Avoid These Issues with Group-housed Calves

Two real world examples of group housing and feeding systems for calves and a discussion of the challenges in each system.

Housing liquid-fed dairy calves is not a new system for dairy calves, but it is one that is getting some new attention lately. Some of the attention is a renewed effort on the part of equipment companies in the area of computerized liquid feeding systems. Group housing for dairy calves has some pros and some cons, like anything else in an animal housing system. Using two farms I have visited as examples, this article will discuss some of the potential issues to consider when housing calves in groups.

The first farm was home to around 1200 milking cows. Calves were fed milk replacer, started in hutches for the first 2 weeks of life, then grouped in several pens following the hutches. Calves were quite close in age in each of the group pens. In observing the pens of 6- to 8-week old calves, my first thought was that the calves were far too thin and appeared to be underfed. I also noted that the pens were wet and calves had some noticeable wet areas on their coats. It was also a bit cold in the barn as it was winter and an unheated barn. I also noted some coughing, but not a lot. The dairy farmer immediately told me that he was treating some calves for respiratory issues and felt he had that under control. I started talking about the wet and thin calves, but to my surprise when he showed me the computer feeding schedule, these calves were getting 2 gallons of milk replacer per day; by most standards this was an aggressive feeding schedule.

Unfortunately with that high of a feeding schedule comes a lot more urine. When calves produce a lot of urine, you need more bedding and more frequent cleaning. In this case, neither was being done often enough. Cold, wet calves use a lot more energy to maintain their body temperature in winter; it can be a huge energy drain. In this case, body maintenance energy requirements were very high, and calves were not growing as well as they should on a high rate of good quality milk replacer. Indeed, they were thin which also indicates stressed calves. It has been shown that stress causes the body to mobilize fat and may give the appearance of very thin calves. The solution is to maintain treating the respiratory issues and start an aggressive cleaning and bedding program. Keep in mind that whenever you feed more liquid feed, you will require more bedding and pen cleaning management.
The second farm was smaller, milking about 220 cows. On this farm, milk-fed calves were housed from 2 days of age until weaning in a single group. By any standard, this is not a recommended system. Despite the computer feeding system being able to feed each calf according to a preplanned amount, disease transfer in this system is a big problem. Indeed, nearly all younger calves were scouring, and the appearance of scours was different in differing age calves. It is likely that there were a variety of issues affecting the calves, and younger calves were probably affected by several health issues all at once. The solution is not as easy on this farm. It would require 1 or 2 more computer feeders (which would not make economic sense) and a change in the barn or pen arrangement to solve the issues. Given the farm size here and barn configuration that was available, it was a poor decision to move to group-housed calves. The solution may be going back to the hutches for at least the first 3 weeks and then having a 1 group system for 3 more weeks until weaning. This solution may not pencil out, as the trade-off in feeder costs would not be justified. Going back to full-time calf hutches may be the best solution. Any system using a combined hutch and group feeding system will not allow the farm the decrease in labor that they wanted as the hutches still need to be cleaned between calves and now it entails one extra move for calves. Keep in mind that calving schedule and calf numbers can vary quite a bit throughout the year, and this can be a major hurdle for group housing systems.

If you are considering a change in your calf feeding and management, visit some working systems before you make any decisions. Be sure to visit farms of similar size to yours and look at the total costs. Keep labor and bedding as important considerations that may have to be managed differently.

Jud Heinrichs, Professor of Dairy Science, PSU

Can Parasite Control be More Effective and Reduce Resistance at the Same Time?

Dairy producers are encouraged to design a parasite control program with their veterinarian. This article presents some elements that might be considered in crafting a more effective program.

Internal parasites continue to be one of the largest problems that plague the livestock industries. Economic costs due to parasitism vary with animal age, stage of growth, degree of exposure, and level of nutrition. Various estimates have put the cost of internal parasites at nearly $2 billion per year. While parasites are ubiquitous, their impact on various dairy cattle groups varies greatly due to management, nutrition, genetics, and rates of exposure.

