Steuben County Farm-City Day Announces 2015 Host Farm!

It’s been two years since our last Farm-City Day; an event highlighting the importance of agriculture in Steuben County. We are pleased and excited to announce that we will be returning to Canisteo, NY to the Moss-VanWie Dairy Farm. Cliff & Deb Moss hosted the event just a few years ago in 2011. Look for many of your favorite displays & vendors (maple, ice cream, dairy princess, milking a cow by hand) along with new attractions and exhibits!

Centrally located on State Route 36, Moss-VanWie Dairy is home to 120 cows and 100 calves and heifers. They have over 300 acres of corn, 120 acres of soybeans and 80 acres of hay.

Farm-City Day is an educational, fun filled day on the farm where the public can get a first-hand, behind the scenes look at how a modern dairy farm operates. Come out and celebrate our local agriculture community at the annual Steuben County Farm-City Day Saturday September 26th! For information on attractions, events, sponsors, and detailed directions visit our website www.steubencountyfarmday.com or find us on facebook.
Benefits of Pasture

Virginia Ishler,
Extension Dairy Specialist PSU

There are six to seven months out of the year when pasture can figure into the feeding management strategy for all animal groups on Pennsylvania dairies. There are numerous benefits to the animal and producer who can incorporate pasture into the ration however there are also some challenges that go along with grazing.

Production Perspective:

For the twelve years managing the dairy barns at Penn State, pasture figured prominently into the management scheme. Pasture is a great way to get animals off concrete and can stretch out forage inventories. Pasture was used for pre-breeding age and pregnant heifers. In the spring, with lush pasture available, a small amount of supplemental grain (corn and a mineral mix) would be fed. Animals would be rotated through various paddocks to keep pastures growing. As the summer progressed and depending on rainfall, a total mixed ration (TMR) would be fed to supplement the pasture quality and quantity available. This required constant monitoring of the pasture and the animals to record how much supplemental TMR was needed. A parasite control protocol was implemented. There was the occasional foot rot so constant observation of animals was critical.

Pasture was used for the early mature dry cows and springing heifers. They would receive a supplemental ration to compliment the pasture. This can be a great strategy for animals with long days in milk and that have excess body condition. Observing animals for foot rot and the possible abortion is important. Groundhog holes and downed tree limbs were an occasional problem so monitoring cows routinely for any signs of injury was required.

Incorporating pasture into a low group ration is a strategy to help late lactation animals achieve an ideal body condition. Our approach was to keep cows in during the day and limit the amount of TMR fed. After the evening milking cows would go onto pasture and return to the free-stall barn after the morning milking. This strategy was extremely beneficial when I first started as manager when the herd had reproductive problems. There were too many animals with extremely long days in milk that were over conditioned. This was setting our fresh cows up for metabolic problems, especially ketosis and fatty livers. Grazing the low producers and late lactation animals coupled with the proper supplementation allowed animals to lose some condition prior to dry off. Continuing grazing for the early dry cows helped maintain condition. This strategy was instrumental in eliminating ketosis and fatty liver problems in the herd. It was so effective, that improvements were observed in reproductive performance, in ideal body condition scores and in fresh cow performance. Eventually there were no longer enough cows in late lactation milking under 60 pounds to make a low group utilizing pasture.

Incorporating grazing into a feeding management strategy is very beneficial for all animal groups. Every farm is different so strategies and protocols will be customized that best meet the needs of the animals and producer.

Agricultural Program Committee
Bill Brown
Cathy Halm
Drew Heisey
Greg Muller
John Murphy
Bob Nichols
Paul White

Hammondsport
Campbell
Hornell, NY
Bath, NY
Wayland
Addison
Cohocton

Legislative Representatives:
Hilda Lando
Bill Peoples

Corning
Addison

Agricultural Program Staff:

Kerri Bartlett, Dairy & Livestock
Stephanie Mehlenbacher, Horticulture
Hans Walter Petersen, Grapes
Brett Chedzoy, Forestry
Action plan for utilizing pasture
Goal – Develop a grazing strategy for the animal groups utilizing pasture from April through October.

Step 1: Fertilize pastures and check that fencing and waterers are working.

