Locally-Grown Food Festival
Friday, April 19, 2013
5:00-8:00 PM
Union Hall
100 Civic Center Plaza, Corning

• Sample dishes created with local products
• Meet dozens of local farmers
• Purchase locally grown products ON SITE!

The event features:
Tastings of vegetables, cheese, meats, fruits, breads, preserves, wines, and more!

Call 607-664-2300 for more information or visit www.putknowledgetowork.com
Transition Cow Housing and Management
John Tyson,
Agricultural Engineer, Educator, PSU

Transitioning cows from the dry period into and through early lactation has a huge effect on the overall production and health of the entire herd. The way we house and manage the dry and prefresh cow ultimately determines the level of production she can achieve.

Transitioning cows from the dry period into and through early lactation has a huge effect on the overall production and health of the entire herd. The way we house and manage the dry and prefresh cow ultimately determines the level of production she can achieve. A good transition means reduced stress, reduced fresh cow problems, improved production with a better start, a higher peak milk production, and more persistent lactation curve. Added benefits would be a better breeding program with a healthier cow and added longevity in the herd with a lower cull rate.

With transition cow housing you are “paying it forward” so to speak, and that investment lasts far beyond the end of this barn.

With all these benefits it would seem a no brainer that this would be a high priority area on the dairy. However, if constructed and managed correctly, using all the recommendations from your nutritionist, veterinarian, and maybe even an engineer, these can be very expensive facilities on a per stall or per square footage basis. This often leads to transition housing being reduced in the budget or cut completely out of the budget. So, rather than look at the cost per animal housed in the transition group, maybe a better way to look at cost is on a total herd basis. If 20% of the total herd is being housed in this expensive facility that cost may be $3,000 or $4,000 per animal to build, that leaves 80% of the herd that has been influenced by the proper housing and management during transition to help pay for it. In other words, for every one cow in the group there are 4 other cows in lactation giving more milk because of the facility. So now what was a high cost is less than $1,000 per cow in the herd, and much easier to pay for based on the production and health gains. This is much different than when improvements are made in the lactating cow housing, where only the one cow that uses that one stall can make the payments on that improvement. With transition cow housing you are “paying it forward” so to speak, and that investment lasts far beyond the end of this barn.

The exact type of housing will depend on your management. There are lots of ways to put the transition housing system together, as long as it meets a few “Dairy Shelter Basics”. Those basics would be: good ventilation, a dry comfortable resting area, good access to feed, good access to water, and confident footing. Specific to transition cows the access to feed would be the number one design consideration. Research has consistently shown that this group of animal should have 30 inches of feed space. So no matter the shelter
type, feed space should be where the design starts. If you are considering freestalls, a two-row layout gives the best stall to feed space ratio. As for stall size, remember these girls are carrying a calf and therefore a little bigger than normal, so adding a few inches to the stall width is a good idea. Stall width of 51 to 54 inches is recommended, with a total stall length of 9 feet.

Bedded pack shelters are another option for transition housing. The bedded pack may have a comfort advantage for the fact that cows lie down and position themselves however they feel most comfortable. Space and bedding however may be a draw back with a large number of animals. If considering the bedded pack, 100 to 120 square feet of resting area per animal is recommended for dry cows and 175 to 200 square feet of area is needed for a freshening pack. Remember these girls are on vacation, so give them a little extra space.

Sometimes both the freestall and bedded pack are combined into a transition shelter. Early on dry cows are housed in freestalls and then as they move to the maternity group a large freshening pack is used for housing.

Regardless of the shelter type or style, sizing it for the proper number of animals is important. Calving is never even throughout the year, every farm has its highs and lows. With the importance of this group of animals to the overall dairy it is recommended to oversize the shelter by 25% to 30% from predicted uniform calving to allow adequate space for the high calving times of the year. If there are times of the year the transition group is crowded then the entire herd will suffer at those same times.

The take home message here is to remember the housing and management of transition cows has lasting effects on the entire herd not just the animals housed here. The investment in more space and time for transition cows will pay dividends down the road throughout the entire dairy herd.

Sign up for Email Alerts!

This seasonal scouting report provides information on the presence, identification, and management guidelines for significant field crop pests in New York. This report provides timely information to help users learn about, and better anticipate current and emerging problems and improve their integrated pest management efforts.

To receive these weekly email alerts, simply email Kerri Bartlett at ksb29@cornell.edu. We keep your email address private, and we make every effort to keep the email alerts brief and to the point!

New Website helps you Find Your Farmer!

CCE has developed a new website designed to create an easy connection between consumers and farms that are selling locally raised meats. Visit www.meatsuite.com and check out the diverse livestock products available. Have a farm that sells meat? Add your farm to the Meat Suite website! Click the “add your farm” link on the home page or contact Kerri Bartlett at 607-664-2311 to sign up!
Corn growers need to scout their fields to determine wireworm populations before planting so they don't miss the optimum treatment window, a Purdue Extension entomologist says. Wireworms, or click beetle larvae, feed on corn seed germ and may prevent plants from sprouting. The pest becomes active when soil temperatures warm into the upper 40s.

"There are two trapping methods to determine the potential risk from wireworm to this year's crop, but they will need to be implemented very soon," Christian Krupke said.