In the NE regions of the US, the major time for cattle to acquire new infections is just ahead. Therefore, it is a good time for producers and
veterinarians to consider how to make parasite control programs not only effective, but to design control programs to minimize resistance as well. The cattle industry has been blessed over the past 40 years by the introduction of many very effective pharmaceuticals that made parasite control much easier. With these products high productivity and low parasite burdens could be accomplished via a number of convenient treatment options. It became easy for many people to consider parasite control as just a treatment issue. This allowed many producers and veterinarians to spend relatively little time developing a strategy or whole farm approach. A whole farm approach would include the life cycle of the parasite, the immunity or resistance of an animal or animal groups, management of the environment (pasture), and the long term concerns for development of resistance. A good plan will help keep therapy effective, while at the same time reducing the risk of development of resistant parasite strains. Resistant strains of parasites are a major concern in South Africa, New Zealand, and Australia, and they are an emerging problem in the southern US. Serious and hard to manage resistance problems have been seen in sheep, goats, horses, and cattle. Utilizing a more carefully thought out strategy will prevent or greatly delay this problem from affecting the dairy industry.

Heavily parasitized animals, primarily young cattle on pasture, can have severe health impacts. Broad spectrum anthelminthics have been a boon to animal health and productivity through effective removal of parasites. However, the indiscriminate use and improper dosing of these broad spectrum compounds has created emerging problems with resistant parasite strains. Strategic worming programs do not advocate zero care and allowing animals to suffer slowly or lose productivity gains simply to reduce the risk of developing resistance. For animal health, welfare, and profitability, animal caretakers have several legitimate reasons to minimize disease and suffering by parasites. Severely infested animals or groups need to be treated appropriately. Hopefully with a well designed control plan these sorts of cases will be few and far in between.
Much has been written in the last few years about the need to preserve some susceptible strains in the environment (refugia). No treatment strategy is 100% effective and a few parasites always remain. The goal of parasite control programs should not be 100% elimination of all parasites, rather it should be cost effective control that promotes healthy animals. Treatment strategies that do not match the life cycle of the parasite with the burden of parasites in the animal or on the pasture can actually select for more resistance genes. Conversely, just a few adjustments in treatment strategy can allow a mixing of good animal productivity along with the preservation of some susceptible strains.

Allowing a greater proportion of the parasite population to remain susceptible dilutes the resistance genes (click here for a very reader-friendly summary from the FDA Center for Veterinary Medicine).

Dairy producers are encouraged to design a parasite control program with their veterinarian. Here are some elements that might be considered in crafting a more effective parasite program.

1. Routinely use fecal egg counts (FEC; e.g., McMasters test for Fecal Egg Count) to determine which, if any, groups of animals are actually infected. Some groups may have little or no parasite load and do not need to be treated. A few heavy shedders can put most of the eggs into the environment.

2. When it is determined that a group of animals needs to be treated, treat only one half of the group at a time. Treat the second half of the group 1 to 2 weeks later. This strategy allows more susceptible genes to remain in the parasite population.

3. Management strategies can be employed to minimize infective parasite larvae accumulation on pasture (e.g., pasture rotation, making hay, maintaining a grass height over 1 inch, and providing plenty of alternate feeds when grass becomes limited).

4. Do not treat and then move onto a ‘clean’ pasture. This strategy promotes more or only resistant parasite strains on the new pasture. Treat and allow animals to remain on the same pasture for a while before rotating pastures.

5. Make sure that animals are dosed at rates appropriate for size. Correct mg/kg matters. Under dosing leads to resistance. Over dosing can lead to toxicity or residue concerns.

6. Limit manure application on pastures that will be grazed in the same year.

7. Veterinarians should work with producers to monitor effectiveness of product and treatment strategies. The FEC (on individual or pooled fecal samples) can be used as an approximation method to monitor effectiveness or the emergence of resistance. A therapeutic intervention is applied and a second FEC is done on the same population a minimum of 7 days later, but probably better in the 10 to 14 day range. If the treatment was effective, a 90% reduction in FEC should be expected. If this strategy is used to monitor effectiveness or resistance it is important that a consistent method of determining eggs per gram is used. Variations in methodology greatly reduce the validity when interpreting this information.

