Now is the Time to Plant Winter Forages
Excerpts from: Benefits of early planting of cereal rye or triticale after corn silage harvest, Daniel Hudson, UVM Extension Agronomist

Research demonstrates that rye and triticale are even more sensitive to planting date than corn. This makes sense, given that fall days get progressively cooler and shorter and the plants have a short window in which to establish root systems, store energy, and physiologically prepare for a long winter. If you often have your eyes on the fields as you travel around the Northeast, you have probably observed cover crops (especially rye) that are so small going into winter that you wonder if they are even going to function as a cover crop. You are right to wonder. While rye almost always survives, a thin stand of weak rye plants is hardly worth having as a cover crop, much less a potential haylage crop. Given that the root mass is approximately equal to the topgrowth, the services that late-planted cover crops offer are negligible compared to those planted on time. Small rye, wheat, and triticale plants with tiny root systems tend to heave easily (on some soils more than others) during the freeze-thaw cycles of late-winter and early-spring. While heaving rarely causes whole stands of rye plants to die altogether, most farmers have all observed fields where the cover crop seems to take forever to ‘wake up.’ In these situations, the roots can be so badly damaged takes a lot of time to re-establish a functional root system to get going again.

Planting dates: Long-term research to determine ideal planting dates and associated yield penalties

Winter Triticale Forage
Cornell Cooperative Extension Agronomy Fact Sheet

Winter triticale does double duty as a cover crop while producing high-quality forage (2 to 4 ton/acre dry matter harvested at flag leaf stage). Winter triticale for forage has several benefits: (1) early harvest allows for double cropping with short season corn, teff, soybeans, or sorghum x sudangrass; (2) the ground coverage in the fall and spring protects highly erodible land (HEL) and results in take-up of nutrients that otherwise might be lost to the environment; (3) when harvested at pollination will produce 25 to 30% more straw yield than rye; (4) red clover can be planted when triticale is seeded (if planted before September 5 in New York) or frost seeded; (5) establishment in August and harvest in May allows for manure spreading outside of the regular growing season and under conditions that are more favorable for manure spreading.
Planting
A firm, well-prepared seedbed will maximize seeding success. No-till seeding into crop residues is possible if proper seeding depth and good soil-to-seed contact are achieved.

The colder the climate the earlier triticale should be planted. Recommended planting date in New York is late August or early September. Shallow or late-planted seed will have a small root system that spring-heaves and “winterkills”. The later triticale is planted, the less time for tillering in the fall, and the lower the yield next spring.

It is recommended to drill seed 1 1/4 – 1 ½ inches deep at a rate of 100 to 125 lbs/acre. Uniform seed depth is important for optimal stand and yield.

Fertilizer
A 2 ton crop with 14% CP removes 90 lbs of N per acre, in addition to 30 lbs of P2O5, and 155 lbs of K2O (double amounts for a 4 ton yield). For optimal management, band-apply 20 lbs of N/acre at seeding and use P and K according to the soil test results.

Additional work needs to be done but findings to date indicate that too much fall-applied N produces excess growth and makes the crop susceptible to snow mold. Therefore, it is recommended to apply 100 lbs of N per acre in early spring. Spring-applied manure can be used to supply half of the N needed in the spring (and all the P and K) but commercial N fertilizer (50 lbs N per acre) remains critical because of more rapid N availability in the colder months. Applications should occur soon after green-up.

Harvest
To obtain high energy levels, harvest at stage 9 when the flag leaf is fully emerged but no heads are visible (Figure 2). Across the farm, for optimal forage quality cut triticale first, then follow with cool season grasses, alfalfa grass mixes, and clear alfalfa. If harvested at flag leaf stage, triticale can yield 2-4 tons of dry matter per acre. Winter triticale can be fall/spring grazed, ensiled in a bunk silo, or baled.