Krupke, and Associate Professor of Entomology at Purdue University suggests growers can bait the pests with either solar or flour bait stations. With either method, traps should be placed in at least five representative areas of a field.

Solar bait stations are created by digging holes in the soil 9 inches in diameter and 6 inches deep. Each hole should have a handful of untreated corn and wheat seeds, then be refilled with soil, covered with a piece of black plastic (holding down the sides with soil) and marked with a flag or stake.

"The black plastic acts as a solar collector, warming the soil surrounding the bait, providing heat for germination of the corn and wheat seeds," Krupke said.

The second method is similar but replaces the corn and wheat seeds with flour. The black plastic isn't necessary, but marking the spot is. "Gasses given off during fermentation of the flour are attractive to the wireworms and they will move to the bait to feed," Krupke said. "The bait should be left in the fields as long as possible (2 week maximum) up to the time of planting. At that time, the bait at each station should be dug up and examined for wireworms. If they are in the field, you will find them feeding on the flour ball."

Once growers know whether their corn crops will be at risk and the extent of the risk, they can decide on management strategies.

According to Krupke, one or two wireworms found per bait station might warrant higher rates of seed-applied insecticides possibly at the rootworm rate. Higher populations could render seed-applied treatments ineffective.

Krupke also pointed out that while seed-applied insecticides will protect the crop, they often do not kill wireworms, causing populations to build up over the years.

"In this scenario, granular soil insecticides would afford better protection of the corn seed and seedling, especially during slow-growing environmental conditions after planting," he said.

Another option would be to plant soybeans where wireworm populations could be higher. While the pest feeds on soybeans, the plants are typically planted a little later, into warmer soils and also have the ability to compensate for thinner stands with higher seed production - unlike corn.

The bottom line, Krupke said, is to keep in mind that pre-planting is the last opportunity to manage wireworms.

"Remember that there is no rescue treatment for wireworms once the crop has been planted," he said.
Timing Spring Alfalfa Harvest – The Final Word?
Mike Allen, Rich Leep, and Jeff Andresen
Departments of Animal Science, Crop and Soil Science, and Geography

There is no doubt in most dairy farmers’ minds that forage quality is an important determinant of farm profitability. Poor quality forages increase feed costs and limit milk production. The most important factor affecting quality of alfalfa is maturity at harvest; as alfalfa matures protein content and digestibility of dry matter and fiber decrease and fiber content increases. However, harvesting too early reduces yield and results in alfalfa that is difficult to feed because its quality is too high. Although it is impossible to always harvest alfalfa at the optimum maturity because Mother Nature doesn't always cooperate, there are new methods to help you come closer to your goal.

What is your goal? It is important to have a specific quality goal in mind for alfalfa harvest. Alfalfa to be fed to lactating dairy cows normally should be harvested at 40% neutral detergent fiber (NDF). Why use NDF as a criterion? Because NDF is an important factor for formulating diets; diets with excess NDF content are more filling and limit intake and diets with inadequate NDF content result in increased health problems such as acidosis, displaced abomasums, and laminitis. Alfalfa should be harvested at the lowest fiber content that will provide adequate levels of fiber in the diet and allow a reasonable amount of grain to be added to maximize energy intake and milk production. When diets are formulated with an overly mature alfalfa (high NDF content), the NDF content of the forage must be diluted with high concentration of grain to increase energy density and reduce the filling effect of the diet. Because protein content is usually lower for mature alfalfa, more protein supplement is required as well. Besides being costly to supplement, lower NDF digestibility of diets formulated using overly mature alfalfa might limit feed intake and milk production, particularly for the highest producing cows. When diets are formulated with an immature alfalfa, little grain can be included because the NDF content of the alfalfa is close to the NDF required in the diet. This will result in lower energy density and might result in lower energy intake. Diets containing immature alfalfa also tend to have excess protein content because the protein content of immature alfalfa tends to be very high. Not only is feeding excess protein wasteful, but it costs energy for the animal to excrete, might be an environmental contaminant, and might reduce reproductive performance. This is a greater problem when immature alfalfa is the only forage fed; it is easier to formulate diets with immature alfalfa when a high NDF, low protein forage is included. A goal of 40% NDF is often chosen for alfalfa because it is felt that this optimizes profitability from a combination of factors influencing alfalfa yield, supplement cost, and milk production. Some circumstances might justify harvesting alfalfa earlier such as when the immature alfalfa will be blended in a diet with a higher NDF, low protein forage. However, harvesting immature alfalfa risks health of the plants and therefore the productive life span of the alfalfa stand, particularly for spring harvest.