References:

- Ballweber, LS, editor, Ruminant Parasitology, Veterinary Clinics of North America, November 2006, Vol 22, No 3

Dave Wolfgang, Senior Research Associate, PSU
WORKSHOP ANNOUNCEMENT
Basic Dairy Science and Sanitation Workshop
Department of Food Science
Cornell University
June 11-13, 2013

The Institute of Food Science at Cornell University is pleased to offer a Basic Dairy Science and Sanitation Workshop, June 11-13, 2013. This course is the integral/central component of the new Dairy Foods Certificate Program* being offered at Cornell University. Individuals may register for the workshop and enroll in the Dairy Foods Certificate Program, or register for the course as a stand-alone program. This workshop is designed to help participants understand the basic principles of dairy science and safety, as well as understanding the needs of their dairy processing establishment with regard to dairy sanitation to help ensure that proper sanitation programs are conducted in their establishment.

The course will consist of lecture sessions that will cover basic dairy science, including composition of milk, dairy microbiology, dairy food safety, unit operations -- both raw milk production and receiving, and dairy processing, as well as an overview of dairy regulations. Participants will also learn the basics of cleaning and sanitizing tenets, plant equipment and design, general control of pathogenic and spoilage microorganisms, in depth information on cleaning and sanitizing chemicals, their properties and applications, and a discussion on CIP and COP systems and common errors seen in the industry. There will also be a hands-on session where both CIP and COP principles will be applied. A complete program agenda is enclosed.

This workshop is tailored to dairy processing personnel and the tuition is $375 for in-state registrants -- $450 for out of state registrants. Enrollment is limited to the first 30 participants, so we urge you to register early. Please complete the provided registration form and return with your payment to: Janene Lucia, Cornell University, Dept. of Food Science, Stocking Hall, Ithaca, NY 14853. The deadline for registration is MONDAY, MAY 27th. For additional information/questions regarding the workshop, please contact Janene Lucia (phone: 607-255-2892; fax: 607-255-7619 – e-mail: jgg3@cornell.edu), or Kim Bukowski, (607-254-3313 – e-mail, krb14@cornell.edu).

*As part of the Dairy Extension Curriculum Program, this course is designed as the pre-requisite course that fulfills the requirements for certificates in Dairy Processing for Cultured Products, Cheese and Fluid Milk Products.

PRO-DAIRY 2013 Milk Check Project

More information online at: http://ansci.cornell.edu/prodairy/MCAP/instructions.html

Milk pricing and the makeup of milk prices, premiums, and marketing costs continues to vary year to year, and PRO-DAIRY is for the eighth year conducting a study of milk checks received. Hundreds of farmers have participated in the past.

Springwater Agricultural Products
8663 Strutt Street, Springwater, NY
Farm: 585-728-2386 Cell: 585-315-1094
Name Brand & Generic Pesticide Sales
NK, Garst, WL, Dairy Banquet & Agriculver Seed Sales
Certified Corn, Soybeans, Wheat, Oats, Forage & Pasture Grasses
Open Everyday – Dave Votypka-Owner
Quality products with farmer friendly prices.
This year, PRO-DAIRY is partnering with Dr. Mark Stephenson at the Center of Dairy Profitability at University of Wisconsin to conduct this project. Milk checks from New York and Wisconsin will be collected and regional differences will be analyzed.

To participate in this year’s study, send PRO-DAIRY the final settlement check(s) for milk produced in March 2013, including check(s) received in the middle of April. Only final or settlement checks received in April for March production are needed. Checks received for advanced March production are not needed.

Receiving actual copies milk check(s) allows PRO-DAIRY staff to accurately identify prices received by farmers and the associated milk marketing costs. All information will be held in strict confidence, and no individual farm data will be reported in any manner. Study participants will receive a personalized report of their farm’s milk check, with comparisons to farms by location and by milk shipped for the month. Participants will also receive the report on state averages on milk prices, premiums and marketing costs. Milk checks can be mailed, emailed, uploaded online or faxed.

Visit http://ansci.cornell.edu/prodairy/MCAP/instructions.html to print a cover sheet and for further instructions.

PRO-DAIRY’s mission is to facilitate New York State economic development by increasing the profitability and competitiveness of its dairy industry. PRO-DAIRY specialists have made a positive impact on the technical knowledge, management skills and economic strength of New York State’s dairy industry since 1988. Visit PRO-DAIRY online at http://www.ansci.cornell.edu/prodairy/index.html.