Fall rye is best known as a cover crop that prevents erosion and gives good weed suppression. Rye is very cold tolerant, the hardiest and most disease resistant of the winter cereals. Fall rye has an extensive fibrous root system, can scavenge nitrogen very effectively, and utilizes early spring moisture to grow rapidly. Fall rye is faster growing and earlier maturing in the spring than the other winter cereals, including wheat, barley and triticale. This enables an earlier forage harvest and more “double crop” options.

Fall rye grows well on lighter and low pH soils, but does not do well on poorly drained, heavier soils. Forage rye is higher yielding, but not as palatable as winter wheat. Rye matures rapidly at the flag-leaf, boot and early-heading stages, with significant reductions in forage quality. This can create the challenge of a very narrow harvest window, particularly if there are rain delays.

Rye as a Double Crop Option
Ontario Ministry of Agriculture and Food

Farmers looking for extra forage can plant fall rye following the harvest of many crops, particularly corn silage. Forage rye harvested in mid-May can be followed by a late-planted crop, such as
soybeans, edible beans, or a warm-season annual forage crop such as sorghum.

Fall rye is best known as a cover crop that prevents erosion and gives good weed suppression. Rye is very cold tolerant, the hardiest and most disease resistant of the winter cereals. Fall rye has an extensive fibrous root system, can scavenge nitrogen very effectively, and utilizes early spring moisture to grow rapidly. Fall rye is faster growing and earlier maturing in the spring than the other winter cereals, including wheat, barley and triticale. This enables an earlier forage harvest and more "double crop" options. Fall rye grows well on lighter and low pH soils, but does not do well on poorly drained, heavier soils. Forage rye is higher yielding, but not as palatable as winter wheat. Rye matures rapidly at the flag-leaf, boot and early-heading stages, with significant reductions in forage quality. This can create the challenge of a very narrow harvest window, particularly if there are rain delays.

Seeding

Fall rye is easy to establish and can be seeded from late summer to late fall. If harvest as silage the following May is planned, fall rye should be seeded in September, but later seedings can work on sandy soils. Early planting allows more time for tillering, higher forage yields, and slightly earlier forage harvest dates. Some growth going into winter is required for early spring growth and good yields. Seed is relatively inexpensive. Under good conditions, fall rye can be seeded at 100 lbs/ac, but the seeding rate can be increased up to 168 lbs/ac (3 bu/ac) if the seed is broadcast rather than drilled, or if the seeding date is late.

Grazing

Fall rye is best used to provide early-spring grazing, but can also be grazed into late fall. It is ready to graze early in the spring and growth is very rapid. If fall pasture is desired, fall rye should be seeded by August 15-30.

Haylage

Nitrogen applied at 50 - 70 lbs/ac in the spring at green-up will stimulate tillering and increase forage yield. Fall rye can be made into good stored feed by making it into silage, either in tower or bunk silos, piles, bags or as baleage. Fall rye cut at the desired stage is extremely difficult to dry sufficiently to be made into dry hay. The timing of cutting is critical. Quality, palatability, and intake drop very quickly at the heading stage (faster than other cereals) so the optimum harvest window is very narrow. It is recommended to target harvesting forage rye at the flag-leaf or early-boot stage for high nutrient quality. Early-boot generally occurs May 10-20 in southern Ontario. At this stage, a dry matter yield of 2 tons per acre or more is possible under good conditions.

There can be a very large range in forage quality with only a few days difference in harvest. At the early-boot crude protein (CP) can approach up to 18% (depending on the amount of nitrogen applied), with Neutral Detergent Fiber (NDF) under 50%.

At the head-emerged stage CP drops to the 13 - 14% range, while NDF increases to over 60%. This will likely be adequate for beef cows, heifers, and dry cows, but will not be high producing dairy cow or sheep quality.
When rye is cut later, at the early-dough stage, the yield may approach 3 tons per acre, but the quality, palatability and intake will be much lower. Delaying forage rye harvest past the boot stage because of bad weather or competing field crop activities is not very forgiving.

Livestock producers face several challenges when it comes to tapping into the local meats movement. They have limited access to USDA inspected facilities, which is needed for them to sell individual “cuts” (such as to restaurants and/or farmers’ markets, etc...) Farms that are able to sell at farmers’ markets and farm stands struggle to keep up with the labor and inventory management demands of selling by the cut.

