Preface

The ASCP Quick Compendium of Cytopathology is the first in a New Series of ASCP Quick Compendia. It was developed to help cytology trainees, including pathology residents, cytopathology fellows, and cytotechnology students by providing them with a with a practical, high yield information resource that presented in an easy to read format.

But the New Series adds something very new: images.

As is true for each Quick Compendium volume, each chapter is organized around a detailed outline that covers key details and illustrations of common and less common entities likely to be encountered in the daily practice of cytopathology. The authors share with you not only their gems of diagnostic wisdom, but also an abundance of representative images that clearly illustrate key cytomorphologic features, results of ancillary studies, and diagnostic pitfalls. General chapters dedicated to ancillary testing in both gynecologic and nongynecologic specimens provide current information about special stains, immunostains, fluorescence in situ hybridization, flow cytometry, and molecular testing as they apply to the practice of cytopathology.

We also present up to date information gleaned from a variety of sources, beginning with the ASCP’s “gold standard,” *The Art & Science of Cytopathology, 2nd Edition* by Richard Mac DeMay.

But the authors take care to cull important information from other widely used texts, including *Cytology Diagnostic Principles & Clinical Correlates, 3rd Edition* (Cibas ES, Ducatman BS, 2009); *Comprehensive Cytopathology, 3rd Edition* (Bibbo M, Wilbur D, 2008); *Diagnostic Cytopathology and Its Histopathologic Bases, 5th Edition* (Koss LG, Melamed MR, 2006). Finally, we consulted the literature for other sources, which are cited at the end of the chapter.

The authors also bring the practical expertise derived from being actively involved in teaching cytopathology, nationally and internationally—this provides the correct perspective for a book of this kind. Our hope is that it will prove to be a helpful resource, not only for those studying for examinations in anatomic pathology/cytopathology and cytotechnology, but also for those facing daily diagnostic challenges in cytology practice.

*Wалиd E Khalbuss, Editor in Chief
Joshua Weikersheimer, ASCP Press
February 2013*
Table of Contents

Chapter 1 Pap Test Samples, Reporting & Ancillary Studies

1.1 Introduction .. 2
1.2 Screening Guidelines 2
1.3 Pap Test Samples 2
1.3.1 Obtaining Samples 2
1.3.2 Colposcopy 3
1.3.3 Sexual Assault 4
1.3.4 Sample Preparation 4
1.3.5 Direct Endometrial Sampling 6
1.4 Automated Pap Test Screening 6
1.4.1 Primary Screening Systems 6
1.4.2 Interactive Screening Systems 6
1.5 Diagnostic Reporting 7
1.5.1 The 2001 Bethesda System 7
1.5.2 Specimen Adequacy 8
1.6 Ancillary Studies 10
1.6.1 Cell Blocks 10
1.6.2 Infectious Disease Testing 10
1.6.3 Immunocytochemistry 11
1.6.4 In Situ Hybridization (ISH) 11
1.7 Patient Management 11
1.7.1 ASCCP Guidelines 12
1.8 References ... 12

Chapter 2 HPV Testing & Molecular Biology

2.1 Introduction .. 14
2.2 Prevalence in USA Women 15
2.3 Biology & Cervical Carcinogenesis 15
2.4 HPV Testing ... 17
2.4.1 HPV Tests 17
2.4.2 HPV Testing Advantages 18
2.4.3 HPV Testing Disadvantages 18
2.4.4 Clinical Applications HPV Testing 18
2.4.5 Inappropriate HPV Testing 18
2.5 Cervical Cancer Screening & HPV Testing 18
2.5.1 HSIL & HR-HPV 18
2.5.2 LSIL & HR-HPV 19
2.5.3 ASC-US & HR-HPV 20
2.5.4 ASC-H & HR-HPV 20
2.5.5 Atypical Glandular Cells (AGC) Including AIS & HR-HPV 21
2.5.6 Adenocarcinoma & HR-HPV 21
2.5.7 Normal Pap Cytology & HR-HPV 22
2.6 p16 (p16INK4a) 22
2.7 HPV & Rare Malignancies 23
2.8 References ... 24

Chapter 3 Normal & Benign Pap Tests

3.2 Introduction .. 26
3.3 Normal Cells .. 26
3.3.1 Squamous Cells 26
3.3.2 Glandular Cells 28
3.3.3 Inflammatory Cells 32
3.4 Hormonal Variations 33
3.4.1 Atrophy ... 33
3.4.2 Pregnancy-Related Changes 34
3.4.3 Hormone Therapy 36

vii
Table of Contents

3.5 Reactive Changes
- 3.5.1 Inflammatory Change .. 37
- 3.5.2 Repair ... 38
- 3.5.3 Intrauterine Contraceptive Device (IUD) 39
- 3.5.4 Polyps ... 39
- 3.5.5 Biopsy-Related Changes ... 39
- 3.5.6 Radiation & Chemotherapy.. 40
- 3.5.7 Hypovitaminosis .. 41

3.6 Microorganisms
- 3.6.1 Normal Flora (Lactobacilli) .. 41
- 3.6.2 Bacterial Vaginosis ... 42
- 3.6.3 Leptothrix .. 42
- 3.6.4 Human Papillomavirus (HPV) ... 42
- 3.6.5 Herpes Simplex Virus (HSV) .. 43
- 3.6.6 Actinomyces .. 44
- 3.6.7 Neisseria gonorrhoeae .. 44
- 3.6.8 Candida .. 44
- 3.6.9 Trichomonas vaginalis .. 45
- 3.6.10 Chlamydia trachomatis .. 46
- 3.6.11 Enterobius vermicularis ... 46
- 3.6.12 Uncommon Genital Infections ... 47

3.7 Contaminants & Artifacts ... 48
- 3.7.1 Mucus .. 48
- 3.7.2 Lubricant .. 48
- 3.7.3 Psammoma Bodies .. 48
- 3.7.4 Miscellaneous Contaminants ... 49

3.8 References ... 50

Chapter 4

Pap Test Squamous Abnormalities

- 4.1 Introduction ... 52
- 4.2 Atypical Squamous Cells (ASC) .. 52
 - 4.2.1 Atypical Squamous Cells of Undetermined Significance (ASC-US) ... 52
 - 4.2.2 Atypical Squamous Cells Cannot Exclude HSIL (ASC-H) ... 55
- 4.3 Squamous Intraepithelial Lesion (SIL) 56
 - 4.3.1 Low Grade Squamous Intraepithelial Lesion (LSIL) ... 56
 - 4.3.2 High Grade Squamous Intraepithelial Lesion (HSIL) .. 58
- 4.4 Squamous Cell Carcinoma ... 60
- 4.5 References ... 62

Chapter 5

Pap Test Glandular Abnormalities

- 5.1 Introduction ... 64
- 5.2 Atypical Glandular Cells (AGC) .. 64
- 5.3 Endocervical Adenocarcinoma In Situ (AIS) 65
- 5.4 Adenocarcinoma ... 66
 - 5.4.1 Endocervical Adenocarcinoma ... 68
 - 5.4.2 Endometrial Adenocarcinoma ... 69
 - 5.4.3 Extrapelvic Adenocarcinoma ... 70
- 5.5 Glandular Abnormalities With Endometrial Sampling 71
- 5.6 References ... 72

