PYTHON

Visualizing Coarse to Fine
Let's visualize the max_depth values vs accuracy score:

HYPERPARAMETER TUNING IN PYTHON

Visualizing coarse to Fine
min_samples_leaf better below 8 learn_rate worse above 1.3

HYPERPARAMETER TUNING IN PYTHON

The next steps
What we know from iteration one:

max_depth between 8 and 30

learn_rate less than 1.3

min_samples_leaf perhaps less than 8

Where to next? Another random or grid search with what we know!

Note: This was only bivariate analysis. You can explore looking at multiple hyperparameters (3, 4 or

more!) on a single graph, but that's beyond the scope of this course.

Let's practice!
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Informed Methods:
Bayesian Statistics
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Alex Scriven
Data Scientist

HYPERPARAMETER TUNING IN PYTHON

Bayes Introduction

Bayes Rule:

A statistical method of using new evidence to iteratively update our beliefs about some outcome

Intuitively �ts with the idea of informed search. Getting better as we get more evidence.

HYPERPARAMETER TUNING IN PYTHON

Bayes Rule
Bayes Rule has the form:

P(A ∣ B) =

LHS = the probability of A, given B has occurred. B is some new evidence.

This is known as the 'posterior'

RHS is how we calculate this.

P(A) is the 'prior'. The initial hypothesis about the event. It is different to P(A|B), the P(A|B) is the

probability given new evidence.

P(B)
P(B ∣ A)P(A)

HYPERPARAMETER TUNING IN PYTHON

Bayes Rule

P(A ∣ B) =

P(B) is the 'marginal likelihood' and it is the probability of observing this new evidence

P(B|A) is the 'likelihood' which is the probability of observing the evidence, given the event we

care about.

This all may be quite confusing, but let's use a common example of a medical diagnosis to demonstrate.

P(B)
P(B ∣ A)P(A)

HYPERPARAMETER TUNING IN PYTHON

Bayes in Medicine

A medical example:

5% of people in the general population have a certain disease

P(D)

10% of people are predisposed

P(Pre)

20% of people with the disease are predisposed

P(Pre|D)

HYPERPARAMETER TUNING IN PYTHON

Bayes in Medicine
What is the probability that any person has the disease?

P(D) = 0.05

This is simply our prior as we have no evidence.

What is the probability that a predisposed person has the disease?

P(D ∣ Pre) =

P(D ∣ Pre) = = 0.1

P(pre)
P(Pre ∣ D)P(D)

0.1
0.2 ∗ 0.05

HYPERPARAMETER TUNING IN PYTHON

Bayes in Hyperparameter Tuning
We can apply this logic to hyperparameter tuning:

Pick a hyperparameter combination

Build a model

Get new evidence (the score of the model)

Update our beliefs and chose better hyperparameters next round

Bayesian hyperparameter tuning is very new but quite popular for larger and more complex

hyperparameter tuning tasks as they work well to �nd optimal hyperparameter combinations in these

situations

HYPERPARAMETER TUNING IN PYTHON

Bayesian Hyperparameter Tuning with Hyperopt

Introducing the Hyperopt package.

To undertake bayesian hyperparameter tuning we need to:

1. Set the Domain: Our Grid (with a bit of a twist)

2. Set the Optimization algorithm (use default TPE)

3. Objective function to minimize: we will use 1-Accuracy

HYPERPARAMETER TUNING IN PYTHON

Hyperopt: Set the Domain (grid)
Many options to set the grid:

Simple numbers

Choose from a list

Distribution of values

Hyperopt does not use point values on the grid but instead each point represents probabilities for each

hyperparameter value.

We will do a simple uniform distribution but there are many more if you check the documentation.

HYPERPARAMETER TUNING IN PYTHON

The Domain

Set up the grid:

space = {

 'max_depth': hp.quniform('max_depth', 2, 10, 2),

 'min_samples_leaf': hp.quniform('min_samples_leaf', 2, 8, 2),

 'learning_rate': hp.uniform('learning_rate', 0.01, 1, 55),

}

HYPERPARAMETER TUNING IN PYTHON

The objective function
The objective function runs the algorithm:

def objective(params):

 params = {'max_depth': int(params['max_depth']),

 'min_samples_leaf': int(params['min_samples_leaf']),

 'learning_rate': params['learning_rate']}

 gbm_clf = GradientBoostingClassifier(n_estimators=500, **params)
 best_score = cross_val_score(gbm_clf, X_train, y_train,

 scoring='accuracy', cv=10, n_jobs=4).mean()

 loss = 1 - best_score
 write_results(best_score, params, iteration)

 return loss

HYPERPARAMETER TUNING IN PYTHON

Run the algorithm

Run the algorithm:

best_result = fmin(

 fn=objective,

 space=space,

 max_evals=500,

 rstate=np.random.RandomState(42),

 algo=tpe.suggest)