Snow Mold in Small Grains

Pink snow mold (*Fusarium nivale*) and speckled snow mold (*Typhula species*) are the two main fungi that cause this disease. Pink snow mold is by far more common than speckled snow mold. *Fusarium* infects and survives on living plants as conidia or mycelium. *Typhula* over-winters as sclerotia in plant debris or soil. When the spores of *speckled snow mold* or *pink snow mold* germinate they infect the leaves of the plant. The older leaves that touch the soil surface under the snow canopy are first infected. The crowns may or may not become infected. Fungi under the canopy of snow will continue to develop eventually producing conidia or sclerotia. The disease is most aggressive at temperatures that are slightly above freezing.

Results of Snow Mold on Plants

Many times snow mold occurs in patches in the field after the snow melts. You will observe a fungal mass on the leaves that appears pinkish, whitish or gray. Many times the leaves will have brown-black fungal bodies which are called sclerotia. The leaves could be partly or entirely killed. If snow mold infects the crown it will kill the plant. If the crown is not infected most likely new leaves will grow back and the plant should produce grain.

Ken Wise, NYS IPM

Early Season Diseases: Evaluating Winter Wheat!

Spring is the time to look for certain foliar diseases you may encounter on your winter wheat. These are powdery mildew, *Stagonospora nodorum* blotch, and wheat rusts. You normally start to see this in late April or May. It is best to get out and scout your fields now! Here is what you will want to look for:

Powdery mildew

Powdery mildew forms a white to gray, fungal coating on the above-ground parts of the wheat plant. Lower leaves are usually the most severely infected because of the high humidity in the lower canopy. As disease lesions age small black fruiting bodies (cleistothecia) develop with in white infected areas. Powdery mildew is favored by wet and humid days with moderate temperatures of 60°F or above. Powdery mildew is disseminated by airborne spores.
Powdery mildew

Stagonospora Nodorum Blotch
Symptoms usually appear within two or three weeks of head emergence. Leaf lesions begin as very dark brown flecks or spots, sometimes with a yellow halo. These small irregular lesions expand into oval light brown lesions with dark brown centers. On wheat heads the lesions begin as either grayish or brownish spots on the chaff, usually on the upper third of the glume. As lesions enlarge, they become dark brown and the centers turn grayish-white in color as tiny brown or black dots (pycnidia) develop within them. Splashing rain or thunderstorms can move spores from field surface to the plant. Wheat seed can be infected from spores when it is harvested. This disease may also be in the wheat residue on the surface of the field.

Leaf Rust
Rust lesions are small, circular, and vivid orange in color. They may occur on stems, but are most common on the upper surface of leaves. Leaf rust can develop very rapidly so it should be treated as soon as possible. Leaf rust is favored by warm and humid weather with thunderstorms in June. Leaf rust is disseminated on winds which carry the airborne spores great distances. Temperatures between 60°F and 80°F are optimal for disease development. For photo of leaf rust on wheat please see: [Iowa State University Image Gallery: Leaf Pustules on Wheat](http://example.com).

Monitoring the fields
Scout and assess upper three leaves for symptoms and signs of these three diseases in early to mid-May through June, before flag leaf emergence. If disease (any amount) is observed on approximately 50 percent of main tillers that averaged across the field, a fungicide should be considered now.

Ken Wise, NYS IPM

clipboard checklist

General
Walk fields to check tile flow, check and clear drainage outlets. Look for line breaks
Note and record location of wet areas on field maps or aerial photo for future tiling considerations and crop decisions, check for areas of soil erosion
Pre-plant weed evaluation, timing cultivation and/or pre-plant weed management
Watch for early season weeds: winter annuals, chickweed, henbit, field penny cress, shepherd’s purse, giant and common ragweed, purple deadnettle, lambsquarters, redroot pigweed, velvet leaf, Pennsylvania smartweed, common sunflower, quackgrass, foxtail
Alfalfa:
* Evaluate established legume stands for winter damage (thinning stand, frost heave), determine average alfalfa stand count adjust crop plans if necessary
* Monitor for alfalfa weevil
* Monitor new seedings for Pythium blight and Phytophthora Rot Rot
* Monitor for Alfalfa Snout Beetle (In Oswego, Jefferson, Cayuga, Wayne, Lewis, St. Lawrence, Clinton, Essex, and Franklin counties)