Local livestock producers have reported to Cornell Cooperative Extension Educators that it is hard to reach new freezer trade customers. Additionally, Cornell Cooperative Extension has learned from many consumers that several barriers prevent them from buying local meats in bulk. These included lack of freezer space, large cash outlay for a quarter (and possibly a freezer), and lack of knowledge of local producers.

Kerri Bartlett and Matt LeRoux, Agriculture Educators at CCE of Steuben and Tompkins Counties, respectively, have been busy creating a new way for livestock farmers to reach consumers who are looking for locally-raised meats. Our goal is to give consumers a platform to find a farm that fits their individual needs and preferences. On the Meat Suite website, each farm has a profile page where they describe their farm, farming practices, and products; allowing the consumer to choose the meat that meets their family’s wants and needs and, ultimately, as we say, “Find Your Farmer!”

The website also has “Learn More” pages for consumers to learn more about buying local meats in general.
This website was made possible through a NE SARE Partnership Grant. SARE (Sustainable Agriculture Research and Education) is part of the USDA National Institute of Food and Agriculture. SARE offers competitive grants to projects that explore and address key issues affecting the sustainability and future economic viability of agriculture.

For more information about this website contact Kerri Bartlett, CCE-Steuben at 607-664-2311 or Matt LeRoux, CCE-Tompkins, at 607-272-2292 or visit the website at www.meatsuite.com

Pricing Standing Corn for Corn Silage

As corn silage harvest gets closer, some of you may be wondering how to price standing corn for silage. Here are a few factsheets/tools for you to use:

- Factsheet from Larry Chase - http://www.anisci.cornell.edu/dm/factsheets.htm.

- Calculator from the University of Wisconsin/Extension Corn Silage Pricing Decision Aid at: http://www.uwex.edu/ces/crops/uwforage/dec_soft.htm.

The Corn Silage Crop Calculator, a Microsoft Excel-based program, comes in two parts. One part calculates silage price based on silage yield from the field. The other calculates silage price based on corn grain price. Either can be used to arrive at a price for corn silage. Producers need to enter the corn price per bushel; silage yield per acre or estimated grain yield; percent of corn silage dry matter; harvest, hauling and storage cost; and the estimated amount of shrinkage during storage. The results appear as cost of corn silage value per ton and the final cost of silage to producer.

https://mdc.itap.purdue.edu/item.asp?item_number=AS-611-W
For the first time in Steuben County Farm-City Day history the event will re-visit one of our former host farms! Brothers Randy & Gary Palmer hosted the event in 2005 and have agreed to open their farm to the public once again. Palmer Farms LLC, located in Howard, is home to 525 milk cows and another 500 heifers and calves. They farm approximately 800 acres of corn, 750 acres hay, and 70 acres of oats.

On Saturday September 28th from 10am – 3pm, visitors can pet baby calves, pick a pumpkin, take a wagon ride, get lost in a corn maze, milk a cow by hand, hold a baby chick, and play in a giant pile of corn. Families can participate in many more farm friendly games and activities at the upcoming Farm-City Day. Local farmers and farm businesses will be on hand to answer questions. Local growers will have fresh farm products to sample and sell.

Farm-City Day is an educational, fun filled day on the farm where the public can get a first hand, behind the scenes look at how a modern dairy farm operates. Food & ice cream will be available from several community organizations.

Palmer Farms is located at 7164 Palmer Road, Hornell. Use the Howard exit off I-86 and follow the signs. The event is free and open to the public. For more information visit the Farm-City Day website at www.steubencountyfarmday.com or find them on facebook!
Corn Shredlage for Dairy Cows
by Luiz Ferraretto and Randy Shaver

Introduction

Garnering much recent interest by dairy producers and their nutritionists has been a new method of harvesting whole-plant corn for silage. The resultant product has been called corn shredlage by the developer of the process (Shredlage™, LLC; http://www.shredlage.com/) and the manufacturer of the new processing rolls used in the process (Scherer Corrugating & Machine, Inc., Tea, SD; http://scherercorrugating.com/).