Chapter 6

Pap Test Hyperchromatic Crowded Groups

- 6.1 Introduction ... 74
- 6.2 Benign Entities ... 74
 - 6.2.1 Squamous Entities ... 74
 - 6.2.2 Glandular Entities ... 75
 - 6.2.3 Nonepithelial Conditions ... 78
- 6.3 Atypical Entities ... 78
 - 6.3.1 Atypical Squamous Cell Cannot Exclude HSIL (ASC-H) ... 78
 - 6.3.2 Atypical Glandular Cells (AGC) ... 78
- 6.4 Premalignant Conditions ... 78
 - 6.4.1 High Grade Squamous Epithelial Lesion (HSIL) 78
 - 6.4.2 Adenocarcinoma In Situ (AIS) ... 79
- 6.5 Malignant Conditions .. 80
 - 6.5.1 Squamous Cell Carcinoma (SCC) .. 80
 - 6.5.2 Adenocarcinoma ... 81
 - 6.5.3 Small Cell Carcinoma .. 81
 - 6.5.4 Other Malignancies ... 81
- 6.6 Ancillary Studies ... 82
- 6.7 References ... 82
Table of Contents

Chapter 7
Cytology Techniques & Ancillary Studies in Nongynecologic Cytopathology
7.1 Introduction .. 84
7.2 Fine Needle Aspiration 84
7.2.1 Performing the Fine Needle Aspiration 84
7.2.2 Fine Needle Aspiration Technique 85
7.2.3 Adequacy Assessment 86
7.2.4 Triage of Material 86
7.3 Cytopreparation 86
7.3.1 Various Cytology Preparations 86
7.3.2 Routine Staining Techniques 88
7.4 Ancillary Studies in Nongynecologic Cytopathology 90
7.4.1 Electron Microscopy 90
7.4.2 Special (Histochemical) Stains 91
7.4.3 Immunohistochemistry/Immunocytochemistry 93
7.4.4 Microbiology Culture 98
7.4.5 Fluorescence Microscopy 98
7.4.6 In Situ Hybridization (ISH) 98
7.4.7 Flow Cytometry (FC) 99
7.4.8 Fluorescence In Situ Hybridization (FISH) 100
7.4.9 Molecular Studies 102
7.5 Ancillary Study Applications in Nongynecologic Cytopathology 103
7.5.1 Lung Cancer 103
7.5.2 Thyroid Cytology 105
7.5.3 Head & Neck Squamous Cell Carcinoma 105
7.5.4 Melanoma 105
7.5.5 Breast Carcinoma 106
7.5.6 Colorectal Carcinomas 106
7.5.7 Gastrointestinal Stromal Tumor (GIST) 106
7.5.8 Renal Tumors 106
7.5.9 Hematolymphoid Malignancies 107
7.5.10 Soft Tissue Tumors 108
7.5.11 Salivary Gland 109
7.5.12 Urine Cytology 109
7.5.13 Mesothelial Proliferations 109
7.6 Acknowledgements 110
7.7 References 110

Chapter 8
Abdominopelvic Washings
8.1 Introduction 112
8.2 Normal Washings 113
8.3 Psammoma Bodies 115
8.4 Endosalpingiosis 116
8.5 Endometriosis 116
8.6 Ovarian Neoplasms 117
8.6.1 Serous Borderline Tumors 117
8.6.2 Serous Carcinoma 118
8.6.3 Mucinous Tumors 120
8.6.4 Other Epithelial Stromal Tumors 120
8.6.5 Germ Cell Tumors 120
8.6.6 Sex Cord Stromal Tumors 121
8.7 Nonovarian Gynecologic Tumors 122
8.8 Nongynecologic Tumors 123
8.8.1 Primary Peritoneal Serous Tumors 123
8.8.2 Mesothelial Lesions 124
8.8.3 Other Nongynecologic Tumors 125
8.9 References 126

Chapter 9
Serous Effusions
9.1 Introduction 128
9.1.1 Types of Fluid Specimens 128
9.1.2 Processing Serous Fluid 128
9.1.3 Diagnostic Dilemmas in Fluid Cytology 128
9.2 Cytomorphology of Normal & Reactive Mesothelial Cells 131
9.3 Benign Entities in Serous Effusions 134
9.3.1 Inflammatory Effusions 134
9.3.2 Infectious Effusions 135
9.3.3 Histiocytic Effusions 136
9.3.4 Effusions Associated With Autoimmune Disease 137
9.4 Malignant Effusions 139
9.4.1 Immunostain in Fluid Cytology 139
9.4.2 Primary Malignancies in Effusions 139
9.4.3 Secondary Malignancies 142
9.5 References 158

ix
Chapter 10
Cerebrospinal Fluid & Central Nervous System
10.1 Introduction ... 160
10.2 Specimen Collection & Processing 160
10.3 Cytologic Examination of Benign (Normal) CSF 161
10.4 Inflammatory Changes in CSF 164
10.4.1 Pleocytosis ... 164
10.4.2 Acute Bacterial Meningitis 166
10.4.3 Viral Meningitis/Aseptic Meningitis 167
10.4.4 Tuberculosis Meningitis 167
10.4.5 Fungal Meningitis 167
10.4.6 Chronic Meningitis & Other Rare Forms of Meningitis 168
10.5 Neoplasia ... 169
10.5.1 Leukemia ... 169
10.5.2 Lymphoma ... 171
10.5.3 Metastatic Carcinoma & Meningeal Carcinomatosis 175
10.5.4 Primary Brain Tumors 179
10.6 References ... 182

Chapter 11
Urine Cytopathology
11.1 Introduction .. 184
11.2 Sampling Techniques 184
11.2.1 Voided Urine 186
11.2.2 Catheterized Urine 186
11.2.3 Bladder Washings & Brushings 188
11.2.4 Urinary Diversion Specimens 188
11.3 Normal Urinary Tract Cytology 188
11.4 Cytopreparatory Methods 191
11.5 Benign & Infectious Conditions that Cause Reactive Urothelial Cells 192
11.6 Malignancy in Urine Cytology 199
11.6.1 Urothelial Tumor Classification & Cytomorphology ... 199
11.6.2 Squamous Cell Carcinoma 206
11.6.3 Adenocarcinoma 206
11.6.4 Small Cell Carcinoma 207
11.6.5 Secondary Malignancies 207
11.7 Diagnostic Pitfalls in Urinary Cytology (Sources of Cytologic Atypia) 208
11.8 Ancillary Studies in Urinary Cytology 209
11.9 References ... 210

Chapter 12
Lung & Respiratory Cytopathology
12.1 Introduction .. 212
12.1.1 Sampling & Cytopreparatory Techniques 212
12.1.2 Contraindications, Complications & Contaminants 213
12.2 Cytology of Normal & Benign Elements 215
12.2.1 Cytology of Normal Cellular Elements 215
12.2.2 Cytology of Noncellular Elements 217
12.2.3 Cytology of Respiratory Infections 220
12.3 Cytology of Benign Mass-Forming Lesions & Low Grade Neoplasms 230
12.3.1 Abscess or Acute Infection 230
12.3.2 Granulomatous Inflammation 230
12.3.3 Lymphangioleiomyomatosis (LAM) 231
12.3.4 Pulmonary Hamartoma 231
12.3.5 Carcinoid .. 232
12.3.6 Other Rare Neoplasms 234
12.4 Cytology of Malignant Neoplasms 236
12.4.1 Non-Small Cell Carcinomas (NSCLC) 236
12.4.2 Small Cell Undifferentiated Carcinoma 243
12.4.3 Adenoid Cystic Carcinoma 244
12.4.4 Mucoepidermoid Carcinoma 244
12.4.5 Hematolymphoid Neoplasms 244
12.4.6 Mesothelioma 246
12.4.7 Metastatic Neoplasms 246
12.5 Diagnostic Difficulties & Pitfalls 251
12.5.1 Contaminants in Percutaneous or CT Guided Lung FNA 251
12.5.2 False Positive Diagnoses in Bronchial Specimens (BAL, Washings, Brushings) & FNA 251
12.5.3 Pitfalls in Endobronchial (EBUS)/Esophageal (EUS) Ultrasound Guided FNA 254
12.5.4 Other Pitfalls in Respiratory Cytology 255
12.6 References ... 256
Chapter 13

