Establishing OELs for Potent and Highly Potent Compounds

Robert Sussman, Ph.D., DABT Managing Principal Eastern Operations, SafeBridge Consultants, Inc.

World HPAPI Summit May 30, 2013

Agenda

- Introduction
- Process of Occupational Exposure Limit (OEL) development
- Selection of safety and uncertainty factors
- Variability in interpretation of data and selection of endpoints
- Tackling inherent bias in risk assessment (RA)

What's the Big Deal?

- OELs and other RAs are not precise values
- Regulatory authorities may consider one value "correct", others "incorrect"
- Derivation should be evaluated as:
 - "consistent with current principles"
 - "not consistent with current principles"
- Applying a consistent and systematic evaluation process will provide confidence in the RA
- Transparency of derivations assures robustness

Establishing Health-Based OELs

```
OEL (mg/m<sup>3</sup>) = NOAEL (mg/kg/day) x BW (kg)

UF_{C} \times MF \times \alpha \times V (m^{3})
```

where: OEL = Occupational Exposure Limit

NOAEL = No-Observed-Adverse-Effect Level

BW = Body Weight

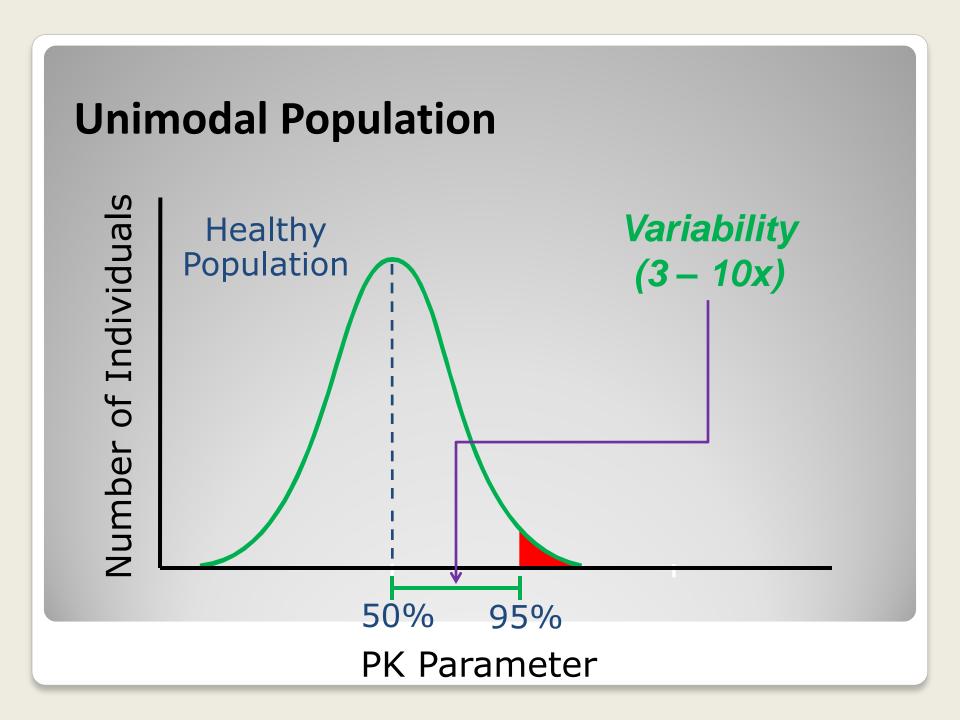
 UF_C = Uncertainty Factor(s)

MF = Modifying Factor

 α = Bioavailability adjustment

V = Volume of air in 8 hour day

OEL Process


- Collect data
- Select critical endpoint
- Select point of departure (POD)
 - LOAEL / NOAEL
- Select pharmacokinetic factors
- Select safety / uncertainty factors
- Sensitive subpopulations
- Apply values to calculate OEL or other value
- Is this correct?
- How can this be wrong?

Identification of Critical Endpoint

- Pharmacology / Mode-of-action
- Acute toxicity / Dose-limiting toxicity
- Local tolerability / Sensitization
- Subchronic / Chronic toxicity
- Reproductive / Developmental toxicity
- Mutagenicity / Genotoxicity / Carcinogenicity
- Human safety / Efficacy

OELs and Critical Endpoint

- Preference for human data
- Chronic studies by the most relevant route
- Most sensitive animal species and organ system (target organ)
- NOAEL vs LOAEL
- Data quality

Bimodal Population Number of Individuals Healthy Variability **Population** (10 - 30x)Sensitive Subpopulation 50% 95% PK Parameter