How do I attain my goal? There are several methods that can be used for timing first alfalfa harvest to come closer to your quality goal than when harvesting by calendar date. Cumulative temperature during growth may vary greatly from year to year, resulting in large differences in quality on the same date. In an experiment conducted in 1990 and 1991, we found that the NDF content of spring harvest alfalfa varied up to 10 percentage units when harvested on the same date from one year to the next. However, when the difference in cumulative temperature between the years was accounted for using growing degree-days (GDD), little difference in NDF content of alfalfa was observed. Harvesting alfalfa by GDD is one of the methods that can be used to get closer to your goal. Other methods include the scissors cut, harvesting by maturity, or by a combination of maturity and height using the PEAQ (Predictive Equations for Alfalfa Quality) method (see below).
What are GDD and how are they calculated? Growing degree-days are a temperature-derived index representative of the amount of heat that the plants are exposed to, which in turn is directly related to the growth rate of growth and development of the plant. GDD are calculated several ways, so it is important to make sure GDD are calculated using the same formula that was used to establish the relationship you will use to harvest alfalfa. For instance, different base temperatures are used for different crops, and corn uses a different method of calculation entirely. Alfalfa GDD used for recommendations in this article are calculated by averaging the maximum and minimum temperature for a given day (24-h period) then subtracting the base temperature of 41°F to get the number of GDDs for that day. Daily GDD for days with an average temperature less than 41°F are set equal to 0. Finally, a seasonal total is then obtained by summing the daily growing degrees from March 1st through the current day. Example: if the maximum and minimum temperatures for one day are 75°F and 39°F, respectively, the average is 57 and the growing degrees for this day are 16 (57 - 41).

How close to can I get to my goal? It is important to realize that no method will predict the NDF content of the alfalfa harvested perfectly. There are many factors that affect the accuracy of prediction including the amount of grass and(or) weeds in the field, proximity to the weather station used, proximity to a large body of water, difference in elevation from the weather station, adequacy of soil moisture, length of time wilting, exposure to rain between cutting and chopping or baling, and quality of fermentation for silage. Using GDD (base 41°F), we can predict NDF content within ± 3 percentage units 68% of the time and within 6 percentage units 90% of the time. Thus, if you are using GDD (base 41F) to begin cutting alfalfa at 40% NDF, in 7 out of 10 years the alfalfa will be between 37 and 43% NDF and in 9 out of 10 years it will be between 34 and 46% NDF. Although GDD cannot be expected to predict alfalfa NDF perfectly, it is certainly better than harvesting by calendar date and it seems to work as well or better than other methods in Michigan.

When should I begin harvesting? According to data collected in the upper Midwest over several years, alfalfa averages 40% NDF at 750 GDD (base 41F). It takes about 220 additional GDD to reach 45% NDF at GDD (base 41F). Beginning harvest at 40% NDF will give about a 7 day window to complete harvesting before the alfalfa reaches 45% NDF. If you are storing the alfalfa in a horizontal silo or are feeding it in a diet with a high NDF, low protein forage, start cutting at 680 GDD (base 41° F), which corresponds to 38% NDF. Filling horizontal silos with layers of increasing maturity will allow harvest to begin a little earlier because the layers of alfalfa are blended as the alfalfa is removed from the silo. If a higher fiber, lower protein forage is included in the diet it will provide the necessary fiber and dilute the high protein content of the less mature alfalfa.

What about alfalfa stands containing grass? Grasses have higher NDF content than alfalfa when harvested at the same age and therefore older alfalfa stands containing grass should be harvested first. Begin harvesting the fields with the most grass first so that purer alfalfa stands can be harvested at the appropriate NDF content. If wet weather delays harvest and the fields with grass can be segregated for storage, consider harvesting the purest stands of alfalfa first and harvest the stands...
containing grass for the far-off dry cows and/or heifers.

What about harvesting second and later cuttings of alfalfa? Predicting alfalfa NDF using GDD cannot be done when there is inadequate soil moisture during the growing season because GDD accumulate with little or no response in plant growth. Because of this, GDD is highly related to quality only for spring harvest alfalfa with adequate rainfall and not for subsequent cuttings which nearly always have periods of inadequate soil moisture during growth.

How much does it cost me to delay harvest? A lot! It costs as much as $0.10 per cow per day for each unit of NDF increase past 40% NDF for increased energy and protein supplement and for lost production from the effect of lower NDF digestibility on dry matter intake. This amount is even higher as production per cow increases because rumen fill becomes a greater constraint on feed intake. Although there will be some increase in yield by delaying first harvest, the cost of lower milk production and supplemental energy and protein easily justify harvesting on time.

Should I continue planting corn or harvest alfalfa? When wet weather results in delayed planting of corn it will usually pay to stop corn planting to harvest alfalfa, particularly for high producing herds. Corn yield is reduced approximately 1 bushel / acre per day when planting is delayed in late May and alfalfa NDF increases about 0.6 units per day. For a 100-cow dairy farm feeding alfalfa as the only forage, with 130 acres of corn grain and corn valued at $2.50 per bushel, delaying planting 1 day will cost $325. per year. However, assuming first cutting alfalfa is 40% of the total annual yield, the cost of delaying alfalfa harvest for supplemental feed and decreased milk production is over twice this amount.

To determine the GDD for your area visit the Cornell’s Network for Environment and Weather Applications website at http://newa.cornell.edu. There are several apps available that will determine the GDD for your area as well.

What about other methods? Several alternative methods are sometimes used to predict alfalfa quality: scissors cut programs, maturity, and the PEAQ method. Scissors cut programs involve taking samples of alfalfa directly from the field and sending the samples to a feed testing laboratory for analysis. This method is thought by some to be the "gold standard" to which all other methods should be compared because quality is actually measured and not predicted from a formula.