Lymph Nodes

13.1 Introduction .. 258
13.1.1 Lymph Node FNA Indications 258
13.1.2 Potential Complications of Lymph Node FNA ... 258
13.1.3 Role of Rapid On Site Evaluation (ROSE) in Lymph Node FNA .. 258

13.2 Evaluation of Lymph Node FNA: A Practical Approach 259
13.2.1 Normal Lymph Node Cytology 260

13.3 Benign Lesions 261
13.3.1 Reactive Lymphoid Hyperplasia (RLH) 261
13.3.2 Dermatopathic Lymphadenitis 262
13.3.3 Infectious/Inflammatory Causes of Lymphadenopathy 262
13.3.4 Sinus Histiocytosis with Massive Lymphadenopathy (Rosai-Dorfman Disease) 269
13.3.5 Histiocytic Necrotizing Lymphadenitis (aka Kikuchi-Fujimoto Disease or Kikuchi Disease) 270
13.3.6 Kimura Disease 270
13.3.7 Langerhans Cell Histiocytosis (LCH) 271
13.3.8 Lymphadenopathy in Autoimmune Diseases 271
13.3.9 Foreign Body or Iatrogenic Changes in Lymph Nodes (Foreign Body Lymphadenopathy) 272

13.4 Cytology of Malignant Lesions 272
13.4.1 Hodgkin Lymphoma (HL) 272
13.4.2 Non-Hodgkin Lymphoma (NHL) 273
13.4.3 Other Lymphoproliferative Diseases 281
13.4.4 Common Metastatic Malignancies 281

13.5 Ancillary Studies in Lymph Node Cytology 288

13.6 Diagnostic Pitfalls 289
13.6.1 False Negatives 289
13.6.2 False Positives 289
13.6.3 Other Pitfalls or Diagnostic Challenges 290

13.7 References .. 290

Chapter 14

Salivary Gland

14.1 Introduction .. 292
14.1.1 Indications .. 292
14.1.2 Practical Approach to Salivary Gland Lesions 292
14.1.3 Clinical-Radiologic Features & On Site Evaluation 292
14.1.4 Accuracy .. 292
14.1.5 Comparison of FNA & Frozen Section in Salivary Gland Lesions 293

14.2 Normal Cytology 293

14.3 Cytology of Benign Lesions 295
14.3.1 Cystic Lesions 295
14.3.2 Inflammatory Lesions 295
14.3.3 Tumor-Like Lesions 298
14.3.4 Lymphoid Lesions 298
14.3.5 Radiation Sialadenitis 300

14.4 Cytology of Neoplasms 300
14.4.1 Overview of Salivary Gland Tumors 300
14.4.2 Benign Neoplasms 300
14.4.3 Malignant Salivary Gland Neoplasms 304

14.5 Other Head & Neck Tumors 311
14.5.1 Rhabdomyoma 311
14.5.2 Meningioma 311
14.5.3 Squamous Cell Carcinoma of the Head & Neck 311

14.6 Differential Diagnosis & Pitfalls 311

14.7 References .. 312
Table of Contents

Chapter 15

Thyroid

15.1 Introduction .. 314
15.2 Sampling & Cytopreparatory Techniques. 314
 15.2.1 Fine Needle Aspiration (FNA) 314
 15.2.2 Ultrasound Guided FNA 314
 15.2.3 Indications & Contraindications for Thyroid FNA . 314
 15.2.4 Complications of Thyroid FNA 314
 15.2.5 Other Laboratory Tests of Importance in Thyroid Lesions .. 315
15.3 Terminology for Reporting Results 315
 15.3.1 Adequacy Criteria 315
 15.3.2 Diagnostic Categories 315
15.4 Approach to the Cytologic Evaluation of Thyroid FNA 316
15.5 Cytology of Normal & Benign Elements . 316
 15.5.1 Cytology of Normal Cellular Elements 316
 15.5.2 Cytology of Noncellular Elements 319
15.6 Cytology of Benign Lesions 322
 15.6.1 Thyroglossal Duct Cysts 322
 15.6.2 Benign Thyroid Nodules 322
15.7 Cytology of Neoplasms 324
 15.7.1 Follicular Neoplasm 324
 15.7.2 Oncocytic (Hürthle Cell) Neoplasm 325
15.8 Cytology of Malignant Neoplasms 326
 15.8.1 Overview .. 326
 15.8.2 Papillary Thyroid Carcinoma 326
 15.8.3 Medullary Thyroid Carcinoma (MTC) 331
 15.8.4 Undifferentiated (Anaplastic) Carcinoma ... 332
 15.8.5 Poorly Differentiated Thyroid Carcinoma (Insular Carcinoma) ... 332
 15.8.6 Mucoepidermoid Carcinoma 333
 15.8.7 Malignant Lymphoma 333
 15.8.8 Metastatic Carcinoma 334
15.9 Parathyroid Lesions 335
 15.9.1 Parathyroid Cysts 335
 15.9.2 Parathyroid Adenomas or Hypercellular Parathyroid Tissue .. 335

15.10 Diagnostic Difficulties & Pitfalls 336
 15.10.1 Focal Cytologic Atypia 336
 15.10.2 Thyroid Follicular Epithelial Cells vs Lymphocytes .. 337
 15.10.3 Follicular Patterned Nodules 337
 15.10.4 Oncocytic Lesions 338
 15.10.5 Thyroid Lesions with Vacuolated Cells or Signet-Ring-Like Morphology 338
15.11 References .. 338

Chapter 16

Liver

16.1 Introduction .. 340
16.2 FNA of Normal Liver 341
16.3 FNA of Cystic Liver Lesions 342
 16.3.1 Solitary Cyst 343
 16.3.2 Hepatic Abscess 343
 16.3.3 Granulomatous Inflammation 344
 16.3.4 Inflammatory Pseudotumor 344
 16.3.5 Echinococcal Cyst (Hydatid Cyst) 344
 16.3.6 FNA of Focal Nodular Hyperplasia (FNH) 346
 16.3.7 FNA of Cirrhosis/Regenerative Nodule 346
 16.3.8 Hepatic Angiomylipoma (AML) 347
 16.3.9 Hemangioma 348
 16.3.10 Bile Duct Adenoma/Hamartoma 349
 16.3.11 Liver Cell Adenoma (Hepatocellular Adenoma) . 349
 16.3.12 Hepatocellular Carcinoma (HCC) 350
 16.3.13 Cholangiocarcinoma (Bile Duct Carcinoma) ... 356
 16.3.14 Hepatoblastoma 357
 16.3.15 Metastatic Malignancies in Liver FNA 358
 16.3.16 Melanoma 362
 16.3.17 Gastrointestinal Stromal Tumor (GIST) 362
 16.3.18 Sarcomas 362
 16.3.19 Angiosarcoma 363
 16.3.20 Lymphoma/Leukemia in Liver FNA 363
16.4 Reference .. 364
Table of Contents