Step 2: Start grazing grasses over 8 inches tall and rotate animals out when grass height falls below 3 inches.

Step 3: Develop a parasite control program with the herd veterinarian.

Step 4: Designate a person to routinely check animals on a daily basis during supplemental feeding times and observe animals for any health or injury problems.

Economic Perspective:
Monitoring must include an economic component to determine if a management strategy is working or not. For the lactating cows income over feed costs is a good way to check that feed costs are in line for the level of milk production. Starting with July’s milk price, income over feed costs will be calculated using average intake and production for the last six years from the Penn State dairy herd. The ration will contain 63% forage consisting of corn silage, haylage and hay. The concentrate portion will include corn grain, candy meal, sugar, canola meal, roasted soybeans, Optigen and a mineral vitamin mix. All market prices will be used.

Also included are the feed costs for dry cows, springing heifers, pregnant heifers and growing heifers. The rations reflect what has been fed to these animal groups at the Penn State dairy herd for the past 6 years. All market prices will be used.

Still Time To Plant Buckwheat

Guaranteed Price for this year is $28.50 per cwt.

Buckwheat is fast growing—70 days from planting to harvest. It can be planted as late as mid-July in many areas, allowing for a double crop after wheat or rye.

Buckwheat improves the soil and suppresses weeds.

Buckwheat needs very little attention during the growing season.

Buckwheat makes a great rotation crop.

Buckwheat often grows well on low-fertility land.

Buckwheat is a high-yield crop. The Birkett Mills offers growers a specially developed, high-yield seed variety.

Buckwheat requires no chemicals and little or no fertilizer, producing savings in labor, fuel and chemical inputs.

There is still time to plant buckwheat.
So, let's talk. We're looking primarily for full-production, contracted commercial, or, if you are a certified organic farm, we'll contract organic buckwheat as well. And, for those not wishing to contract, we also offer both commercial and organic cover crop buckwheat seed.

This year start managing price stability, crop size and the changing export market, contract with The Birkett Mills, where both price and market are guaranteed before you plant.

The Birkett Mills

Penn Yan, NY
Get complete info at www.thebirkettmills.com/growers
(315) 536-3311 or Fax: (315) 536-6740

$28.50 - RECORD HIGH PRICE!
Performance of Western NY Region Dairy Farm Businesses in 2014 – Preliminary Results
By: John J. Hanchar and Joan Petzen

Summary
- While milk sold per cow was relatively stable, milk receipts per hundredweight (cwt.) rose 17 percent to an historical high of $25.42 in 2014 when compared to 2013.
- In 2014, the operating cost of producing a cwt. of milk was $17.18, an increase of 5.6 percent relative to 2013.
- As of April 8, 2015, preliminary results suggest that the same 49 Western New York region (WNY) dairy farms in Cornell University Cooperative Extension’s Dairy Farm Business Summary (DFBS) Program achieved greater levels of profit in 2014 compared to 2013 -- for example, in 2014, the rate of return on all assets without appreciation averaged 13.7 percent compared to 8.8 percent in 2013.

Introduction
On April 13, 2015, at the WNY Region’s Annual Meeting for DFBS Cooperators, Cornell University regional specialists, and PRO-DAIRY staff presented results compiled by Charles H. Dyson School of Applied Economics and Management staff, Cornell University. The results reported at the meeting and here represent averages for the same 49 WNY dairy farms cooperating in 2013 and 2014.

Size of Business
- The average number of cows per farm rose from 856 in 2013 to 893 in 2014, an increase of 4.3 percent.
- Worker equivalents per farm rose 6 percent to 19.2 in 2014.
- Total tillable acres increased from 1,575 to 1,622 acres.

Rates of Production
- Milk sold per cow averaged 25,812 pounds in
- Hay dry matter per acre fell 2.6 percent to 3.7 tons, while corn silage per acre rose from 19.1 to 19.8 tons.

Income Generation
- Gross milk sales per cow increased from $5,610 in 2013 to $6,477 in 2014, an increase of 15.5 percent.
- Gross milk sales per hundredweight (cwt.) rose from $21.73 to 25.42.

Cost Control
- Dairy feed and crop expense per cwt. of milk rose from $8.70 in 2013 to $8.88 in 2014, an increase of 2.1 percent.
- In 2014, operating cost of producing a cwt. of milk was $17.18, an increase of 5.6 percent relative to 2013.