However, this method is subject to other errors and might be no more accurate than the predictive methods. The most significant potential error is that the NDF of the sample begins to increase once the plant is clipped because sugars are converted to carbon dioxide and water through respiration. Fresh alfalfa is very unstable and there is no way to prevent respiration. Although cooling can slow respiration down, the sample should not be frozen, as this will also increase the NDF content. In addition, wet chemistry should be used because NIRS (near infrared reflectance spectroscopy) equations for fresh alfalfa are not generally available and NIRS predictions might be inaccurate. This method is time consuming and costly, takes longer to get results, and is not necessarily more accurate than using GDD.
Harvesting alfalfa by maturity is often used but it is difficult to determine the average maturity of a field of alfalfa, particularly if there is insect damage. This method takes some time and is no more accurate than using GDD.

The PEAQ method requires sampling alfalfa stems from several locations in an alfalfa field and determining length of the longest stem and maturity of the maturest stem. These values are then inserted into a formula to predict alfalfa NDF. Although this is not a difficult method, it takes time to perform, is potentially subject to measurement errors, and has not been shown to be better at predicting spring harvest alfalfa NDF than GDD in two years of on-farm comparisons in several locations in Michigan.

Is this really the final word? Although we currently recommend using GDD over other methods for spring harvest alfalfa, definitive studies comparing the methods still need to be conducted over several years evaluating the effect of sample preparation (hay vs. silage), analysis method (wet chemistry vs. NIRS), and measurement of GDD on site. Because of this we might change our recommendations, as more information becomes available. For the time being, remember these points about using GDD to harvest alfalfa:

- The GDD method isn’t perfect but will help get you closer to your goal.
- Make sure you use the GDD formula for alfalfa only.
- Begin cutting alfalfa at 750 GDD (base 41° F) for upright silos and 680 GDD (base 41F) for horizontal silos. Start even earlier for horizontal silos if it takes more than a week to finish harvesting.
- Fields containing grass should usually be harvested first. Start with the fields with the most grass first and finish with the purest alfalfa fields.
- Harvest second and later cuttings at late bud stage.
- The GDD method (or any method so far) cannot be used for fields containing grass.
- Fields containing grass should usually be harvested first. Start with the fields with the most grass first and finish with the purest alfalfa fields.
- Harvest second and later cuttings at late bud stage.
Understanding your Forage Analysis Report

Neutral Detergent Fiber (NDF) goals:
- Grass hay and silage: 50 - 65%
- MMG hay & silage: 42 - 50%
- MML hay & silage: 40 - 45%
- Legume hay & silage: 38 - 42%
- Corn Silage: 40 - 44%
 (Corn Silage over 44% may indicate immaturity at harvest)

Get the NDF and DM right and a lot of the rest will follow.

Dry Matter:
- Silage Bunks/Plies: 33-35%
- Silage Towers/Bags: 33-38%
- Baleage: 38 - 50%

Evaluated column:
Forages are evaluated on a dry matter (DM) basis. % dry matter is in the As Fed column.

Crude Protein:
(Is less important than NDF)
- Goals: Hay crops: 15 - 20%, Com Silage: 7 - 9%
 (For Com Silage over 9% usually indicates corn was not mature enough at harvest if coupled with high NDF and low starch)

Soluble Protein:
Silage (especially hay crops) goal is less than 65% of CP. Wet silages have higher soluble protein.

NDICP: ADF CP
(Neutral & Acid Detergent Insoluble Crude Protein)
Measure of the crude protein bound to the fiber (NDF and ADF). Used to predict rates of rumen protein availability.

Ash:
Haycrop: less than 9%
Corn Silage: less than 6%
Levels above these usually indicate soil contamination.

Minerals:
Concern levels:
- Potassium > 2.6% in haycrops (may indicate over-fertilization with potash)
- Iron > 300 ppm (indicates soil or metal contamination)
Analyze minerals by "wet chemistry" methods for best accuracy.

NDF = Neutral Detergent Fiber:
Correlates well with how much forage a cow can eat (gut fill). It is the basis for measuring NDF intake as % of animal bodyweight. We manage forages for NDF content.
ADF = Acid detergent fiber: is the less digestible portion of the NDF. We don’t manage forages for ADF content.
Lignin - Part of the fiber that is basically indigestible to cow.

Lignin
% of DM and % of NDF
Portion of the fiber increases with plant maturity and which is indigestible. It can be managed mostly by cutting date and interval for haycrops and selecting BMR hybrids for corn. Heat increases lignin content; For this reason 1st cutting fiber is usually more digestible than 2nd cutting.

OVER
NEF – Non Fiber Carbohydrates

Measure of Starch, Sugar and Pectin.

This value was used more when labs were not routinely measuring starch and sugar. They do now.

Starch

Corn Silage goal = >30%

Can range as high as 40% in conventionally harvested (not high chopper) corn.

High starch level can be misinterpreted as adequate if corn is too dry and kernels pass through cow undigested.

There is not a lot of starch in haycrop forage.

WSC and ESC

WSC = Water Soluble Carbohydrates

ESC = Ethanol Soluble Carbohydrates

Both measure sugars in plants. Use ESC to evaluate silage fermentation.

High quality silages often have sugar levels 3-8%. Sugar levels less than 3% in silages indicate lower sugar levels in harvested plants (silage in windrow too long) or extended fermentation in silo.

Very dry silage/baleage and hay can have sugar levels over 10% (as there’s little or no fermentation to use up sugars).