Chapter 17
Pancreas
 17.1 Introduction .. 366
 17.2 Pancreatic Solid Masses 369
 17.2.1 Pancreatic Ductal Carcinoma 369
 17.2.2 Pancreatic Endocrine Tumor (PET) 372
 17.2.3 Acinar Cell Carcinoma (ACC) 374
 17.2.4 Solid-Pseudopapillary Tumor (SPPT) 376
 17.2.5 Pancreatoblastoma 377
 17.2.6 Pancreatitis & Autoimmune Pancreatiti . 377
 17.3 Cystic Masses .. 379
 17.3.1 Pseudocyst 379
 17.3.2 Serous Cystadenoma 380
 17.3.3 Mucinous Cysts 381
 17.3.4 Lymphoepithelial Cysts 383
 17.4 Secondary Malignancies 383
 17.5 References ... 384

Chapter 18
Breast
 18.1 Introduction .. 386
 18.2 Normal Cytology & Reporting Terminology 388
 18.3 Benign Conditions 388
 18.3.1 Breast Cystic Lesions 388
 18.3.2 Fibrocystic Change 389
 18.3.3 Fibroadenoma 392
 18.3.4 Lactational Changes 393
 18.3.5 Mastitis .. 393
 18.3.6 Subareolar Abscess (Zuska Disease) 394
 18.3.7 Granulomatous Mastitis 394
 18.3.8 Fat Necrosis 394
 18.3.9 Epidermal Inclusion Cyst 395
 18.3.10 Gynecomastia 396
 18.4 Breast Papillary Lesion (Papilloma vs Papillary Carcinoma) 397
 18.5 Phyllodes Tumor 399

Chapter 19
Soft Tissue & Bone
 19.1 Introduction .. 412
 19.2 Lipomatous Lesion/Tumor 413
 19.2.1 Lipoma .. 413
 19.2.2 Hibernoma ... 415
 19.2.3 Liposarcoma 415
 19.3 Myxoid Lesions/Neoplasms 417
 19.3.1 Hypocelluar Myxoid Lesions/Neoplasms 417
 19.3.2 Other Entities With Myxoid Features 418
 19.3.3 Other Sarcomas With Myxoid Features 421
 19.3.4 Metastatic Mucinous Carcinoma 421
 19.4 Spindle Cell Lesions/Neoplasms 422
 19.4.1 Nodular Fascitis & Myositis Ossificans 423
 19.4.2 Desmoid Tumor (Fibromatosi) 424
 19.4.3 Neurogenic Tumors 424
 19.4.4 Vascular Lesions 426
 19.4.5 Solitary Fibrous Tumor 427
 19.4.6 Synovial Sarcoma 428
 19.4.7 High Grade Sarcomas 429
 19.4.8 Spindle Cell Melanoma 431
 19.4.9 Sarcomatoid Carcinoma 431

18.6 Breast Carcinomas 399
 18.6.1 Ductal Carcinoma of the Breast 399
 18.6.2 Lobular Carcinoma of the Breast 402
 18.6.3 Mucinous (Colloid) Carcinoma 403
 18.6.4 Medullary Carcinoma 404

18.7 Uncommon Breast Tumors 405
 18.7.1 Squamous Cell Carcinoma 405
 18.7.2 Metaplastic Carcinoma of the Breast 405
 18.7.3 Apocrine Carcinoma 405
 18.7.4 Secretory Carcinoma 406
 18.7.5 Adenoid Cystic Carcinoma 406
 18.7.6 Adenomyoepithelioma 406
 18.7.7 Basal-Like Carcinoma 407
 18.7.8 Breast Sarcoma 407
 18.7.9 Hematolymphoid Neoplasms in the Breast ... 407
 18.7.10 Granular Cell Tumor 408
 18.7.11 Metastatic Malignancies to the Breast 408

18.8 Nipple Discharge 408
 18.9 References ... 410
Table of Contents

19.5 Round Cell Neoplasms 432
19.5.1 Rhabdomyosarcoma 432
19.5.2 Ewing Sarcoma/Primitive Neuroectodermal Tumor (PNET) 433
19.5.3 Neuroblastoma 434
19.5.4 Desmoplastic Small Round Cell Tumor (DSRCT) .. 435
19.5.5 Poorly Differentiated Synovial Sarcoma
With Round Cell Morphology 435
19.5.6 Hematopoietic Malignancies in Soft Tissue & Bone 436
19.5.7 Metastatic Nonmesenchymal Malignancies
With Small Cell Features 437

19.6 Epithelioid Neoplasms 437
19.6.1 Granular Cell Tumor 438
19.6.2 Paraganglioma 438
19.6.3 Epithelioid Angiosarcoma 439
19.6.4 Clear Cell Sarcoma
(Malignant Melanoma of Soft Parts) 439
19.6.5 Alveolar Soft Part Sarcoma 440
19.6.6 Epithelioid Variant of Other Sarcomas 441
19.6.7 Metastases with Epithelioid Morphology 441

19.7 Pleomorphic & Giant Cell Containing Neoplasms 442
19.7.1 Giant Cell Tumor of Tendon Sheath/Pigmented Villonodular Synovitis 442
19.7.2 Giant Cell Tumor of Bone 443
19.7.3 Pleomorphic Sarcomas 444
19.7.4 Secondary Malignancies with Giant Cell Morphology 445

19.8 Inflammatory/Infectious Soft Tissue
& Bone Lesions 445

19.9 References 446

Chapter 20
Renal, Adrenal & Retroperitoneum

20.1 Introduction 448

20.2 Kidney 448
20.2.1 Overview 448
20.2.2 Normal Cytology of Kidney 448
20.2.3 Benign Lesions of Kidney 450
20.2.4 Benign Neoplasms of Kidney 453
20.2.5 Malignant Neoplasms of Kidney 455
20.2.6 Diagnostic Difficulties & Pitfalls in Renal FNA 463

20.3 Adrenal 464
20.3.1 Overview 464
20.3.2 Normal Cytology of the Adrenal 465
20.3.3 Benign Lesions of the Adrenal 465
20.3.4 Benign Neoplasms of the Adrenal 466
20.3.5 Malignant Neoplasms of the Adrenal 466
20.3.6 Diagnostic Difficulties & Pitfalls in Adrenal FNA 469

20.4 Retroperitoneum 470
20.4.1 Overview 470
20.4.2 Lesions & Neoplasms in the Retroperitoneum ... 470

20.5 References 482

Chapter 21
Gastrointestinal Tract & Bile Ducts

21.1 Introduction 484
21.1.1 Sampling Techniques & Processing 485
21.1.2 Accuracy 485

21.2 Esophagus 485
21.2.1 Infection/Esophagitis 485
21.2.2 Ulceration & Reactive/Reparative Changes 487
21.2.3 Intestinal Metaplasia 488
21.2.4 Benign Neoplasms 488
21.2.5 Malignancies 488

21.3 Stomach 490
21.3.1 Infection/Gastritis 490
21.3.2 Reactive Changes 491
21.3.3 Spindle Cell Lesions/Tumors 491
21.3.4 Neuroendocrine Tumors 495
21.3.5 Adenocarcinoma 495
21.3.6 Non-Hodgkin Lymphoma 496

21.4 Large & Small Intestine 497
21.4.1 Infections 497
21.4.2 Adenoma 498
21.4.3 Neuroendocrine Tumors 498
21.4.4 Lymphoma 499
21.4.5 Adenocarcinoma 499
21.4.6 Squamous Cell Carcinoma 501