Interspecies (Animal to Human) Extrapolation

Allometric Scaling

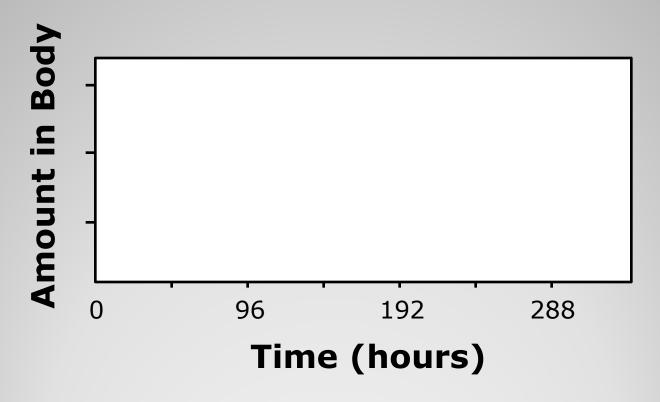
- Uses species surface area/weight to equalize doses
- Surface area is a better factor than body weight related to relative metabolism of the species
- Factors used for various species are as follows:
 - Dog = 2
 - Monkey = 2-3
 - Rabbit = 3-4
 - Rat = 4-6
 - Mouse = 7-12

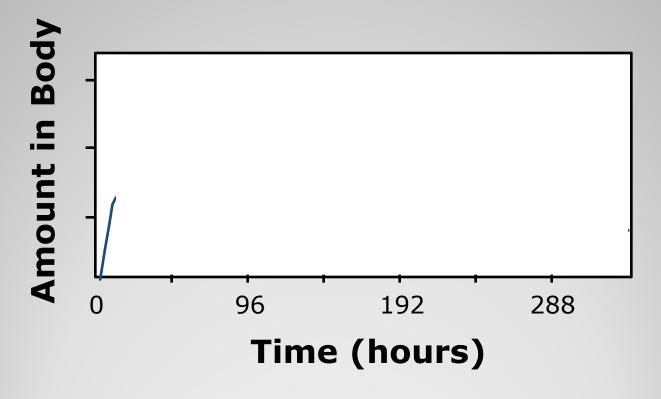
LOEL to NOEL Extrapolation

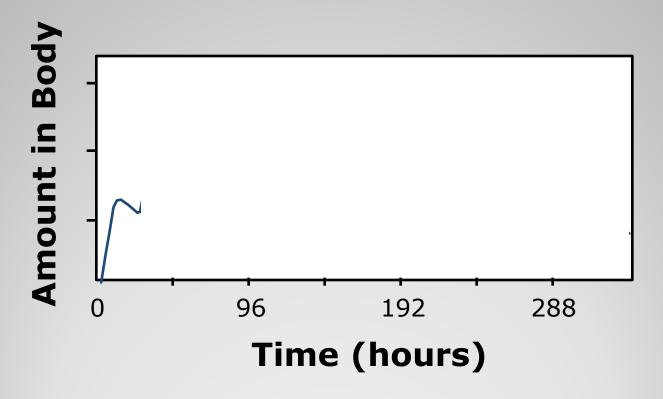
- Original default = 10
- Compare data from Physicians Desk Reference

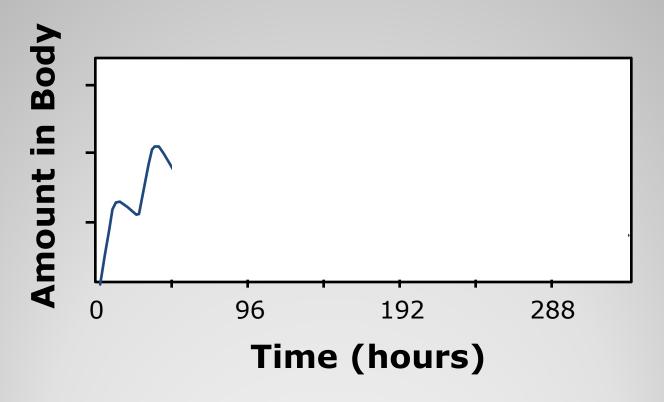
Maximum Therapeutic Dose ≈ 3 Minimum Therapeutic Dose