Silage Fermentation

Some of the measures used to evaluate silage fermentation. Explained in detail in accompanying fermentation report (will be topic of PF Manager Volume 1 No 4).

Digestibility

IVTD = In vitro true digestibility

An estimate of feed dry matter digestibility in the rumen for a given period of time (24 hrs in this example) report, typically 24, 30 or 48 hrs.

NDFD = NDF digestibility

An estimate of NDF digestibility in the rumen for a given period of time (24 hrs in this example)

For 24 hr NDFD

- > 70% = good
- > 80% = excellent

24 hr NDFD is often chosen as it is similar to the rumen feed retention time of a high producing cow.

Dry Matter

Silage Bunks/Piles = 33-36%

Silage Towers/Bags = 33-36%

Baleage = 38-50%

Evaluate this column

Forages are evaluated on a dry matter (DM) basis. % dry matter is in the As Fed column.

<table>
<thead>
<tr>
<th>Analysis Results</th>
<th>As Fed</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Dry Matter</td>
<td>35.1</td>
<td>40.4</td>
</tr>
<tr>
<td>Neutral Detergent Fiber</td>
<td>15.4</td>
<td>18.6</td>
</tr>
<tr>
<td>Lignin % NDF</td>
<td>6.8</td>
<td>7.5</td>
</tr>
<tr>
<td>% Crude Protein</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>% Crude Fat</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>% Ash</td>
<td>1.15</td>
<td>1.32</td>
</tr>
<tr>
<td>Soluble Protein % CP</td>
<td>.06</td>
<td>.08</td>
</tr>
<tr>
<td>ADICP</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td>DCICP % CP</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>DDCP % CP</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Calcium</td>
<td>.16</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>.03</td>
<td>-</td>
</tr>
<tr>
<td>Chloride Ion</td>
<td>.02</td>
<td>-</td>
</tr>
<tr>
<td>Potassium</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>Sodium</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>Sulfur</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>Fe</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>Mn</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>Zn</td>
<td>.01</td>
<td>-</td>
</tr>
<tr>
<td>% Acid Det Detergent Fiber</td>
<td>4.4</td>
<td>5.0</td>
</tr>
<tr>
<td>% ADICP</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>% DCICP</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>% DDCP</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>% Lignin</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>% NFC</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>% TDN</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>NEL, Mcal/lb</td>
<td>.76</td>
<td>.76</td>
</tr>
<tr>
<td>Net, Mcal/lb</td>
<td>.27</td>
<td>.27</td>
</tr>
<tr>
<td>NE, Mcal/lb</td>
<td>.18</td>
<td>.18</td>
</tr>
<tr>
<td>% Moisture</td>
<td>64.9</td>
<td>70</td>
</tr>
<tr>
<td>% Available Protein</td>
<td>7.0</td>
<td>-</td>
</tr>
<tr>
<td>% Adjusted Crude Protein</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>% Degradable Protein % CP</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>% Starch</td>
<td>12.3</td>
<td>30</td>
</tr>
<tr>
<td>%WSC (Water Sol. Carbs)</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>% ESC (Simple Sugars)</td>
<td>4.4</td>
<td>5.0</td>
</tr>
<tr>
<td>% PPM Molybdenum</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>% Ammonia (Protein Equiv)</td>
<td>.11</td>
<td>.31</td>
</tr>
<tr>
<td>% Lactic Acid</td>
<td>1.63</td>
<td>-</td>
</tr>
<tr>
<td>% Acetic Acid</td>
<td>.81</td>
<td>-</td>
</tr>
<tr>
<td>VFA Score</td>
<td>5.22</td>
<td>-</td>
</tr>
<tr>
<td>IVTD 24 hr. % of DM</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>NDFD 24 hr. % of NDF</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>kld, 8/hr</td>
<td>3.03</td>
<td>-</td>
</tr>
</tbody>
</table>

NEL, Mcal/lb

An estimated (calculated) energy content of feed.

Haycrop goal > 0.60 Mcal/lb

Corn Silage goal > 0.70 Mcal/lb

Managing for NDF content and digestibility, starch level (in corn silage), proper DM content, and good fermentation (in silage) will assure good forage energy content.

What about RFV??

Relative Feed Value (RFV) was developed for use at hay auctions. Forage NDF value is a better way to evaluate forage quality.
DAIRY OF DISTINCTION
2013 New York Application
DairyofDistinction.com

Purpose of Program
Attractive dairy farms give the consumer greater confidence in the
wholesomeness of milk and stimulate milk sales which encourages public
support of the dairy industry. The award gives recognition to the dairy
farmer for maintaining a well-kept farmstead.

Eligibility
All Northeast dairy farms producing milk for sale are invited to submit an
application for the award. Dairies receiving the 10 highest scores in each
of the 10 districts will receive an 18"x24" Dairy of Distinction sign to be
displayed in front of their farm.

Application
Name________________________ Farm Name______________________
Mailing address _______________ Town_____________ Zip_______
Phone number _________________ Email ______________________
Milk Cooperative or Handler _________________________________
Location (driving directions for judging team)________________________

__
County where farm is located

I hereby apply to the Northeast Dairy Farm Beautification Committee to have my dairy scored in accordance with the rules
of the program for the purpose of obtaining a Dairy of Distinction sign to be displayed on my premises. (No producer will
be charged for scoring or sign expense).