21.5 Biliary Tract 502
21.5.1 Normal Components of the Bile Duct 502
21.5.2 Benign Lesions in the Bile Duct 504
21.5.3 Malignancies in the Bile Duct 505

21.6 References 506
Table of Contents

Chapter 22

Pediatric Cytopathology

22.1 Introduction .. 508
22.1.1 Exfoliative Cytology in Children 508
22.1.2 Aspiration Cytology in Children 508
22.1.3 Malignancies in Children 509

22.2 Head & Neck Lesions/Neoplasms in Children 509
22.2.1 Cystic Lesions .. 509
22.2.2 Hemangiomas & Lymphangiomas 510
22.2.3 Fibromatosis .. 511
22.2.4 Myofibroma & Myofibromatosis 511
22.2.5 Neural Lesions .. 512
22.2.6 Pilomatrixoma (Calcifying Epithelioma of Malherbe) 513
22.2.7 Salivary Gland Lesions/Tumors 514
22.2.8 Thyroid Lesions/Tumors 514
22.2.9 Nasopharyngeal Carcinoma 515
22.2.10 Cherubism & Central Giant Cell Granuloma 516
22.2.11 Lymphadenopathy 516

22.3 Renal Lesions/Tumors in Children 518
22.3.1 Congenital Mesoblastic Nephroma 518
22.3.2 Metanephric Adenoma 519
22.3.3 Wilms Tumor .. 519
22.3.4 Rhabdoid Tumor 520
22.3.5 Clear Cell Sarcoma of the Kidney 521
22.3.6 Renal Cell Carcinoma 522

22.4 Lesions of the Central or Peripheral Nervous System in Children 522
22.4.1 Meningitis .. 522
22.4.2 Astrocytomas .. 523
22.4.3 Ependymoma .. 523
22.4.4 Atypical Teratoid/Rhabdoid Tumors (AT/RT) 523
22.4.5 Medulloblastoma 523
22.4.6 Pineoblastoma ... 524
22.4.7 Retinoblastoma 524
22.4.8 Germinoma .. 524
22.4.9 Ewing Sarcoma/Primitive Neuroectodermal Tumor .. 524
22.4.10 Neuroblastoma 526

22.5 Hematolymphoid Tumors 527
22.5.1 Acute Lymphoblastic Leukemia/Lymphoma (ALL) 527
22.5.2 Acute Nonlymphocytic Leukemia 528
22.5.3 Nonlymphoblastic Lymphoma 529

22.6 Pulmonary Lesions 529
22.6.1 Infections ... 529
22.6.2 Alveolar Proteinosis 529
22.6.3 Pleuropulmonary Blastoma 529
22.6.4 Epithelioid Hemangioendothelioma 529

22.7 Soft Tissue & Bone Tumors in Children 530
22.7.1 Chondroblastoma 530
22.7.2 Osteosarcoma ... 530
22.7.3 Desmoplastic Small Round Cell Tumor 530
22.7.4 Rhabdomyosarcoma 530
22.7.5 Synovial Sarcoma 531
22.7.6 Other Sarcomas 532

22.8 Breast & Gynecologic Conditions 532
22.8.1 Breast Lesions .. 532

22.9 Liver & Pancreatobiliary Neoplasms 533
22.9.1 Hepatoblastoma 533
22.9.2 Pancreatoblastoma 534
22.9.3 Solid Pseudopapillary Tumor of the Pancreas 534
22.9.4 Pancreatic Endocrine Neoplasms 535

22.10 Miscellaneous Lesions/Tumors 535
22.10.1 Langerhans Cell Histiocytosis 535
22.10.2 Germ Cell Tumors 536
22.10.3 Multicystic Mesothelioma 537
22.10.4 Melanotic Neuroectodermal Tumor of Infancy 537

22.11 Summary ... 538

22.12 References .. 538

Index .. 539
12.2 Contaminants in Lung FNA & EBUS FNA

<table>
<thead>
<tr>
<th>Contaminants in Lung FNA F12.1-F12.2</th>
<th>Contaminants in EBUS FNA F12.3-F12.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatocytes (particularly in right lower lobe lung aspirates)</td>
<td>Bronchial epithelial cells</td>
</tr>
<tr>
<td>Mesothelial cells</td>
<td>Mucous</td>
</tr>
<tr>
<td>Soft tissue elements from the chest wall (adipose tissue, skeletal muscle, cartilage)</td>
<td>Cartilage</td>
</tr>
</tbody>
</table>

F12.1 Benign hepatocytes contaminating lung FNA of right lower lobe nodule (left, Diff-Quik, high magnification; right, H&E, high magnification). Hepatocytes can contaminate specimens from the right lower lobe lung, right adrenal, or right kidney. The cells are cohesive, with central round nuclei, occasional nucleoli and intranuclear inclusions, and granular to vacuolated cytoplasm with distinct cell borders.

F12.2 Benign mesothelial cells in lung FNA (left, Pap stain, high magnification; right, Diff-Quik, high magnification). Mesothelial cells are usually seen in aspirates of pleural-based nodules, and appear as 2-dimensional sheets with clearing between the cells, small nucleoli, and a relatively uniform appearance. Some say that its appearance looks like a cobblestone road since the cells do not touch due to the microvillus border.

F12.3 Inadequate EBUS-guided FNA specimen with contamination (left and right lower, Diff-Quik, intermediate magnification; right upper, Pap stain, intermediate magnification). This EBUS-guided has extensive contamination from the bronchial wall and lumen, including benign bronchial cells, mucous, and cartilage (arrows).

F12.4 Benign and reactive bronchial epithelial cells (left upper, Diff-Quik, intermediate magnification; left lower, Diff-Quik, high magnification; right, Pap stain, high magnification). Benign bronchial cells have columnar morphology with terminal bars and cilia. When the cells get reactive, the nuclei can get larger and the cilia may not be seen; however, if the nuclei are similar to the ciliated cells, then they simply represent reactive bronchial cells.
12: Lung & Respiratory Cytopathology

Cytology of Normal & Benign Elements

12.2 Cytology of Normal & Benign Elements

12.2.1 Cytology of Normal Cellular Elements

12.2.1.1 Respiratory Epithelium

- Respiratory epithelial cells are columnar with terminal bars and cilia F12.4.
- Creola bodies are hyperplastic or papillary clusters of bronchial cells with occasional vacuolization and small nucleoli that can be seen with asthma, COPD, or bronchiectasis F12.5.
- Mild reactive atypia (mild nuclear enlargement and prominent nucleoli) can be seen with radiation, chemotherapy, or severe inflammation.
- Irritated bronchial epithelium, such as forcefully brushed epithelium in brushing specimens or other instrumentation, may show syncytial formation or multinucleation with small, benign appearing, similar nuclei.
- Ciliated columnar cells are most common in bronchial specimens, BALs, and as contaminants in EBUS-guided FNA, but are usually less conspicuous in CT guided FNA.

12.2.1.2 Basal or Reserve Cells

- Reserve cells are the undifferentiated cells that give rise to ciliated and goblet cells.
- Reserve cell hyperplasia can be seen with a few tightly packed clusters showing small nuclei, scant cytoplasm and occasional molding F12.6. This may mimic small cell carcinoma, but lacks the apoptotic background, necrosis, and mitotic figures seen in small cell carcinoma, and usually appears more cohesive, smaller, and less numerous than the tumor cells in small cell carcinoma.
- Other mimics of reserve cell hyperplasia include chronic inflammatory processes, lymphoma, leukemia, and other small cell tumors.
- Reserve cell hyperplasia or proliferation is more common when there is lung injury and shedding of the normal respiratory tract epithelium.

