Snap Beans

Recommended Varieties
Green: Blue Lake types, Bush Kentucky Wonder 125, Tenderette (round podded), and Roma II (for freezing).
Wax/yellow: Gold Mine, Rocdor, Indy Gold, Wax Romano 264 (freezing only).

Quantity
An average of 14 pounds is needed per canner load of 7 quarts; an average of 9 pounds is needed per canner load of 9 pints. A bushel weighs 30 pounds and yields 12 to 20 quarts. An average of ¾ pound makes 1 pint of frozen beans.

Quality
Select filled, but tender, crisp pods. Remove and discard any diseased and rusty pods.

Preparation
Wash beans, snip off and discard ends, and remove strings, if appropriate. Leave whole or cut or snap into 1-inch pieces. Wash and drain prepared pieces.

Freezing Procedure
Don't freeze more than 2 pounds of food per cubic foot of freezer capacity per day. Blanch 6 cups of raw prepared beans at a time. Place each batch in 1 gallon of boiling water. Blanch small pieces for 2 minutes and large pieces for 3 minutes after the water returns to a boil. Cool quickly in several changes of cold water and drain in a colander. Fill pint or quart zip-type plastic freezer bags or plastic freezer containers. Remove as much air as possible from freezer bags. Allow ½ inch of headspace in rigid plastic containers. Seal, label, and freeze. Another method to freeze the beans is to use a tray pack. Spread the blanched, cooled, and drained beans in a single layer on shallow trays or pans. Place in the freezer only long enough to freeze firm. Check often after the first hour to avoid loss of moisture. When beans are firmly frozen, package, leaving no headspace, and seal. Tray-packed beans remain looser, allowing you to pour desired amount from the container.

Canning Procedure
This product cannot be safely canned in a boiling water bath or atmospheric steam canner. Wash jars. Prepare lids according to manufacturer’s instructions. If desired, add 1 teaspoon of canning or pickling salt per quart.

For Raw Packs
Fill jars tightly with prepared beans, leaving 1 inch of headspace. Add boiling water over beans, leaving 1 inch of headspace. Remove air bubbles. Wipe the sealing surface of jars with a clean, damp paper towel. Add lids, tighten screw bands, and process in a pressure canner.

For Hot Packs
Cover prepared beans in a large pot with boiling water and boil for 5 minutes. Fill jars with beans and the cooking liquid, leaving 1 inch of headspace. Remove air bubbles. Wipe the sealing surface of jars with a clean, damp paper towel. Add lids, tighten screw bands, and process in a pressure canner.

To Process in a Pressure Canner
Place jar rack, 2 inches of water, and sealed jars in canner. Fasten lid and heat canner on high setting. After exhausting steam for 10 minutes, add weighted gauge or close petcock to pressurize the canner. Start timing the recommended process when the desired pressure is reached. Regulate heat to maintain a uniform pressure. When the processing is complete, remove canner from heat. Air-cool canner until it is fully depressurized. Then slowly remove weighted gauge or open petcock, wait 10 more minutes, and unfasten and carefully remove canner lid.

CAUTION: This product cannot be safely canned in a boiling water bath or atmospheric steam canner. Snap beans must be processed in a pressure canner.
Table 1. Recommended process times in a pressure canner at designated altitudes for hot- and raw-packed snap beans.

<table>
<thead>
<tr>
<th>Jar Size</th>
<th>Process time (min)</th>
<th>Dial gauge canner</th>
<th>Weighted gauge canner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–2000 ft</td>
<td>2,001–4,000 ft</td>
<td>4,001–6,000 ft</td>
</tr>
<tr>
<td>Pints</td>
<td>20</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Quarts</td>
<td>25</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

For additional information about food preservation, visit the Penn State Extension Home Food Preservation website at extension.psu.edu/food/preservation or contact Penn State Extension in your county.

Prepared by Martha Zepp, extension project assistant; Andy Hirneisen, senior food safety educator; and Luke LaBorde, professor of food science.