________________________ Date________________________
Signature of owner/operator

___ Please check if farm is rented or leased

Application must be **postmarked by April 15 to:**
Nancy Putman
80 Chipman Corners Road
Lisbon, NY 13858
DAIRY MARKET WATCH

An educational newsletter to keep producers informed of changing market factors affecting the dairy industry.

Funded by Cornell Pro-Dairy.

Compiled at Cornell Cooperative Extension of Chautauqua County by Virginia Carlberg, Community Educator - Farm Business Management

Milk Component

<table>
<thead>
<tr>
<th>Month</th>
<th>Butterfat</th>
<th>Protein</th>
<th>I(Boston)</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Jamestown, NY</th>
<th>Albany, NY</th>
<th>Albany $/gal. to farmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb12</td>
<td>$1.57</td>
<td>$2.66</td>
<td>$20.28</td>
<td>$16.94</td>
<td>$16.06</td>
<td>$15.92</td>
<td>$16.94</td>
<td>$0.88</td>
<td>$17.54</td>
</tr>
<tr>
<td>Mar12</td>
<td>$1.53</td>
<td>$2.66</td>
<td>$19.55</td>
<td>$16.59</td>
<td>$15.72</td>
<td>$15.35</td>
<td>$16.49</td>
<td>$0.77</td>
<td>$17.09</td>
</tr>
<tr>
<td>Apr12</td>
<td>$1.56</td>
<td>$2.66</td>
<td>$18.91</td>
<td>$16.20</td>
<td>$15.72</td>
<td>$14.80</td>
<td>$16.05</td>
<td>$0.33</td>
<td>$16.65</td>
</tr>
<tr>
<td>May12</td>
<td>$1.45</td>
<td>$2.73</td>
<td>$19.10</td>
<td>$15.19</td>
<td>$15.23</td>
<td>$13.55</td>
<td>$15.64</td>
<td>$0.41</td>
<td>$16.24</td>
</tr>
<tr>
<td>June12</td>
<td>$1.49</td>
<td>$2.90</td>
<td>$18.49</td>
<td>$14.32</td>
<td>$15.63</td>
<td>$13.24</td>
<td>$15.43</td>
<td>$0.20</td>
<td>$16.03</td>
</tr>
<tr>
<td>July12</td>
<td>$1.66</td>
<td>$3.04</td>
<td>$18.76</td>
<td>$14.51</td>
<td>$16.68</td>
<td>$14.45</td>
<td>$16.11</td>
<td>$0.57</td>
<td>$16.71</td>
</tr>
<tr>
<td>Aug12</td>
<td>$1.83</td>
<td>$3.12</td>
<td>$19.80</td>
<td>$15.64</td>
<td>$17.73</td>
<td>$15.76</td>
<td>$17.25</td>
<td>$0.48</td>
<td>$17.85</td>
</tr>
<tr>
<td>Sep12</td>
<td>$2.00</td>
<td>$3.25</td>
<td>$20.84</td>
<td>$17.04</td>
<td>$19.00</td>
<td>$17.41</td>
<td>$18.30</td>
<td>$0.70</td>
<td>$18.90</td>
</tr>
<tr>
<td>Oct12</td>
<td>$2.11</td>
<td>$3.73</td>
<td>$22.13</td>
<td>$18.44</td>
<td>$21.02</td>
<td>$18.54</td>
<td>$19.63</td>
<td>$1.39</td>
<td>$20.23</td>
</tr>
<tr>
<td>Nov12</td>
<td>$2.02</td>
<td>$3.72</td>
<td>$23.95</td>
<td>$18.81</td>
<td>$20.83</td>
<td>$18.66</td>
<td>$20.20</td>
<td>$0.63</td>
<td>$20.80</td>
</tr>
<tr>
<td>Dec12</td>
<td>$1.73</td>
<td>$3.31</td>
<td>$24.64</td>
<td>$18.30</td>
<td>$18.66</td>
<td>$17.83</td>
<td>$19.50</td>
<td>$0.84</td>
<td>$20.10</td>
</tr>
<tr>
<td>Jan13</td>
<td>$1.62</td>
<td>$3.29</td>
<td>$22.22</td>
<td>$18.19</td>
<td>$18.14</td>
<td>$17.63</td>
<td>$18.58</td>
<td>$0.44</td>
<td>$19.18</td>
</tr>
<tr>
<td>Feb13</td>
<td>$1.66</td>
<td>$2.96</td>
<td>$21.46</td>
<td>$18.49</td>
<td>$17.25</td>
<td>$17.75</td>
<td>$18.28</td>
<td>$1.03</td>
<td>$18.88</td>
</tr>
</tbody>
</table>

February Utilization (Northeast): Class I = 38%; Class II = 25%; Class III = 25%; Class IV = 12%.

Dairy Commodity Markets

(USDA Dairy Market News):

Butter: Friday CME cash prices: 2/22 $1.59, 3/1 $1.58, 3/8 $1.63, 3/15 $1.66, and 3/22 $1.69. Bulk and retail sales activity is termed seasonally strong, with the current strength coming from export interest as well as domestic butter features at many grocery outlets.

Current churning activity is modestly lower than last week at some plants as competition from dips, sour and aerated cream, and ice cream-type products increase.