12.2.1.3 Goblet Cells

- Goblet cells are mucous-producing bronchial cells that are present in a ratio of ~1 per 6 ciliated cells F12.7.
- These cells lack cilia and have cytoplasm distended by mucus (single or multiple vacuoles).
- They are seen more commonly in bronchial specimens from smokers or patients with chronic respiratory disease (asthma, COPD, bronchiectasis).
They can mimic mucin producing or signet-ring adenocarcinoma.

12.2.1.4 Macrophages
- Macrophages have abundant foamy/vacuolated cytoplasm, oval-to-round nuclei, and occasional prominent nucleoli. The vacuolated cytoplasm may have debris or other ingested material, such as hemosiderin or anthracotic pigment F12.8.
- Lipid laden macrophages can be highlighted with an Oil Red O stain, and these cells can be elevated in patients with lipoid pneumonia, fat embolism syndrome, pulmonary aspiration, or amiodarone toxicity F12.9.
- These cells are needed for adequacy in sputum samples and BALs.

12.2.1.5 Squamous Cells
- Squamous cells are usually contamination from the upper aerodigestive tract, and are usually seen in sputum and bronchial specimens.
- These cells have small round nuclei and orangeophilic cytoplasm, or appear as anucleate squames.

- Mild reactive atypia can be seen with trauma, infection (candidiasis, near cavitary fungal lesions), pemphigus vulgaris (enlargement of nuclei and prominent macronucleoli), and injury to the lung (infarct, radiation, chemotherapy, sepsis, diffuse alveolar damage).
Malignant squamous cells can also represent a contaminant from an oropharyngeal or head and neck squamous cell carcinoma contaminating a bronchial specimen.

12.2.1.6 Neuroendocrine Cells (Kulchitsky Cells)

- These neuroendocrine cells are only identified with special stains or electron microscopy to look for dense core granules.

12.2.1.7 Type I & II Pneumocytes

- Type I pneumocytes cover 90% of alveolar surface and are long, flat cells.
- Type II pneumocytes are less numerous than type I pneumocytes and make surfactant, but are more easily seen and cuboidal-to-round with vacuolated cytoplasm with larger and clearer vacuoles than that seen in histiocytes F12.10.
- The cytologic features of type II pneumocyte hyperplasia includes small clusters of cells with nuclear enlargement, prominent nucleoli, and vacuolated cytoplasm.

Type II pneumocyte proliferation typically occurs after injury to the lung, pneumonia, sepsis, diffuse alveolar damage, infarction, chemotherapy, radiation, inhalant toxicity (e.g., oxygen toxicity), thermal injury, tuberculosis, interstitial lung disease or pulmonary fibrosis.

- In some cases, type II pneumocyte hyperplasia can mimic adenocarcinoma. Therefore, in the setting of a few atypical vacuolated cells with prominent nucleoli, it is important to avoid the overdiagnosis of malignancy. Type II pneumocytes can also mimic epithelioid histiocytes; however, the pneumocytes tend to show more clustering, larger vacuoles, and more prominent round nuclei with prominent nucleoli.

12.2.2 Cytology of Noncellular Elements

12.2.2.1 Curschmann Spirals

- The cytologic features include coiled strands or helical casts of inspissated mucus that appears darkly staining F12.11.
- This is a nonspecific finding, seen with excess mucus production (e.g., asthma).
12.2.2.2 Ferruginous Bodies
- Ferruginous bodies are iron encrusted fibers, usually dumbbell-shaped, golden yellow-brown in color and refractile F12.12.
- They stain positive for Prussian blue stain.
- They are seen in patients with asbestos exposure.

12.2.2.3 Charcot-Leyden Crystals
- Charcot-Leyden crystals are eosinophilic to orangeophilic crystals with rhomboid shape, that are the result of eosinophilic granules from degenerating eosinophils, usually in asthma and other causes of eosinophilia F12.13.
- These can be seen in allergic bronchopulmonary aspergillosis with numerous eosinophils and fungal hyphae.

12.2.2.4 Psammoma Bodies (Calcospherites)
- Psammoma bodies appear as rounded calcifications with concentric laminations.
- They are seen in papillary tumors (ovarian, thyroid, lung), and rarely, pulmonary tuberculosis and alveolar microlithiasis.

12.2.2.5 Corpora Amylacea
- Corpora amylacea are rounded, noncalcified glycoprotein structures with circular and radiating lines F12.14.
Cytology of Normal & Benign Elements > Cytology of Noncellular Elements

- These are a nonspecific finding, but thought to arise from bronchial secretions and may be more common in older patients or patients with pulmonary edema, heart failure, pulmonary infarction, and chronic bronchitis.

12.2.2.6 Vegetable or Plant Matter
- Vegetable or plant material has a characteristic thick cell wall, with a square or rectangular shape. When present in a lung specimen, they usually indicate specimen contamination or aspiration.

12.2.2.7 Ciliocytophthoria
- Ciliocytophthoria appears as detached ciliary tufts. This is associated with viral infection (adenovirus) or simply a nonspecific reaction.

12.2.2.8 Amyloid
- Amyloid appears as amorphous eosinophilic material that has a salmon-pink color on Congo red staining and shows apple-green birefringence under polarized light.

- Amyloid can be seen in the lung as part of an amyloidoma within the lung, but may also involve the lung as part of systemic amyloidosis.
12.2.2.9 Alveolar Proteinosis
- Alveolar proteinosis appears as amorphous eosinophilic material or lamellar bodies F12.18.
- Electron microscopy shows that the lamellar bodies are proteinaceous surfactant material.
- BALs can be performed in these patients for therapeutic relief.

12.2.2.10 Other
- Pollen or starch granules
 - Starch granules appear as clear and refractile cubes with maltese cross formation under polarized light.
 - Pollen appears as spherical structures that are colorful, have a thickened wall, and may have small internal bodies or a spiked border to the granule. This can mimic large fungal yeast forms or other infections, in addition to other contaminants F12.19.
- Drug particles

- Dark black carbonaceous material can appear within histiocytes in drug users, particularly crack/cocaine smokers.
- Rhomboid crystals can appear with aspiration of barium sulfate.

12.2.3 Cytology of Respiratory Infections

12.2.3.1 Bacterial Pneumonia
- Bacterial pneumonia can appear as a mass lesion in the lung and mimic malignancy.
- The cytologic features include a variable amount of inflammation, with mainly neutrophils. Bacterial cocci or rods may or may not be seen F12.20.
- Ancillary studies that can be utilized include microbial culture, and special stains (Gram stain) or immunostains.
Cytology of Normal & Benign Elements > Cytology of Respiratory Infections

- Examples of bacteria in respiratory samples:
 - **Actinomyces**
 - This is an inhabitant of the tonsillar area that is a common contaminant of sputum and bronchial specimens.
 - The cytologic features include fibrillary, "cotton-ball" like collection of filamentous bacteria that stain purple on Diff-Quik. Usually there is no acute inflammation if seen as a contaminant (consider true infection if associated with acute inflammation). These organisms can aggregate into sulfur granules, which appear yellow on gross examination.
 - **Nocardia**
 - *Nocardia* is an aerobic, filamentous bacterium that is acquired via inhalation, and usually occurs in immunocompromised patients.
 - It can cause cavitary nodules in 33% patients.
 - The cytologic features include acute inflammation with thin, filamentous, beaded organisms with right-angle branching F12.21.
 - **Legionella**
 - *Legionella* is also a bacterial pneumonia.
 - Ancillary studies demonstrate that the organisms are positive with silver stains (Steiner, Warthin-Starry, or Dieterle stains), IHC or immunofluorescent stains.