Small Grains:
* Monitor winter grain fields for overwintering survival, weed issues, growth stage, number of tillers
* Check stands for soilborne virus diseases, Wheat spindle streak mosaic and Soilborne wheat mosaic and powdery mildew symptoms, cereal leaf beetle, weed escapes, goose damage

Corn:
* Prepare land and plant corn as soon as conditions allow
* Pre-plant weed evaluation, timing cultivation and/or pre-plant weed management

Pastures:
* Check and mend fences as needed.
* Check crop growth.
* Invasive species, plants harmful to livestock
* Review/Plan rotation system

Equipment:
* Remove / clean soil and crop debris from equipment.
* Arrange for custom weed control or check your own application or cultivator equipment for repairs.
* Carry appropriate / necessary NYS DEC and EPA required documents: (pesticide applicators license, pesticide labels, MSDS sheets, etc.) with application equipment
* Calibrate:
 - planting equipment – maintain records on planting rate per field
 - manure spreaders – maintain records on amount spread per field
 - pesticide application equipment – Check nozzles, pumps, etc., recalibrate pesticide application equipment before use.

Storage:
* Check stored grain bins for temperature, moisture and signs of mold and insects. Aerate, core, transfer grain or treat as necessary
* Check forage allocation and anticipate feed program adjustments as forages from previous year are used up
* Plan where forages should be stored for optimum allocation next feeding season

Keith Waldron, NYS IPM

PSU Dairy Herd IOFC - March 2013

Those darn birds! That is too nice a statement considering all the headaches they cause. We transitioned to a new Ag Bag the end of February and were feeding it 100% the beginning of March. However, the birds had done a lot of damage and it was reflected in the bulk tank.

Ag Bags are a good way to increase forage inventory when permanent structures are not adequate for feeding heavy forage based rations or the herd size has increased over the years. At Penn State we usually fill 12 to 15 bags per year. About seven bags get committed to corn silage with the other bags going to grass or alfalfa haylage. It amazes me how crows have an innate sense on which bags have corn silage in them. The assistant manager and the full time employees do check the bags on a regular basis and if they notice any holes, they get taped. The challenge is crows are not dumb birds. They tend to come in all at once, right at dusk when the p.m. crew is milking and there is very little activity. This may happen only once or twice, but that is all it takes to do significant damage.

With this particular bag, we did not have a green cover, which are somewhat effective at keeping the birds from poking too many holes.
The employees caught the damage on this bag right away but there were so many holes that taping did not seem a very effective solution. The decision was made to cover the bag with plastic and secure it the best they could. Then Mother Nature played her hand with a major wind storm blowing the plastic off. With the snow covering and freezing to the plastic it could not be used to recover the bag. This happened right before we would start feeding from the bag.

The challenge is when the bags get compromised and air infiltrates the silage resulting in spoilage.