Profitability
- Net farm income without appreciation per cwt. of milk averaged $6.61 in 2014, an increase of about 68 percent compared to 2013.
- Rate of return on equity capital without appreciation rose 63.2 percent in 2014 from 11 in 2013.
- In 2014, the rate of return on all assets without appreciation was 13.7 percent, an increase of 56.6 percent relative to 2013.

Cyclicity in Dairy Cows: Defining the Issue
Andrew Sandeen, PSU Extension Educator

Open cows that aren’t cycling normally can hamper successful reproduction. This article, the first in a series on cyclicity, defines the terms anovulation and anestrous. Though similarly problematic, the causes and potential corrective actions for anovulation or anestrous conditions in a dairy cow are different.

If you think about it, ovulation is a pretty remarkable event, even though it is a routine occurrence in mature heifers and cows. A fluid-
filled follicle on the ovary has grown to the point that it is ready to respond to hormonal signals that cause it to rupture and release an oocyte (egg) into the oviduct, where fertilization can potentially take place if properly timed insemination has occurred. Without ovulation, reproduction is not possible.

Estrus is another routine event in a normally cycling cow. This short phase of the reproductive cycle, when cows are receptive to mounting activity, typically begins one day prior to ovulation and is an important indicator for breeding, whether that job is done naturally or artificially. Unless dairy producers are relying entirely on natural service and/or timed AI, observance of estrus by some means is critical in a reproductive management program.

Let’s look at two terms often used when these activities are not occurring and a dairy cow isn’t cycling—\textit{anovulation} and \textit{anestrus}. These two conditions may be either positive or negative indicators of the reproductive status in a cow. A pregnant cow is generally anovular and anestrous—a positively good thing! On the flip side, these can also be conditions which hamper reproductive success in non-pregnant dairy animals.

\textbf{Anovulation}

\textit{Anovulation} simply defines the situation when cows are \textit{not} ovulating. Follicles may or may not reach an appropriate size or responsiveness for ovulation. If no follicles are developing to the point of releasing an oocyte and transforming into a corpus luteum (CL), then the reproductive process cannot be completed.

In fresh cows, first ovulation often occurs by 30 DIM, but it may not be accompanied by any sign of estrus. It is also common for first ovulation to be delayed for a longer period of time, persisting well beyond the voluntary waiting period. At first insemination 23\% of dairy cows are anovular, on average. Even at later breedings more than a quarter of the cows that are open and eligible for breeding aren’t ovulating normally.

When anovular cows finally ovulate, conception rates for any corresponding insemination are lower and the rate of pregnancy loss is higher when compared to cows that were cycling normally and had significant progesterone in their circulation prior to estrus.

Heritability of anovulation is 0.17, higher than most other reproductive traits, which have heritability measurements in the range of 0.03 to 0.07. This suggests that there may be opportunity for genetic progress to lessen the impact of anovulation on fertility in dairy herds.

\textbf{Anestrus}

\textit{Anestrus} is a related term with a significantly different meaning than anovulation. It defines the situation when animals are \textit{not} showing estrus—they are not standing to be mounted, not being measurably more active, and not providing any other signs of a good heat. A cow might be anestrus because she truly is not cycling, but it is also frustratingly common for a cow to not show estrous behavior even when she is cycling normally. There are several potential causes for either situation, ranging from nutritional issues to facility design to employee management. One possible reason for supposed anestrus in cycling cows may simply be a lack of farm personnel who are observing and recording heats. There might be signs of estrous behavior that are being missed.

Like anovulation, the incidence of anestrus is particularly high during the first month after calving, but it can continue to be a significant challenge for several months. Though similarly problematic, the causes and potential corrective actions for anovulation or anestrous conditions in a dairy cow are different. Though specific recommendations won’t be addressed in this article, it’s generally worth the effort to understand what is happening at an individual cow level and, even more so, at a wider herd level. There may be management changes that could alleviate some of the challenges and reap significant benefits.
References:

- Wiltbank, M. C. 2015. Webinar - Understanding the Physiology and Management of Anovular Cows. Mar. 20, 2015. (only DCRC members can access the webinar)
- Wiltbank, M. C., A. Gumen, H. Lopez, and R. Sartori. 2010. Management and treatment of dairy cows that are not cycling or have follicular cysts.