- Ancillary studies that are utilized include
 - Gram stain (gram positive organism), GMS stain (positive), acid fast stain (weakly positive with modified acid fast stain or Fite stain), and microbial cultures.

- **12.2.3.2 Viral Infections**
 - A variety of viral infections can be seen in the lung, including:
 - **Herpes simplex virus (HSV) infection**
 - Clinically may present in adults or neonates with who are immunocompromised, and may cause pharyngitis, laryngotracheitis, or pneumonia
 - HSV1 is most common subtype to involve respiratory tract.
The cytologic features include multinucleation, margination of chromatin, nuclear molding, and large eosinophilic intranuclear inclusions (Cowdry A inclusions) within the epithelial cells. Ancillary studies that can be utilized include viral culture, CMV immunocytochemical stain, or PCR.

- Supportive ancillary studies include viral culture, HSV immunostain, or in situ hybridization.

- **Cytomegalovirus (CMV) infection**
 - CMV is a common opportunistic infection in immunocompromised patients.
 - It clinically presents with fever, dyspnea, cough, and diffuse nodular interstitial infiltrates.
 - The viral cytopathic changes in CMV infections include nuclear enlargement, large basophilic intranuclear inclusions with surrounding halo ("owl eye" inclusions), occasionally small basophilic cytoplasmic inclusions, and enlarged cells (cytomegaly).
 - CMV does not only infect epithelial cells, but can also involve histiocytes, endothelial cells, or fibroblasts (infects epithelial or endothelial cells).

- **Measles virus**
 - Clinically, measles is a highly contagious, self-limited disease caused by rubeola virus.
 - It is less common today due to the widespread use of vaccination.
 - This virus can lead to pneumonia in immunocompromised children with prematurity, cystic fibrosis, malignancy, or an immune disorder.
 - The cytologic features include multinucleated cells with eosinophilic cytoplasmic and nuclear inclusions.

- **Respiratory syncytial virus (RSV) & parainfluenza**
 - RSV and parainfluenza show similar findings to that seen with measles virus.
 - These are commonly seen in pediatric patients with bronchiolitis or giant cell pneumonia.

F12.22 BAL with herpes simplex virus infection (left, Pap stain, high magnification; right, H&E and HSV immunostain [inset], high magnification). This BAL showed large multinucleated cells with eosinophilic intranuclear inclusions, margination of the chromatin, and nuclear molding, in a background of inflammation. The cells were positive for the HSV1/2 immunocytochemical stain.

F12.23 Lung infection with cytomegalovirus and *Pneumocystis jirovecii* (Pap stain, high magnification). This case shows the characteristic viral cytopathic effect seen with CMV infection with nuclear enlargement and large “owl eye” intranuclear inclusions. Foamy alveolar casts from infection with *Pneumocystis* are also seen in this case.
Cytology of Normal & Benign Elements > Cytology of Respiratory Infections

- The cytologic features include multinucleated cells with cytoplasmic and nuclear inclusions, basophilic cytoplasmic inclusions with halo, and occasionally a necrotic background.

 - Adenovirus
 - Clinically produces a febrile illness or severe pneumonia, but infection can be fatal in immunocompromised patients.
 - The cytologic features include ciliocytophthoria (detached ciliary tufts), F12.16, smudge cells with large intranuclear basophilic inclusions), and eosinophilic inclusions (resembling the Cowdry A inclusions seen with HSV).

12.2.3.3 Mycobacterial Infections

- Tuberculosis
 - Infection by Mycobacterium tuberculosis is one of the most common infections worldwide.
 - The cytologic features include granulomatous inflammation with multinucleated giant cells and frequently a necrotic background F12.24. The organisms may be difficult to detect because of the low number (unlike atypical mycobacterial infections, which usually have a large number of organisms visible). Ancillary studies that are helpful include acid fast stain, fluorescence microscopy with auramine O stain, culture, or PCR.

- Atypical mycobacteria
 - Infection usually occurs in immunocompromised patients, and is most commonly due to M avium intracellulare.
 - The cytologic features include histiocytic inflammation with histiocytes containing abundant cytoplasm that may appear foamy and are filled with organisms.
 - Organisms appear as a negative image because they are unstained rod shaped structures within the dark purple/blue background on Diff-Quik stained smears.
 - Ancillary studies that are helpful include acid fast stains, culture, and PCR.

12.2.3.4 Parasite Infections

- Parasitic infections are rare in the lung, but can be seen. The more common parasites in the lung include the following:
 - Strongyloides stercoralis (strongyloidiasis)
 - Respiratory infection with Strongyloides can be seen in patients on high dose corticosteroids for autoimmune diseases, renal transplant, or asthma.
 - Patients will have hemoptysis and cough up the organism in bloody sputum.
 - The cytologic features include filariform larvae (400-500 μm in length) with a notched tail that are large and seen at low power examination.

- Dirofilaria immitis
 - This is a dog heartworm that is transmitted by infected mosquitoes.
 - Usually the larvae migrate to the heart and die, then go to the pulmonary arteries and cause infarction. Thus, the prominent findings are debris due to the presence of infarction.

F12.24 Tuberculosis infection in lung (left, Diff-Quik, high magnification; right, H&E, low magnification). The touch preparation from this small, white lung nodule revealed necrotic debris with inflammatory cells and scattered Langhans-type giant cells. The corresponding histology showed necrotizing granulomas with AFB+ organisms consistent with M tuberculosis.
Toxoplasma gondii

- Toxoplasmosis is caused by an obligate intracellular protozoan that infects humans, but usually causes simply asymptomatic infection. In neonates and immunocompromised patients, the infection is severe and disseminated and can result in central nervous system abscesses, chorioretinitis, pneumonitis, myocarditis, and other organ involvement.
- Infection occurs by direct ingestion of oocytes in water or soil contaminated with cat feces, or by ingestion of raw or undercooked meat containing cysts.
- The cytologic features include an inflammatory background with crescent or banana shaped extracellular tachyzoites with a prominent central nucleus, that are seen best with a Wright-Giemsa or Romanowsky stain. Rarely, intracellular organisms can be seen within macrophages.
- Given that many laboratories use liquid based cytology for BAL processing and the organisms are only weakly stained and difficult to find, it is important to utilize alternative preparations (eg, Wright-Giemsa stained cytospins) in suspicious cases to avoid missing the diagnosis.
- An immunohistochemical stain for Toxoplasmosis is available to help in difficult cases.

Entamoeba gingivalis

- Entamoeba gingivalis is a protozoan that is usually found in the mouth and spread with oral contact. It can therefore be seen in sputum specimens, and has rarely been reported as a cause of a lung mass.
- The cytologic features include large “histiocyte-like” organisms with a dark centrosome. These organisms frequently phagocytose nuclear fragments of white blood cells, bacteria, and sometimes red blood cells into large food vacuoles.
- Actinomyces frequently is found with Entamoeba gingivalis in the same specimen, and the amoeba is sometimes best visualized at the periphery of the aggregates of actinomyces.
- Entamoeba gingivalis is similar to Entamoeba histolytica; however, Entamoeba gingivalis tends to be larger with a coarser karyosome and is more likely to have a inflammatory background with neutrophils. In addition, Entamoeba histolytica is more common as a cause of intestinal or liver infection.
- The organisms stain with PAS and fluorescein-labeled antibody.