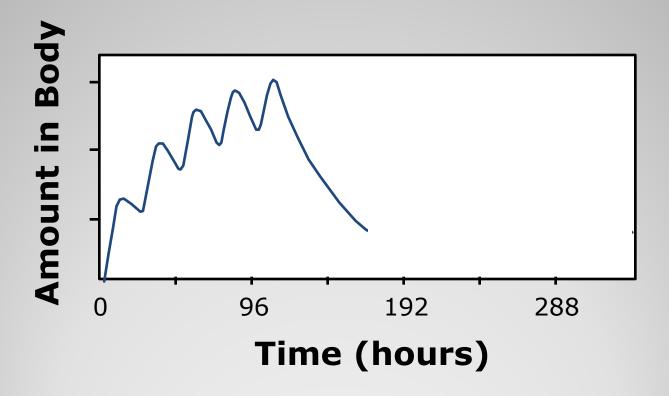
Examples of Ranges for UFs

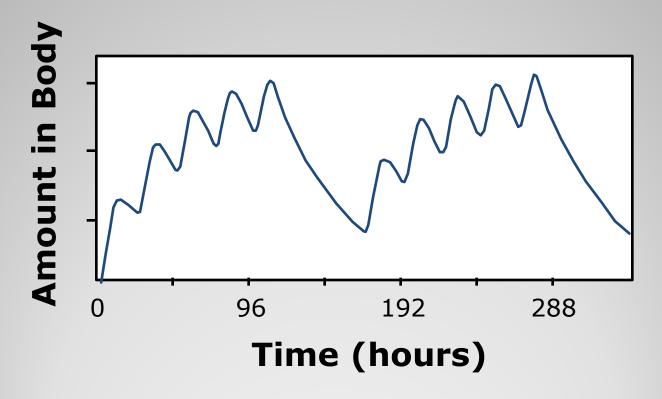

UF	Default	Range	
UF _H	10	From 3 to 30, depending upon available data	
UF _A	1 – 12	Data from human studies = 1, Mouse = 12	
UF _S	3	Long-term = 1, Acute = 30-100	
UF _L	3	NOAEL = 1, Frank effect = 10-30	
UF _D	3	Extensive database = 1, Limited data 10	
UF _C	-	Usually minimum of 10 to max of 10,000	


Bioavailability Correction Factor


Based on oral data


- If oral low and inhalation high, lower OEL
- OEL set on effects from 100 mg oral dose
- Oral bioavailability = 5%
- Actual inhaled dose causing similar effects = 5 mg
- Can divide OEL by 20


$$\alpha = \frac{A_{inh}}{A_{oral}} = \frac{1.0}{0.05} = 20$$



Sensitive Subpopulations

- Healthy worker population
- Clinical trials conducted in "Special Populations"
 - Pediatric (5-17 yrs) and Elderly (>65)
 - Hepatic impairment, renal insufficiency, cardiovascular or respiratory disease
 - Genetic polymorphisms
- Further recommendations for pregnancy, labor and delivery, nursing mothers, concomitant drug use and diseases
- Dose adjustment recommendations provided in package insert can be used to modify LOAEL

Sources of Variability

- Endpoint and POD (NOAEL / LOAEL)
- Bioavailability and other toxicokinetics
- Sources of uncertainty
- Sensitive subpopulations
- Different RAs account for these variables in different ways
 - How do we standardize these factors?
 - Should we standardize?
 - How is professional judgment standardized?

- Need for transparency
- Verification of robustness
- RA documentation may be requested by regulatory authorities
- No idea how authorities will handle different RA values submitted for same chemical

- Introduction
- Data sources
- Pharmacological mechanism
- Therapeutic indication and dose
- Clinical effects
- PK / PD (including variability)
- Non-clinical data
 - Acute studies
 - Repeat-dose studies
 - Reproductive and developmental studies
 - Genetox and carcinogenicity studies

- Derivation
 - Selection of endpoint and POD
 - PK adjustment (bioavailability & accumulation)
 - Selection of UFs
 - Modifying factors
 - Sensitive subpopulations
 - Calculation
 - ROUNDING!!!!
- Parallel derivations?
- Conclusion

Sample UF Table

Factor	Default	Value	Comment
UF _H	10	4.6	Default UF _{HD} of 3.16 x chemical-specific UF _{HK} of 1.47
UF _A	1-12	3	Studies performed in monkeys
UF _S	3	1	No study length factor required for developmental effects
UF_L	3	3	Default
UF _D	3	1	Database well developed and includes reproductive and developmental studies
UF _C	-	41	4.6 x 3 x 1 x 3 x 1

Rounding Convention

- One significant digit
- Second digit ok if:
 - First digit is less than 5, and
 - Value of second digit is 5
- For example:
 - 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90
 - 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9
 - etc.

- References
- Author qualifications
- Reviewer qualifications
- CVs

Bias in Risk Assessment

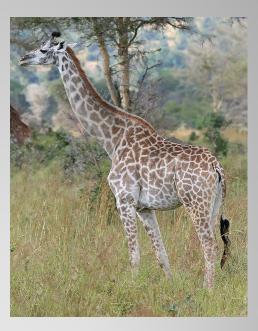
SOT Code of Ethics

"Conduct their work with objectivity..."

AIHA Code of Ethics

 "Deliver competent services... with objective and independent professional judgment..."

Professional judgment = bias


What Do These Animals Weigh?

3.5-9 kg 8-20 lbs

100-250 kg 220-550 lbs

1200 kg 2500 lbs

Which Are Most Similar?

West Germany and East Germany (1960s)

Sri Lanka and Nepal

Which Are Most *Different*?

West Germany and East Germany (1960s)

Sri Lanka and Nepal

Summary

- Quantitative RA is not an exact science
- The overall process involves applying safety and uncertainty factors to a NOAEL or LOAEL
- It is difficult to standardize professional judgment
- Provide transparent and robust monograph documenting the RA process
- Bias in RA is a good thing!