Virginia Ishler
Nutrient Management Specialist, PSU

IOFC Results

<table>
<thead>
<tr>
<th>Month Year</th>
<th>No Risk Mgt Gross Milk Price/cwt</th>
<th>W/ Risk Mgt Gross Milk Price/cwt</th>
<th>Milk income/cow</th>
<th>Feed cost/cow</th>
<th>IOFC</th>
<th>Average milk lbs</th>
<th>Low Benchmark</th>
<th>High Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-12</td>
<td>$17.65</td>
<td>$17.73</td>
<td>$15.60</td>
<td>$6.69</td>
<td>$8.91</td>
<td>88</td>
<td>$6.28</td>
<td>$9.39</td>
</tr>
<tr>
<td>A-12</td>
<td>$17.34</td>
<td>$17.37</td>
<td>$15.46</td>
<td>$6.94</td>
<td>$8.52</td>
<td>89</td>
<td>$6.20</td>
<td>$9.29</td>
</tr>
<tr>
<td>M-12</td>
<td>$17.01</td>
<td>$17.05</td>
<td>$15.35</td>
<td>$7.40</td>
<td>$7.95</td>
<td>90</td>
<td>$6.16</td>
<td>$9.22</td>
</tr>
<tr>
<td>J-12</td>
<td>$16.62</td>
<td>$16.65</td>
<td>$14.32</td>
<td>$7.23</td>
<td>$7.09</td>
<td>86</td>
<td>$5.74</td>
<td>$8.60</td>
</tr>
<tr>
<td>J-12</td>
<td>$17.12</td>
<td>$17.06</td>
<td>$13.99</td>
<td>$6.60</td>
<td>$7.39</td>
<td>82</td>
<td>$5.57</td>
<td>$8.37</td>
</tr>
<tr>
<td>A-12</td>
<td>$18.64</td>
<td>$18.38</td>
<td>$14.34</td>
<td>$6.62</td>
<td>$7.72</td>
<td>78</td>
<td>$5.61</td>
<td>$8.52</td>
</tr>
<tr>
<td>S-12</td>
<td>$19.80</td>
<td>$19.26</td>
<td>$15.02</td>
<td>$6.87</td>
<td>$8.15</td>
<td>78</td>
<td>$5.76</td>
<td>$8.85</td>
</tr>
<tr>
<td>O-12</td>
<td>$21.90</td>
<td>N/A</td>
<td>$17.65</td>
<td>$7.31</td>
<td>$10.34</td>
<td>80.6</td>
<td>$7.06</td>
<td>$10.59</td>
</tr>
<tr>
<td>N-12</td>
<td>$23.42</td>
<td>N/A</td>
<td>$18.97</td>
<td>$6.71</td>
<td>$12.26</td>
<td>81</td>
<td>$7.59</td>
<td>$11.38</td>
</tr>
<tr>
<td>D-12</td>
<td>$22.17</td>
<td>N/A</td>
<td>$18.62</td>
<td>$6.65</td>
<td>$11.97</td>
<td>84</td>
<td>$7.45</td>
<td>$11.17</td>
</tr>
<tr>
<td>J-13</td>
<td>$21.19</td>
<td>N/A</td>
<td>$18.44</td>
<td>$7.03</td>
<td>$11.41</td>
<td>87</td>
<td>$7.37</td>
<td>$11.06</td>
</tr>
<tr>
<td>F-13</td>
<td>$20.64</td>
<td>N/A</td>
<td>$18.58</td>
<td>$7.58</td>
<td>$11.00</td>
<td>90</td>
<td>$7.43</td>
<td>$11.15</td>
</tr>
<tr>
<td>M-13</td>
<td>$20.79</td>
<td>N/A</td>
<td>$17.26</td>
<td>$6.99</td>
<td>$10.27</td>
<td>83</td>
<td>$6.90</td>
<td>$10.35</td>
</tr>
</tbody>
</table>

OFC Graph

Income Over Feed Cost Compared to Benchmarks
TRADING POST:

For Sale: - 588 white plow 6-18” high clearance, spring reset w/side hill hitch, $2,500.
- Harsh stationary mixer, Mod. 290/232 bu w/electronic scale, 4 augers, s.s. bottom, $4,000.
- Reel Augie portable mixer, Mod. 2300 w/dry hay max kit, $4,000.
- Brillon 10’ seeder, $2,500.
- Plate cooler, 81 plates, expandable universal, $700.
- Lock ups – 44’ cows, 70’ calves, $150/10’ section.
- 8 Boumatic claws w/Flowstar tops, Delaval shells, plus extra parts.
Phone: 607-857-4610

For Sale: 7’ Bushhog 287, Excellent condition. $1,850 or BO. Phone: 607-776-1711

COMING EVENTS:

May 11 - Public Invited For A Walk In The Woods!
9 a.m. - 12 p.m. Stackhouse Farm, 3010 Esperanza Road, Bluff Point, NY. Yates County Woodswalk! Join the New York Forest Owners Association, Yates County Master Forest Owners, and Yates County Cornell Cooperative Extension for an informative and fun walk in the woods. Participants will hear about the many threats facing the future forest, including invasive plants and insects, destruction of the young forest by excessive deer populations in some areas, and the degradation that can result from unsustainable harvesting practices. Participants will tour the property with Senior DEC Forester, Jim Bagley and Future Forest Consulting Forester, Corey Figueiredo. Attendance is free, but let us know you are coming so we can plan for parking and handout materials. Everyone is invited. Attendees are asked to dress for the weather and wear boots or shoes suitable for walking on woodland trails, some of which are on hilly terrain. FOR REGISTRATION and more INFORMATION: call Yates County Cornell Cooperative Extension at 315-536-5123.