WNY Sweet Corn Trap Network
Report 6.9.15
NYSIPM

Ten sites reporting this week with European corn borer (ECB)-E caught at 4 sites and ECB-Z caught at 5 sites. Numbers remain low for both races. Peak ECB-E flight occurs at approximately 631 degree days modified base 50. This will most likely occur at several sites within the next week (see degree days for each site in table below). Accumulated degree days for the 25 trap network sites range from 395 to 602 with an average of 516 modified base 50F. Three sites are reporting corn earworm (CEW) with two sites, Eden and Spencerport, with trap catches high enough to be on a 5 and 6 day spray interval respectively. Western bean cutworm (WBC) traps have been deployed at several locations but no moths have been caught to date.

<table>
<thead>
<tr>
<th>Development Stage</th>
<th>Accumulated Degree Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Generation</td>
<td></td>
</tr>
<tr>
<td>First spring moths</td>
<td>374</td>
</tr>
<tr>
<td>First eggs</td>
<td>450</td>
</tr>
<tr>
<td>Peak spring moths</td>
<td>631</td>
</tr>
<tr>
<td>First generation treatment period</td>
<td>800-1000</td>
</tr>
<tr>
<td>Second Generation</td>
<td></td>
</tr>
<tr>
<td>First summer moths</td>
<td>1400</td>
</tr>
<tr>
<td>First eggs</td>
<td>1450</td>
</tr>
<tr>
<td>First egg hatch</td>
<td>1550</td>
</tr>
<tr>
<td>Peak summer moths</td>
<td>1733</td>
</tr>
<tr>
<td>Second generation treatment period</td>
<td>1550-2100</td>
</tr>
</tbody>
</table>

J.W. Apple, Department of Entomology, University of Wisconsin-Madison
ECB Frass in Emerging Tassel

Scouting of bare ground sweet corn should begin when the tassel starts to emerge. When scouting focus on the emerging tassel. Separate the leaves and look down into the tassel for any signs of feeding, frass or larvae. To help you scout your fields please view the video titled [How to Scout Fresh Market Sweet Corn](#).

<table>
<thead>
<tr>
<th>Location</th>
<th>ECB-E</th>
<th>ECB-Z</th>
<th>CEW</th>
<th>FAW</th>
<th>WBC</th>
<th>DD to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoca (Steuben Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>472.5</td>
</tr>
<tr>
<td>Avon (Livingston Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>586.8</td>
</tr>
<tr>
<td>Baldwinsville (Onondaga Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>548.5</td>
</tr>
<tr>
<td>Batavia (Genesee Co.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>395.7</td>
</tr>
<tr>
<td>Belfast (Allegany Co.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>502.4</td>
</tr>
<tr>
<td>Bellona (Yates Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>602.5</td>
</tr>
<tr>
<td>Eden (Erie Co.)</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>497.2</td>
</tr>
<tr>
<td>Farmington (Ontario Co.)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>517.0</td>
</tr>
<tr>
<td>Hamlin (Monroe Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>503.5</td>
</tr>
<tr>
<td>Kennedy (Chautauqua Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>446.5</td>
</tr>
<tr>
<td>King Ferry (Cayuga Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>567.4</td>
</tr>
<tr>
<td>Kirkville (Madison Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>586.4</td>
</tr>
<tr>
<td>LeRoy (Genesee Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>466.8</td>
</tr>
<tr>
<td>Lockport (Niagra Co.)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>479.5</td>
</tr>
<tr>
<td>Oswego (Oswego Co.)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>509.1</td>
</tr>
<tr>
<td>Owego (Tioga Co.)</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>497.6</td>
</tr>
<tr>
<td>Pavilion (Genesee Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>466.8</td>
</tr>
<tr>
<td>Penn Yan (Yates Co.)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>NA</td>
<td>573.5</td>
</tr>
<tr>
<td>Plessis (Jefferson Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>488.5</td>
</tr>
<tr>
<td>Preble (Cortland Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>542.0</td>
</tr>
<tr>
<td>Seneca Castle (Ontario Co.)</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>524.2</td>
</tr>
<tr>
<td>Sherwood (Cayuga Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>567.4</td>
</tr>
<tr>
<td>Spencerport (Monroe Co.)</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>586.8</td>
</tr>
<tr>
<td>Waterport (Orleans Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>503.5</td>
</tr>
<tr>
<td>Williamson (Wayne Co.)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>465.9</td>
</tr>
</tbody>
</table>