Although a recent development with limited information available, in this article we will provide responses to the most frequently asked questions concerning this topic. We conducted a feeding trial with corn shredlage fed to lactating dairy cows at the UW Blaine Arlington Dairy during Oct. – Dec., 2011 following a September, 2011 harvest at UW Arlington Agricultural Research Station (AARS), and will rely heavily upon that harvest experience and feeding trial results for our response to these questions.

What is different about the corn shredlage method of harvest?

Corn shredlage is silage produced from whole-plant corn that has been harvested with a commercially-available self-propelled forage harvester (SPFH) fitted with aftermarket cross-grooved crop processing rolls and the SPFH set for a longer theoretical length of cut (TLOC) than commonly used. At the time of writing this article, these rolls have only been adapted on Claas SPFH, although the manufacturer has indicated that kits are being developed for John Deere SPFH too.

What is different about corn shredlage compared to normal processed corn silage?

Compared to normal processed corn silage harvested with the chopper set at 19 mm TLOC, the most obvious difference for corn shredlage harvested with the SPFH set at 30 mm TLOC is a greater proportion of coarse stover particles in the shredlage. When fed in rations for lactating dairy cows, this can increase the physically-effective neutral detergent fiber (pNDF) content of the ration which is important for proper rumen function, cow health and milk fat content. The cross-grooved rolls used for producing corn shredlage may cause greater damage to the coarse stover particles and allow for greater digestibility of the NDF, but this has yet to be evaluated. With proper roll gap settings for both types of crop processing rolls differences in kernel and cob breakage would not be expected, but this has not been compared in detail to our knowledge.

How were the corn shredlage and corn silage harvested for the UW feeding trial and what were the harvest and storage results?

A 20 acre field at UW AARS planted with a dual-purpose hybrid was used for the study. One day apart in early September, 2011 half the field was harvested as corn shredlage (SHRD) and the other half harvested as normal processed corn silage (KPCS). The SHRD and KPCS were stored in separate sides by side 10’ diameter by 200’ long silo bags and allowed to ferment for one month before commencing the dairy feeding trial.

For harvest of the SHRD, a SPFH equipped with the new shredlage processing rolls was set for a 30 mm TLOC by removing half of the knives and the processor roll gap set at 2.5 mm. The SHRD harvest was done by a custom operator (Kutz Farms, Jefferson, WI) and SPFH was set up by Shredlage™ LLC and Scherer representatives. Some forage harvester manufacturers recommend not

Luiz Ferraretto and Randy Shaver
University of Wisconsin-Madison, Dept. of Dairy Science
University of Wisconsin-Extension
rdshaver@wisc.edu
removing knives when harvesting whole-plant corn silage. The very long particle-size that results from removing knives can put added stress on SPFH components like the cutter-head and blower. Careful consideration concerning SPFH wear and longevity should be made by the SPFH operator before knives are removed when harvesting whole-plant corn silage no matter what type of processor is used. Harvest of the KPCS was done using the UW AARS SPFH set for a 19 mm TLOC and equipped with conventional processing rolls. The processor roll gap was not altered from that normally used by UW AARS for harvest of corn silage for the UW Dairy. The exact roll gap was undetermined, but appeared to be greater than 3 mm based on kernel processing results. For samples collected at harvest, the corn silage processing score (CSPS, % of starch passing through a 4.75 mm screen) was 50 for KPCS and 65 for SHRD.

The SHRD and KPCS were similar in dry matter (DM; 35.0% ± 1.9 versus 34.7% ± 1.4) and starch (37.6% ± 5.2 versus 38.7% ± 4.9) concentrations, pH (3.59 ± 0.05 versus 3.61 ± 0.03), and silo bag packing density (17.5 versus 17.2 lb DM per cu. ft.). The proportion of coarse particles was greater for SHRD than KPCS for samples collected during feed-out from the silo bags throughout the feeding trial (31.5% versus 5.6% retained on the 19 mm screen of the Penn State Separator Box). For the total mixed rations (TMR) fed throughout the trial, the proportion of coarse particles was greater for TMR prepared with SHRD than KPCS (15.6% versus 3.5% retained on the 19 mm screen of the Penn State Separator Box). Our measurements of weigh-backs during the trial did not reveal feed sorting for either treatment.