Let's practice!
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Informed Methods:
Genetic Algorithms

H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Alex Scriven
Data Scientist

HYPERPARAMETER TUNING IN PYTHON

A lesson on genetics

In genetic evolution in the real world, we have the following process:

1. There are many creatures existing ('offspring')

2. The strongest creatures survive and pair off

3. There is some 'crossover' as they form offspring

4. There are random mutations to some of the offspring

These mutations sometimes help give some offspring an advantage

5. Go back to (1)!

HYPERPARAMETER TUNING IN PYTHON

Genetics in Machine Learning

We can apply the same idea to hyperparameter tuning:

1. We can create some models (that have hyperparameter settings)

2. We can pick the best (by our scoring function)

These are the ones that 'survive'

3. We can create new models that are similar to the best ones

4. We add in some randomness so we don't reach a local optimum

5. Repeat until we are happy!

HYPERPARAMETER TUNING IN PYTHON

Why does this work well?

This is an informed search that has a number of advantages:

It allows us to learn from previous iterations, just like bayesian hyperparameter tuning.

It has the additional advantage of some randomness

(The package we'll use) takes care of many tedious aspects of machine learning

HYPERPARAMETER TUNING IN PYTHON

Introducing TPOT

A useful library for genetic hyperparameter tuning is TPOT:

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool

that optimizes machine learning pipelines using genetic programming.

Pipelines not only include the model (or multiple models) but also work on features and other aspects of

the process. Plus it returns the Python code of the pipeline for you!

HYPERPARAMETER TUNING IN PYTHON

TPOT components
The key arguments to a TPOT classi�er are:

generations – Iterations to run training for.

population_size – The number of models to keep after each iteration.

offspring_size – Number of models to produce in each iteration.

mutation_rate – The proportion of pipelines to apply randomness to.

crossover_rate – The proportion of pipelines to breed each iteration.

scoring – The function to determine the best models

cv – Cross-validation strategy to use.

HYPERPARAMETER TUNING IN PYTHON

A simple example
A simple example:

from tpot import TPOTClassifier

tpot = TPOTClassifier(generations=3, population_size=5,

 verbosity=2, offspring_size=10,

 scoring='accuracy', cv=5)
tpot.fit(X_train, y_train)

print(tpot.score(X_test, y_test))

We will keep default values for mutation_rate and crossover_rate as they are best left to the

default without deeper knowledge on genetic programming.

Notice: No algorithm-speci�c hyperparamaters?

Let's practice!
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Wrap up
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

Alex Scriven
Data Scientist

HYPERPARAMETER TUNING IN PYTHON

Hyperparameters vs Parameters

Hyperparameters vs Parameters:

Hyperparameters are components of the model that you set. They are not learned during the

modeling process

Parameters are not set by you. The algorithm will discover these for you

HYPERPARAMETER TUNING IN PYTHON

Which hyperparameters & values?

You learned:

Some hyperparameters are better to start with than others

There are silly values you can set for hyperparameters

You need to beware of con�icting hyperparameters

Best practice is speci�c to algorithms and their hyperparameters

HYPERPARAMETER TUNING IN PYTHON

Remembering Grid Search

We introduced grid search:

Construct a matrix (or 'grid') of hyperparameter combinations and values

Build models for all the different hyperparameter combinations

Then pick the winner

A computationally expensive option but is guaranteed to �nd the best in your grid. (Remember the

importance of setting a good grid!)

HYPERPARAMETER TUNING IN PYTHON

Remembering Random Search

Random Search:

Very similar to grid search

Main difference is selecting (n) random combinations.

This method is faster at getting a reasonable model but will not get the best in your grid.

HYPERPARAMETER TUNING IN PYTHON

From uninformed to informed search
Looking at informed search:

In informed search, each iteration learns from the last, whereas in Grid and Random, modeling is all

done at once and then the best is picked.

Informed methods explored were:

'Coarse to Fine' (Iterative random then grid search)

Bayesian hyperparameter tuning, updating beliefs using evidence on model performance

Genetic algorithms, evolving your models over generations.

Thank you!
H Y P E R PA R A M E T E R T U N I N G I N P Y T H O N