ECB – European Corn Borer
CEW – Corn Earworm
FAW – Fall Armyworm
WBC – Western Bean Cutworm
NA – not available
DD – Degree Day (modified base 50F) accumulation

trap catches for the week of 6.2.15 – 6.9.15
Shredlage – What’s New
By Larry Chase, Reprinted from the Manager April 2015

Dairy producers are growing more corn silage and using higher levels of corn silage in dairy rations. A number of changes have improved the nutritive value of corn silage. These include better hybrid genetics, selection of hybrids for fiber and/or starch digestibility, kernel processing and more attention to harvesting dry matter and silo management. A new processing technique called shredlage was introduced about three years ago. This process rips or tears the corn stalk into longer pieces. The process also calls for setting the processing rolls tighter to smash the corn kernels. The TLC (theoretical length of cut) is recommended to be set at 26 to 30 mm for corn silage with a moisture content of 65 to 70%. The suggested guideline for the processing rolls is 1.75 to 2.25 mm. As the corn silage gets drier, the TLC is reduced to 21 to 23 mm and the processing rolls are set at 1.5 to 1.75 mm.

At the 2014 Empire Farm Days shredlage seminar, Michelle Woodman from Landmark Services Cooperative in Wisconsin, showed the change in particle size distribution using the Penn State shaker box (Table 1). The more coarsely harvested shredlage has a higher proportion of longer particles on the top screen compared to a shorter TLC or conventional KP processing. However, the total on the top two screens is similar for the three shredlage results and slightly higher than the KP harvested corn silage. This could indicate a higher peNDF (physically effective NDF) value for shredlage assuming no sorting against long particles when fed to cows.

The information to date indicates that harvesting corn silage as shredlage is a slightly slower process, requires more power and takes more fuel than harvesting using a KP unit. Reports indicate that custom harvesters may be charging $1 to 2/ton more when harvesting shredlage to account for these differences.

Table 1. Corn Silage Particle Size Distribution

<table>
<thead>
<tr>
<th>Shredlage</th>
<th>Shredlage % on Top Screen</th>
<th>Shredlage % on % on screen 2</th>
<th>Shredlage % on Screen 3</th>
<th>Shredlage % in Pan</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mm TLC</td>
<td>35</td>
<td>45</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>22 mm TLC</td>
<td>18</td>
<td>58</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>17 mm TLC</td>
<td>9</td>
<td>71</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Conventional KP</td>
<td>8</td>
<td>60</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>

Bunk silo packing density when using shredlage is also a concern. At the EFD seminar, Corwin Holtz from Holtz-Nelson Consultants, indicated he is seeing slightly higher packing densities (1 to 2 lbs DM/cubic foot) on farms using shredlage. At Cornell our silo densities were similar for shredlage and KP corn silages. Other reports indicate that corn silage harvested as shredlage is at least equal in packing density compared with silage harvested using KP.

Dr. Randy Shaver at the University of Wisconsin-Madison has conducted two research trials using shredlage. In the first trial rations contained 50% corn silage, 10% alfalfa silage and 40% concentrate on a dry matter basis. The only difference between the rations was the source of corn silage. Rations were fed for eight weeks. Cows fed the shredlage ration tended to consume more dry matter and higher 3.5% fat corrected milk. The difference in milk was 2.2 lbs higher for cows fed shredlage. The
difference in milk production between the rations increased the longer the shredlage ration was fed. Total tract starch digestibility and NDF digestibility were also higher in cows fed the shredlage ration. A second trial was conducted using BMR corn silage harvested as shredlage or KP. Milk production was 2.5 lbs higher for the shredlage ration compared with the KP ration. Milk fat percent was higher for the KP ration; 3.7% versus 3.3% for the shredlage ration.