What were the results of the feeding trial?

Fourteen 8-cow pens, balanced by breed, parity and days in milk (DIM), were randomly assigned to either SHRD or KPCS treatment TMR (7 pens and 56 cows per treatment). At the start of the feeding, SHRD and KPCS cows were 114 ± 35 and 117 ± 36 DIM. All pens were fed a 50:50 mixture (DM basis) in the TMR for a 2-week covariate adjustment, followed by an 8-week treatment period pens received their respective treatment TMR containing 50% (DM basis) from either SHRD or KPCS. Both TMR treatments contained 10% alfalfa silage and 40% (DM basis) of the same concentrate mix comprised of dry ground shelled corn, corn gluten feed, solvent and expeller soybean meal, rumen-inert fat, minerals, vitamins and Rumensin®. Statistical analysis of the data was done using pen rather than cow as the experimental unit.

Dry matter intake (DMI) tended (P < 0.08) to be 1.4 lb/day per cow greater for SHRD than KPCS, while milk yield (96.0 vs. 94.2 lb/day per cow for SHRD vs. KPCS) and feed efficiency (1.72 vs. 1.73 lb Milk/lb DMI for SHRD vs. KPCS) were similar (P > 0.10). Yield of 3.5% fat-corrected milk (FCM) tended (P < 0.08) to be greater for SHRD than KPCS (100.1 vs. 97.8 lb/day per cow for SHRD vs. KPCS). In Figure 1, FCM by week on treatment is presented. A week by treatment interaction was detected (P < 0.03); there was no difference between the treatments at week 2. FCM yield tended (P < 0.10) to be greater for SHRD compared to KPCS at weeks 4 and 6, and FCM yield was (P < 0.01) 4.4 lb/day per cow greater for SHRD than KPCS at week 8.

![Figure 1. Yield of 3.5% fat-corrected milk by week on treatment. There was a week by treatment interaction (P < 0.03) detected; no differences between treatments at week 2, a tendency for greater FCM yield for sherdge at weeks 4 and 6 (P < 0.10) and greater FCM yield for sherdge at week 8 (P < 0.01).](image)

Milk fat, protein and urea-nitrogen contents were unaffected (P > 0.10) by treatment and averaged 3.72%, 3.20% and 13.8 mg/dL, respectively. Body weight (1561 lb. on average) and condition score (3.04 on average) and body-weight change (0.65 lb/day per cow) were similar (P > 0.10) for the two treatments.

Are there different guidelines for using sherdage in dairy diets compared to corn silage?

To the extent that the stover particle length can be increased while maintaining adequate kernel processing, the use of corn sherdage may allow for the feeding of higher forage diets. Assess particle size of corn sherdage as an indicator of peNDF and CSPS of corn sherdage as an indicator of starch digestibility to determine what ration adjustments may be warranted. More data is needed regarding NDF digestibility for corn sherdage and the relative peNDF for corn sherdage compared to hay-crop silage, whole cottonseed, and chopped hay or straw, to allow for better decisions on how best to utilize corn sherdage in dairy cattle diets.
DAIRY MARKET WATCH