May 22 - Pasture-based Beef Genetics
6:30 pm to 8:30 p.m.
4536 Winton Road, Montour Falls, NY.

With the cost of many production inputs on the rise, more beef producers are turning towards strains of cattle within the many beef breeds that can “do it all well” on a year-round diet of just pasture and hay. Come join the Tri-County Graziers for a twilight pasture walk at Winton Road Farm and Livestock to discuss just what makes an ideal beef cow for low-input pasture-based operations. The walk will be led by Kathy Engel (www.puregrassbeef.com) and Morgan Hartman (www.blackqueenangus.com).

RSVP’s are appreciated by calling 607-664-2300, or emailing bjc226@cornell.edu. Light refreshments will be served. Support for this educational event is provided by Cornell Cooperative Extension of Steuben and Schuyler Counties, the Upper Susquehanna Coalition, SARE, and the NRCS Grazing Lands Conservation Initiative.
Commitment to Quality and Service

Since 1912, providing you quality feed and independent service for Western NY farmers.

- Full Line of Complete Feeds at Competitive Prices -
- “Exclusive” Extruded Full Fat Soybeans -
- “Steamed Rolled” Flaked Corn -
- Customized Feeds and Complete Nutritional Feed Programs -
- Dairy Production Consultant -
- Fertilizer Blending: Liquid and Granular -
- Custom Spraying and Crop Service -
- Exclusive Manufacturer of “Country Magic Dog and Cat Food” -
- Working Relationships with Your Vet and Consultants for “YOUR Bottom Line” -
- PLUS Access to the Latest Technology in the Feed Nutrition Business -

See our great prices on Carhart Jackets and clothing to keep you warm this winter!

REISDORF
BROTHERS, INC.

Your Complete Farm Store & Feed Mill
1830 Perry Road • North Java, NY 14113
Toll Free: 1-800-447-3717 • (585) 535-7538 • Fax: (585) 535-0470

Please visit our web site:
www.reisdorfbros.com
May 6 - Pond Management for Rural Landowners
6:00 pm - 8:30 p.m. at Cornell University’s Arnot Forest; 611 (Schuyler) County Route 13; Van Etten, NY. Current and future pond owners have an excellent opportunity to learn more about managing their ponds from expert instructors. This education program will provide clear advice and answers for ponds owners regarding weeds, water quality, fishing, and wildlife management. The workshop is free and open to the public. For questions or additional information, please contact Schuyler CCE at 607-535-7161, or by email: bjc226@cornell.edu Please meet at the Arnot Forest Lodge by 6 p.m. For detailed driving instructions, please visit: www.arnotforest.info.

May 11 - Mushroom Field Day at Cornell’s Arnot Forest
Sponsored by the NY Forest Owners Association – Southern Finger Lakes Chapter. Morning session: Shiitake Mushroom Cultivation. 9 a.m. to 12:30 p.m. Learn how to successfully grow Shiitake mushrooms with Dr. Ken Mudge of Cornell University, and take home your own inoculated logs afterwards! There is a $30 fee for the course to cover materials, and space is limited to 30 people. Please pre-register on-line here by Wednesday May 8. Meet at the Arnot Forest Lodge by 9 a.m. Afternoon session: Wild Mushroom and Forest Health Walk. 1:00 to 4:00 p.m. Dr. George Hudler of Cornell University will lead a walk through portions of the Arnot Forest to identify wild mushrooms and discuss how to interpret signs of forest health. This walk is free and open to the public. Please dress for the weather and expect to hike in moderately rough terrain. Tick and bug spray is recommended. No pre-registration is required for the afternoon session. Please meet at the Arnot Forest Sugarhouse by 1 pm. Please bring water, and lunch if staying for the day. The Arnot Forest is located at 611 Schuyler County Route 13; Van Etten, NY – please visit: www.arnotforest.info for detailed driving information. For additional information, please contact Brett Chedzoy, Cornell Cooperative Extension of Schuyler County, at bjc226@cornell.edu (phone 607-535-7161).