Cheese: Friday CME cash prices (40# blocks): 2/22 $1.63, 3/1 $1.58, 3/8 $1.60, 3/15 $1.61, and 3/22 $1.70. Higher than anticipated volumes of milk are being directed to cheese plants across the nation. Despite increased inventories of cheese, manufacturers are reporting good sales and are mostly comfortable with the added production. Increased interest from export markets is helping to clear inventories. Current U.S. prices are favorable against international prices.

Dry Products: Some dry dairy markets regained confidence this month as news of higher international prices at the latest global Dairy Trade (gDT) auction caught the attention of buyers and sellers. Nonfat dry milk production remains heavy with producers holding inventories more confidently.

Fluid Milk: Spring snowstorms across the Central and Eastern regions of the country caused some minor interruptions in milk handling this week. Florida’s milk production is beginning to level off as warmer
weather is slowing production. Arizona is close to peak production. Milk production in the West is generally lower, while the Midwest and East are seeing some increased production. National production is close to year ago levels.

Milk Production: Milk production in the 23 major States during February totaled 14.6 billion pounds, down 3.4 percent from February 2012. However, production was 0.1 percent above last year after adjusting for the leap year. Production per cow in the 23 major States averaged 1,722 pounds for February, 58 pounds below February 2012. However, production per cow was 3 pounds more than last February, adjusted for the leap year. The number of milk cows on farms in the 23 major States was 8.50 million head, 13,000 head less than February 2012, but 2,000 head more than January 2013.

Comments:
Penn State’s measure of income over feed costs fell by 9.4% in February. Most of the change is a lower milk price. This is the third monthly drop in a row, having fallen 21.1% from the November peak of $9.10/cow/day. The IOFC for February 2013 is almost exactly the average value of the past four years.

Bob Cropp and Mark Stephenson of University of Wisconsin-Madison’s Program posted a recent podcast on the Dairy Markets and Policy (DMaP) website (http://dairy.wisc.edu/) about current market conditions and sequestration. Milk production is not much higher than last year when adjustments are made for leap year (up just 0.1%). Pastures are very dry and milk production is down in New Zealand and Australia, presenting opportunities for higher milk prices in the world market. This past fall, our domestic milk prices reached higher levels than world market prices. Now that prices are more in line with world markets, it can be expected that any upward adjustment there will pull our prices up as well. Cropp and Stephenson states that with futures looking strong, tight inventories of dairy products, and brighter export projections, he would think that $19 to $20/cwt. milk is possible this summer.

Short term export markets look bright, but a cloud hangs on the horizon. China has been a major importer of dairy products in recent years. The Chinese have been building expensive apartments and office complexes without any market to occupy these buildings for years. If this building bubble were to burst, it will hurt the world’s economies, especially Australia and New Zealand who are also large exporters to China.

As for sequestration, an 8.5% cut to USDA may result in MILC program cuts. To what extent is not known quite yet. The monthly milk production report is also a casualty of sequestration. Andrew Novokovic released a memo about this: “NASS will complete the February report and then suspend reporting monthly milk production estimates and the annual summary. There are no substitutes for NASS’s milk production estimates. It is likely that private firms, industry specialists, and academic specialists will try to approximate a milk production number using marketing order data, but this will be a far less accurate estimate than that which is made by NASS…The primary negative effect of the loss of this report will be a reduced ability to understand market conditions and formulate reasonable price expectations – price discovery and pricing efficiency. This increases uncertainty about milk markets, both current and future. And, it could add to milk price volatility, as buyers and sellers have a harder time getting it right the first time…The elimination of the USDA milk production reports, in short, adds risk to what has become a very risky business.”

Virginia Carlberg
Extension Community Educator

<table>
<thead>
<tr>
<th>Month</th>
<th>MILC Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>$0.5944</td>
</tr>
<tr>
<td>October</td>
<td>$0.0237</td>
</tr>
<tr>
<td>November</td>
<td>$0.0000</td>
</tr>
<tr>
<td>December</td>
<td>$0.0000</td>
</tr>
<tr>
<td>January 2013</td>
<td>$0.1180</td>
</tr>
<tr>
<td>February</td>
<td>$0.4300</td>
</tr>
<tr>
<td>March</td>
<td>$0.5100</td>
</tr>
<tr>
<td>April</td>
<td>$0.4200</td>
</tr>
<tr>
<td>May</td>
<td>$0.1600</td>
</tr>
<tr>
<td>June</td>
<td>$0.1000</td>
</tr>
<tr>
<td>July</td>
<td>$0.0000</td>
</tr>
<tr>
<td>August</td>
<td>$0.0000</td>
</tr>
<tr>
<td>September</td>
<td>$0.0000</td>
</tr>
</tbody>
</table>

National Milk Producers Federation 3-13-13
Commitment to Quality and Service

Since 1912, providing you quality feed and independent service for Western NY farmers.

- Full Line of Complete Feeds at Competitive Prices -
- "Exclusive" Extruded Full Fat Soybeans -
- "Steamed Rolled" Flaked Corn -
- Customized Feeds and Complete Nutritional Feed Programs -
- Dairy Production Consultant -
- Fertilizer Blending: Liquid and Granular -
- Custom Spraying and Crop Service -
- Exclusive Manufacturer of "Country Magic Dog and Cat Food" -
- Working Relationships with Your Vet and Consultants for "YOUR Bottom Line" -
- PLUS Access to the Latest Technology in the Feed Nutrition Business -

See our great prices on Carhart Jackets and clothing to keep you warm this winter!