<table>
<thead>
<tr>
<th>Month</th>
<th>Milk Component</th>
<th>Milk Class Prices</th>
<th>Statistical Uniform Price & PPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I(Boston)</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>July12</td>
<td>$1.66</td>
<td>$14.51</td>
<td>$16.68</td>
</tr>
<tr>
<td>Aug12</td>
<td>$1.83</td>
<td>$15.64</td>
<td>$17.73</td>
</tr>
<tr>
<td>Sep12</td>
<td>$2.00</td>
<td>$17.04</td>
<td>$19.00</td>
</tr>
<tr>
<td>Oct12</td>
<td>$2.11</td>
<td>$18.44</td>
<td>$21.02</td>
</tr>
<tr>
<td>Nov12</td>
<td>$2.02</td>
<td>$18.81</td>
<td>$20.83</td>
</tr>
<tr>
<td>Dec12</td>
<td>$1.73</td>
<td>$18.30</td>
<td>$18.66</td>
</tr>
<tr>
<td>Jan13</td>
<td>$1.62</td>
<td>$18.19</td>
<td>$18.14</td>
</tr>
<tr>
<td>Feb13</td>
<td>$1.66</td>
<td>$18.49</td>
<td>$17.25</td>
</tr>
<tr>
<td>Mar13</td>
<td>$1.75</td>
<td>$18.82</td>
<td>$16.93</td>
</tr>
<tr>
<td>Apr13</td>
<td>$1.82</td>
<td>$18.73</td>
<td>$17.59</td>
</tr>
<tr>
<td>May13</td>
<td>$1.79</td>
<td>$18.43</td>
<td>$18.52</td>
</tr>
<tr>
<td>June13</td>
<td>$1.66</td>
<td>$19.14</td>
<td>$18.02</td>
</tr>
<tr>
<td>July13</td>
<td>$1.57</td>
<td>$19.22</td>
<td>$17.38</td>
</tr>
</tbody>
</table>

July Utilization (Northeast): Class I = 36%; Class II = 27%; Class III = 27%; Class IV = 10%

[Class I = processed as beverage milk; Class II = soft products, cream, yogurt and cottage cheese; Class III = cheese (American, Italian), evaporated and condensed products, Class IV = butter, nonfat and whole milk powder.]

Weekly Average CME Cash Price - 2009 to Present

Dairy Commodity Markets (USDA Dairy Market News):

Butter: Friday CME cash prices: 7/19 $1.49, 7/26 $1.43, 8/2 $1.44, 8/9 $1.40, 8/16 $1.37, and 8/23 $1.40. The butter market is unsettled due to an undefined price trend and ample inventories. Butter production is increasing at many churns as cream demand slackens from frozen dessert facilities.

Cheese: Friday CME cash prices (40# blocks): 7/19 $1.75, 7/26 $1.76, 8/2 $1.78, 8/9 $1.80, 8/16 $1.78, and 8/23 $1.67. Milk supplies in the Northeast and Midwest have kept cheese plants busy, while production was reduced somewhat in the West. Cheese inventories are adequate to service current needs with buyers looking to see if the market is becoming oversupplied. Retail sales are mostly steady.

Dry Products: Western low/medium heat nonfat dry milk prices continue to trend higher. The market undertone remains firm. Central and Eastern dry buttermilk prices moved higher and the market tone is firm. Dry whole milk prices are higher on a firm market.

Fluid Milk: California milk production is trending lower, resulting from a spell of hot weather. Some processors saw a quick 2-4% drop in receipts from a week earlier. Arizona milk production is lower. Milk production remains above seasonal levels and adding to manufacturing milk supplies in the Northeast region.
Manufacturing milk supplies in the Mid-Atlantic region are being reduced as increased Class I demand in the Southeast is pulling supplies out of the region.

Milk Production: Milk production in the 23 major States during July totaled 15.7 billion pounds, up 1.2 percent from July 2012. New York dairy herds produced 1.14 billion pounds of milk during June. This is up 3.9 percent from a year earlier.

Comments:
Exports remain strong in comparison to a year ago. January through June exports on a volume basis was a record 9% higher than last year and is at 16.5% of U.S. milk production. The U.S. gained world market share against major competitors (Cropp, Bob. Memo to Dairy-L. 19 August 2013).

The continued uptick in exports is needed, because milk production has increased steadily. Higher margins in 2013 and lower feed prices may be encouraging expansion in milk cow numbers across the nation. NASS has discontinued reporting on milk cow numbers in February due to budget cuts, so this is not known for sure. It is likely that increases of above 1% in milk production will continue on through the remainder of the year.