We have recently completed a trial at Cornell that indicates no differences in feed intake, milk production or milk composition. The rations contained 50% corn silage, 14% alfalfa silage and 36% concentrate on a dry matter basis. The processing method for corn silage was the only difference. The shredlage and KP silages were harvested at the same time in the same fields using two forage harvesters. One had a shredlage head while the other was KP.

Dairy producers using shredlage indicate they are able to lower or eliminate the amount of dry hay, whole cottonseed or straw in dairy rations. In some cases, they also reduced some of the corn grain fed due to the higher starch digestibility in the shredlage. Holtz at the EFD seminar presented information based on a herd in Wisconsin using shredlage. The assumptions used were feeding 1 lb less corn grain, replacing 1 lb of dry matter from haylage with 1 lb of dry matter from shredlage, and increasing milk production by 1 lb per cow. In this example income increased 28.5 cents/cow/day.

Shredlage looks promising to increase the nutritive value of corn silage. However, the corn silage processing score (CSPS) and starch digestibility of shredlage has been higher than the KP samples. Results may have been different if the KP silages had a higher corn silage processing score. Shredlage offers an opportunity to adjust rations by removing some (or all) of the dry hay and straw used in some rations. It also provides an opportunity to provide more rumen and total tract starch digestibility which could result in feeding less corn grain. Additional data is still needed on potential differences in peNDF, NDF and starch digestibility. Initial reports are encouraging. If you don’t have an option to harvest your corn silage as shredlage, make sure to do the best job possible with kernel processing. Too many KP samples have low CSPS scores. Adjusting the rolls to better process the kernels in your current harvester may be a quick way to improve starch digestibility.

Springwater Agricultural Products
8663 Strutt Street, Springwater, NY
Cell: 585-315-1094
Pesticide, Foliar Nutrition & Adjuvant Sales
SeedWay, NK, WL & Dairy Banquet Seed Sales
Certified Corn, Soybeans, Small Grains, Forage & Pasture Grasses

Open Everyday – Dave Votypka-Owner
Quality products with farmer friendly prices.
Cheese: Milk production continues to be at high levels in all regions. That is leading to continuing strong cheese production. Even if the flush begins to recede, new milk supplies available from expiring school year fluid milk contracts are expected to maintain strong milk availability for cheese manufacturing in the near future. Inventories are building in the Northeast, particularly aged Cheddar.

Dry Products: A steady to weaker undertone subsists for most dry product markets. Prices for low/medium heat nonfat dry milk were mostly lower across the nation. Where milk is readily available, production and inventories are building. Inventories for high heat nonfat dry milk are tighter. Many manufacturers have opted to produce other dry products in lieu of high heat NDM. Demand for dry buttermilk has increased as ice cream manufacturers buy at higher volumes. Inventories however, continue to build and prices are mostly stable. Dry whole milk prices are unchanged and discount pricing is scarce. Dry whey prices are mainly lower this week. Demand has been light and product is generally readily available.

Butter: Butter production is mixed throughout the country. It’s up in the Northeast, slowed in the West and is steady in the Central region, where most manufacturers are at full capacity. Inventory levels are building, but slowly as some manufacturers are watching pricing levels and others are content selling print butter as it is made. With the higher domestic prices, imports have increased.

Fluid Milk: Milk production in the East and Midwest is at or near the peak of the spring flush. The heavier milk intakes are already placing strains on manufacturers and milk handlers. Driver availability is limited and milk tanker receiving has been delayed in some instances. Processors are anticipating the challenges will be compounded over the holiday. Bottled sales continue to decline as more schools end spring terms. The demand for cream has remained strong for use in cream cheese, whipping cream, ice cream and frozen desserts.

Production: Milk production in the 23 major States during April totaled 16.6 billion pounds, up 1.7 percent from April 2014. Production per cow in the 23 major States averaged 1,928 pounds for April, 16 pounds above April 2014. This is the highest production per cow for the month of April since the 23 State series began in 2003. The number of milk cows on farms in the 23 major States was 8.62 million head, 77,000 head more than April 2014, and 2,000 head more than March 2015.