REISDORF BROTHERS, INC.
Your Complete Farm Store & Feed Mill
1830 Perry Road • North Java, NY 14113
Toll Free: 1-800-447-3717 • (585) 535-7538 • Fax: (585) 535-0470

Please visit our web site:
www.reisdorfbros.com
TRADING POST:

For Sale: 588 white plow 6-18” high clearance, spring reset w/ side hill hitch, $2,500.
- Harsh stationary mixer, Mod. 290/232 bu w/ electronic scale, 4 augers, s.s. bottom, $4,000.
- Reel Augie portable mixer, Mod. 2300 w/ dry hay max kit, $4,000.
- Brillion 10’ seeder, $2,500.
- Plate cooler, 81 plates, expandable universal, $700.
- Lock ups – 44’ cows, 70’ calves, $150/10’ section.
- 8 Boumatic claws w/ Flowstar tops, Delaval shells, plus extra parts.

Phone: 607-857-4610

For Sale: 7’ Bushhog 287, Excellent condition, $1,850 or BO. Phone: 607-776-1711

**

COMING EVENTS:

April 27 – Introduction to Mushroom Growing
Cornell Cooperative Extension of Steuben County will host two Mushroom Growing classes on Saturday, April 27th. The morning session will begin at 9:00 a.m. and the afternoon session at 1:00 p.m. The cost of the class is $30 per participant. Each participant will take home a shiitake inoculated log. Classes will be held in the 4-H Building at the Steuben County Fairgrounds, 15 E Washington St., Bath NY 14810. Registration is required; to register contact Stephanie Mehlenbacher at 607-664-2300 or sms64@cornell.edu by April 22nd.

May 22 - Pasture-based Beef Genetics
6:30 to 8:30 p.m.
4536 Winton Road, Montour Falls, NY.
With the cost of many production inputs on the rise, more beef producers are turning towards strains of cattle within the many beef breeds that can “do it all well” on a year-round diet of just pasture and hay. Come join the Tri-County Graziers for a twilight pasture walk at Winton Road Farm and Livestock to discuss just what makes an ideal beef cow for low-input pasture-based operations. The walk will be led by Kathy Engel (www.puregrassbeef.com) and Morgan Hartman (www.blackqueenangus.com).

RSVP’s are appreciated by calling 607-664-2300, or emailing bjc226@cornell.edu. Light refreshments will be served. Support for this educational event is provided by Cornell Cooperative Extension of Steuben and Schuyler Counties, the Upper Susquehanna Coalition, SARE, and the NRCS Grazing Lands Conservation Initiative.

The Pulteney Fire Department is looking for the following types of equipment to use for their upcoming AgRescue class during the first weekend in May:

Tractors:
2 older tractors (40+ hp) that someone is willing to let us use that we can turnover and work on
3 running tractors (40+ hp) that we can hook to implements and run the PTO/hydraulics on the implement

Implements:
4+ implements that can be dismantled and or cut (needs to have working PTO preferably.)
 (tow behind harvester, bailers, forage wagon, mowers conditioners, etc..)

Miscellaneous:
3+ pairs of old coveralls that can be filled with straw for dummies.
Corn Harvester (for display and discussion purposes)
Grape Harvester (for display and discussion purposes)

If you can help us out in any way we would greatly appreciate it. Please contact Ken Forenz, Chief, Pulteney Fire Department at 607-868-3003 or email kforenz@pulteneyfire.com

Schuyler and Steuben – April 2013 15
April 12-13-Camp Mushroom
The 2013 Camp Mushroom is a unique beginner/intermediate level workshop for those interested in small-scale forest mushroom cultivation. Participants will be trained in two methods of mushroom cultivation (bolt and totem), laying yard considerations, and assist in a research project by inoculating bolts and/or totems. Each participant will also inoculate two shiitake blots to take home.

Location: Cornell's Arnot Teaching and Research Forest located about 20 miles south of Ithaca, NY at 611 County Route 13, Van Etten, NY.
Cost: $65 ($35 if not staying in cabin bunks). Includes Friday dinner and breakfast and lunch on Saturday.
Registration link at: http://blogs.cornell.edu/mushrooms/events/

April 19, 2013- Locally Grown Foods Festival
5:00 – 8:00pm
Union Hall Corning
Sample a variety of dishes prepared with local meats, veggies, & cheese.

April 25, 2013-Poultry Health Workshop – A Closer Look at Poultry Health Concerns and Disease Control
6:30-8:30 PM
Benton Town Hall, 1000 Rt. 14A, Penn Yan, NY
There is a growing interest in small-scale poultry operations, both for eggs and meat. Many producers are beginners while others have learned from trial and error. Health issues of chickens is a growing concern yet rarely addressed. To give producers a better understanding of these health issues Cornell Cooperative Extension is hosting a Poultry Workshop featuring Dr. Jarra Jagne from the Cornell Animal Health Diagnostic Center. She has seen an upswing of old diseases and has been providing groups an overview on disease control and prevention. The cost of the workshop is $15 per family/farm. To register call the Yates County Cornell Cooperative Extension office at 315.536.5123.