Higher milk production is translated into greater dairy product stocks. Butter stocks have now become burdensome, at 33.2% higher than a year ago. Domestic fluid milk sales remain depressed. Sales of traditional milk in June were 6.4% lower than a year ago and year-to-date sales are 2.9% lower. June organic fluid milk products are up 5.8% over a year ago (Cropp, Bob. Memo to Dairy-L. 19 August 2013).

Penn State’s Dairy Outlook report for August stated that the Penn State Income over Feed Cost fell by 4% in July to $7.36/cow/day. IOFC dropped due to a lower milk price, which fell by 2.4% from June levels. The cost of feeding a cow rose by 10 cents per day to $6.09, with a rise in soybean meal prices. The outlook looks better for feed prices, as corn futures markets have dropped sharply as the 2013 crop matures. The current corn crop looks to be a record, and lower prices and sizeable inventories should result. December futures are $4.59/bu.

Governor Andrew Cuomo announced that the “Dairy Acceleration Program” is available to producers to develop business and facility growth plans, update or create new Comprehensive Nutrient Management Plans, and evaluate financial and environmental needs. Much of the funding targets dairies with fewer than 300 cows, with a cap of 80% of a project’s cost. The farm is responsible for the remaining 20%. The program will be delivered in collaboration with Cornell PRO-DAIRY, Cornell Cooperative Extension, and the New York departments of Agriculture and Markets and Environmental Conservation. Visit http://ansci.cornell.edu/prodairy/dairy_acceleration/ for more information and to obtain an application.

Virginia Carlberg
Extension Community Educator
Commitment to Quality and Service

Since 1912, providing you quality feed and independent service for Western NY farmers.

- Full Line of Complete Feeds at Competitive Prices -
- “Exclusive” Extruded Full Fat Soybeans -
- “Steamed Rolled” Flaked Corn -
- Customized Feeds and Complete Nutritional Feed Programs -
- Dairy Production Consultant -
- Fertilizer Blending: Liquid and Granular -
- Custom Spraying and Crop Service -
- Exclusive Manufacturer of “Country Magic Dog and Cat Food” -
- Working Relationships with Your Vet and Consultants for “YOUR Bottom Line” -
- PLUS Access to the Latest Technology in the Feed Nutrition Business -

See our great prices on Carhart Jackets and clothing to keep you warm this winter!

REISDORF
BROTHERS, INC.

Your Complete Farm Store & Feed Mill
1830 Perry Road • North Java, NY 14113
Toll Free: 1-800-447-3717 • (585) 535-7538 • Fax: (585) 535-0470

Please visit our web site:
www.reisdorfbros.com
October 1 - Pastured Pigs, and More!
6:00 to 8:00 p.m. at Creek Ridge Farm; 2735 Van Zandt Hollow Road; Watkins Glen, NY. The Ross Family will demonstrate how they raise cattle, broilers and pigs on pasture. Come meet other graziers and share ideas! Free and open to the public, but RSVP’s are appreciated by calling or emailing Brett Chedzoy: 607-742-3657, or bjc226@cornell.edu. Light refreshments will be served. Organized by the Tri-County Graziers, with support from Cornell Cooperative Extension of Steuben and Schuyler Counties, the Upper Susquehanna Coalition, and the NYS NRCS Grazing Lands Conservation Initiative.

October 5 – Got Trees, Woods, Woodlot, Forest? – Want or Need Advice on Improving Them
9:30am, Bring a bag lunch
Professional forester Bruce Robinson will conduct a program and a woodswalk at Greenwood Hill Farm in Andover, NY. Greenwood Hill Farm is located off SR417 and has 60 acres of mixed hardwoods that are being managed under a 480a forest plan. Bruce and the landowners, Dana and Jim Kruser, will discuss how they are approaching improving the health of the forest and accomplishing the multi-use goals of commercial timbering, wildlife habitat management and recreational use.