Friday CME Cash Prices

<table>
<thead>
<tr>
<th>Dates</th>
<th>Butter</th>
<th>Cheese (40# Blocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/24</td>
<td>$1.83</td>
<td>$1.61</td>
</tr>
<tr>
<td>5/1</td>
<td>$1.85</td>
<td>$1.61</td>
</tr>
<tr>
<td>5/8</td>
<td>$1.99</td>
<td>$1.61</td>
</tr>
<tr>
<td>5/15</td>
<td>$1.97</td>
<td>$1.62</td>
</tr>
<tr>
<td>5/22</td>
<td>$1.89</td>
<td>$1.65</td>
</tr>
</tbody>
</table>
Comments: May milk prices will be the highest thus far this year. We should end up around $16.20 for May’s Class III price and $14.00 for Class IV (which were $15.81 and $13.51 last month, respectively). There is still uncertainty as to where milk prices are headed towards for the remainder of the year, but Class III futures are in the $17’s by September and Class IV is projected to reach the $16’s by November. Although milk prices don’t look like they will fall or increase sharply over the course of the remaining year, prices will still average $6 to $7 lower than last year. (Cropp, Bob. Memo to Dairy-L. May 2015).

There are a lot of factors that play into the current milk prices and will continue to have impact through the remainder of the year. Cheese buyers have been building inventory, and restaurant and retail sales of cheese and butter have been strong. However, inventories may be built up to the point that purchasers may not be as active into the summer and fall. On the global market, there is an increase in available milk and a decrease of total purchasers, especially as the U.S. economy continues to raise the value of the dollar. China’s own milk production is increasing and they are facing a slowing economy, New Zealand has gotten some much needed rain in wake of the most recent drought, and the EU’s milk quota has ended. Currently, U.S. exports on a total milk solids basis is equivalent to 15.9% of U.S. milk solids production. (Cropp, Bob. Memo to Dairy-L. May 2015).

The University of Wisconsin’s Mark Stephenson and Bob Cropp discussed a “tale of two regions” in a recent video presentation (available on dairymarkets.org). Many of the big states in the west are experiencing declining production while the Upper Midwest and the Northeast are awash in milk. This stronger milk production in the Northeast region has put pressure on milk plant capacity. Butter prices have been high but nonfat dry milk prices are at 2009 levels.

Penn State’s income over feed cost for April was $6.47/cow/day. April’s feed cost was 10 cents less/cow/day than in March. Income over feed cost reflects daily gross milk income less feed costs for an average cow producing 65 pounds of milk per day. (Dunn, Jim. Penn State Dairy Outlook. May 2015).

Milk prices aren’t as great as they were last year - $15.81 for Class III, and $14.98 for Class II. But they shouldn’t get much worse for a while.

There is, and will be, a lot of milk on the world market. The U.S. economy is doing great...which is bad news for the export market (about 16% of milk equivalent sold).

April’s value of Income Over Feed Cost is $6.47. Feed costs were ten cents less than last month, and milk prices were somewhat stagnant.

Western states are struggling to keep their production up while the Northeast states are pushing milk plant capacity.

Increases in total milk production are still less than 2% (this year is forecasted to be a 1.3% increase) – this might be a saving grace for milk prices. Hang in there.
COMING EVENTS:

June 9 – Preparing Cattle for Market to Optimize Value
6:00 p.m. till dusk, Ellis Farm, 9423 West Centerville Rd., Houghton. Cost: $10/person. For more information or to RSVP contact: Lynn Bliven at 585-268-7644 x18 or lao3@cornell.edu

July 7 Seed Growers Field Day
For seed growers, seed treatment applicators, and other seed professionals
Place: NYSIP Foundation Seed Barn, 791 Dryden Rd., Rt. 366, Ithaca, NY
Time: 8:30 AM-12:00 noon
DEC and CCA continuing education credits requested.
Margaret Smith (607-255-1654, mes25@cornell.edu) for the Field Day Planning Committee

July 15 – NY Weed Science Field Day - Field Crop Weed Control
12:00 p.m. - 5:00 p.m., Musgrave Research Farm, 1256 Poplar Ridge Road, Aurora, NY.

August 18 – 23 – Steuben County Fair

TRADING POST:

For Sale: 4 x 4 round bales of mixed hay and wheat straw bound with twine. Hay has been tested. Large quantities available. Please call: 607-535-4903