RSVPs are encouraged, but not required. To RSVP and for directions and more information, please contact Dana & Jim Kruser at (607) 478-5171 or by email at jim@greenwoodhill.com. For more general information on Greenwood Hill Farm, please go to their website at: www.greenwoodhill.com.

This will be a joint event of the Western Finger Lakes and Allegheny Foothills chapters of the New York Forest Owners Association (NYFOA). For more information on NYFOA, visit: http://www.nyfoa.org/

October 12 & 13 - Finger Lakes Cheese Trail
10 a.m. – 5 p.m. Learn about the wonderful variety of cheeses produced here in the Finger Lakes by visiting our local cheese producers and sampling their products. The Finger Lakes Cheese Trail is an organization of cheese producers from throughout the Finger Lakes who make artisan cheeses from milk produced at their family farms. Great cheeses are being made, ranging from English style raw milk cheddars, cheese curd, gouda and swiss types from dairy cow milk, to blue cheeses, chevre and feta from goats and sheep milk. Visit the Finger Lakes Cheese Trail online at: http://flcheesetrail.com/ for details on farms participating in each Open House, and for places to purchase their fine cheeses! "Like" the Finger Lakes Cheese Trail on Facebook at: https://www.facebook.com/FLXCheeseTrail.

October 12 – 13 - Southern Tier Outdoor Show
Wilkins RV in Bath
Stay in touch with the latest developments at the show at www.SouthernTierOutdoorShow.com.

TRADING POST:

Wanted: Subsoiler for primary tillage. Farmer in Hammondsport seeking to rent subsoiler with 1 or 2 shanks, minimum depth of 12". Relatively small parcel being tilled, only need for a weekend at most. If interested please call Peter at (914) 588 2860.

For Sale: Brillion 10’ seeder, $2,500.
- Plate cooler, 81 plates, expandable universal, $700.
- Lock ups – 70’ calves, $150/10’ section.
- 8 Boumatic claws w/ Flowstar tops, Delaval shells, plus extra parts.
Phone: 607-857-4610
For Sale: 7’ Bushhog 287, Excellent condition, $1,850 or BO. Phone: 607-776-1711

COMING EVENTS:

September 7 - Building a Profitable Maple Operation
10 a.m. - 2 p.m. at Chenango CCE; 99 N. Broad St in Norwich. Glenn Goodrich, renowned maple sugaring expert and inventor, will be presenting a program on developing a profitable maple sugaring business. The presentation will feature a tour of the Walling Family sugaring operation east of Norwich. Topics will include: Growing to the Best Size for You; Money Saving, Efficient Sap Evaporation; Leasing Land and Buying Sap; Reverse Osmosis; Marketing Maple Products; Efficient Pipeline Construction; Economical Vacuum Systems; Advice for Your Operation. Sponsored by Chenango CCE. A $10 fee per person includes lunch. For information or to register call: (607) 334-5841 (Limit 40)

September 16 - Hog Breeding & Farrowing Intensive
10 a.m. - 4 p.m. Kingbird Farm, W. Creek Rd. Berkshire, NY 13736 Instructor: Karma Glos Cost: $120-$150 Voluntary Sliding Scale. An in-depth, full-day program for those thinking about getting into breeding hogs and farrowing your own piglets in a pasture-based system. Economics, breeding stock, management, facilities, markets. . . . Get all your questions answered by one of the region's leading experts in organic pasture-pig systems. To register, email info@groundswellcenter.org or call 607.319.5095.

September 26 - 2013 NYS Dry Bean Field Meeting
Dave Woodward Farm, Penfield, NY* 5:00 – 8:00 pm
DEC/CCA credits are requested - Bring your card
Registration:
$5 for current Cornell Vegetable Program Enrollees; $10 for all others
To pre-register for supper or to sponsor – Carol MacNeil at 585-313-8796 or crm6@cornell.edu

September 28 – Steuben County Farm City Day
Schuyler and Steuben – September 2013
Palmer Farms, 7165 Palmer Road, Hornell. 10am – 3pm