![BAL in a heart transplant patient with toxoplasmosis](image1)

![Sputum specimen with Entamoeba gingivalis](image2)
Cytology of Normal & Benign Elements > Cytology of Respiratory Infections

- **Echinococcus granulosus**
 - *Echinococcus granulosus* is a dog tapeworm that causes hydatid disease. The eggs usually pass in the dog feces and contaminate food or drink that the human ingests, leading to infection.
 - Hydatid cysts have been reported in the liver, lung and brain as well circumscribed lesions. Symptoms can include a mass lesion or enlargement in these organs, or the patient can present after rupture of the cysts with hooklets in the sputum or evidence of anaphylactic shock. Thus, some include this rare entity as a contraindication to FNA due to the risk of rupture with resultant anaphylactic shock. However, in many cases, this diagnosis is unsuspected and FNA of these lesions has been reported.
 - The cytologic features include the characteristic refractile hooklets that look like tiny claws, and larger oval protoscoleces that contain internal refractile lines from the hooklets within **F12.27**.

12.2.3.5 Fungal Infections

- The common fungal infections seen in the lung are summarized below and in **T12.4**.

<table>
<thead>
<tr>
<th>Fungal Organism</th>
<th>Size & Location</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida</td>
<td>2-6 µm, extracellular</td>
<td>Yeast and pseudohyphae “balloon dogs” “shish kabob” edges not parallel</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>3-6 µm, extracellular</td>
<td>Septated hyphae with narrow-angle (45°) branching</td>
</tr>
<tr>
<td>Zygomycetes</td>
<td>5-25 µm, extracellular</td>
<td>Broad, nonseptate hyphae with 90° branching “Ribbon like”</td>
</tr>
<tr>
<td>Histoplasma</td>
<td>2-4 µm, intracellular (within macrophages)</td>
<td>Symmetric, narrow based budding</td>
</tr>
<tr>
<td>Cryptococcus</td>
<td>5-20 µm, extracellular, occasionally intracellular</td>
<td>Asymmetric, narrow based budding, has thick mucoid capsule, few scattered forms (can be hard to find)</td>
</tr>
<tr>
<td>Pneumocystis jirovecii</td>
<td>Cyst measures 4-8 µm (about the size of a RBC), Trophozoites within cyst measure 0.5-1 µm, extracellular</td>
<td>Foamy alveolar casts with cysts that are cup shaped with a central dot, no budding & no capsule</td>
</tr>
</tbody>
</table>

F12.27 Lung FNA in a patient with infection by *Echinococcus granulosus* (Pap stain, high magnification). Large protoscoleces are seen with internal refractile hooklets, and a few scattered refractile hooklets are seen as well (arrow).
Cryptococcus neoformans
- Cryptococcus is found in bird droppings and soil contaminated with bird droppings.
- The cytologic features include variably sized (5-20 μm) yeast forms (unlike uniform yeast forms in Candida), narrow-based asymmetric budding (tear drop shape), and a characteristic mucicarmine+ capsule (halo). The yeast forms measure 4-6 μm and are oval-to-round. There may be a background of granulomatous or histiocytic inflammation **F12.28**.
- Ancillary studies that are helpful include Grocott stain/GMS (stains positive, highlights budding), India ink (highlights capsule), mucicarmine (or PAS or alcian blue) special stain (particularly helpful for capsule-deficient Cryptococcus).
- Mimes of Cryptococcus mainly include Pneumocystis and Candida. However, unlike Candida, the yeast forms are unequal in size, have a surrounding capsule, and there are no long pseudohyphal structures. In comparison to Pneumocystis, Cryptococcus is slightly larger, with variably sized cysts, has a halo from the capsule, and does not occur in tight casts.

Histoplasma capsulatum (Histoplasmosis)
- Histoplasma is found in soil, particularly within the Ohio and Mississippi river valleys.
- Infection occurs by inhaling spores. The clinical presentation can mimic tuberculosis with nodular lung lesions and mediastinal lymphadenopathy, or it can present with disseminated, widespread disease. There are also reports of sclerosing mediastinitis associated with histoplasmosis infection.
- The cytologic features reveal small (2-4 μm), intracellular budding yeast forms that can be seen inside macrophages or neutrophils, with narrow based, equal budding. These cells look like a "polka dot" cell given the numerous yeast forms within the cytoplasm. There is often a background of granulomatous inflammation **F12.29 & F12.30**.
- Ancillary studies include Grocott stain/GMS to highlight the organisms.

Blastomyces dermatitidis (Blastomycosis)
- Blastomyces is found in wooded areas of North America, the Ohio and Mississippi River valleys, and in the southeastern USA.
- The cytologic features include broad-based budding yeast measuring 8-15 μm, thick refractile cell wall (double contour appearance), and acute suppurative or granulomatous inflammation **F12.31**.

Coccidioides (Coccidioidomycosis)
- Coccidioides is endemic in southwestern USA and Central-to-South America.
- The cytologic features include spherules (30-100 μm) and endospores (2-5 μm), with associated acute suppurative or granulomatous inflammation **F12.32**.
- Endospores may mimic Blastomyces dermatitidis, but are usually larger and do not show evidence of budding.
- Ancillary studies that can be helpful include Grocott stain/GMS, which stains spherules and endospores.
F12.29 Lung FNA with histoplasmosis (left and middle, Diff-Quik, high magnification; right, Grocott stain, high magnification). Small yeast forms are identified within macrophages with equal budding, and are highlighted on the Grocott stain (right).

F12.30 BAL with histoplasmosis (ThinPrep, Pap stain, intermediate and high magnification). This BAL showed macrophages with numerous yeast forms within the cytoplasm in a background of acute inflammation. Unlike normal alveolar macrophages, these cells have distinct dark dots from the intracellular yeast forms (“polka dot cells”).

F12.31 Sputum specimen with blastomycosis (ThinPrep, Pap stain, high magnification). This case shows abundant acute inflammation with yeast forms (arrow) that are larger than Candida and show evidence of broad based budding.

F12.32 Coccidiomycosis in Lung FNA (left, H&E, high magnification; right, Grocott stain, high magnification). Large spherules are identified in a background of debris. The Grocott stain highlights the endospores within the spherule and dispersed forms from rupture of one of the spherules.
Chapter 18

Breast

18.1 Introduction 386
18.2 Normal Cytology & Reporting Terminology . 388
18.3 Benign Conditions 388
 18.3.1 Breast Cystic Lesions 388
 18.3.2 Fibrocystic Change 389
 18.3.3 Fibroadenoma 392
 18.3.4 Lactational Changes 393
 18.3.5 Mastitis 393
 18.3.6 Subareolar Abscess (Zuska Disease) .. 394
 18.3.7 Granulomatous Mastitis 394
 18.3.8 Fat Necrosis 394
 18.3.9 Epidermal Inclusion Cyst 395
 18.3.10 Gynecomastia 396
 18.4 Breast Papillary Lesion
 (Papilloma vs Papillary Carcinoma) 397
 18.5 Phyllodes Tumor 399
 18.6 Breast Carcinomas 399
 18.6.1 Ductal Carcinoma of the Breast 399
 18.6.2 Lobular Carcinoma of the Breast 402
 18.6.3 Mucinous (Colloid) Carcinoma 403
 18.6.4 Medullary Carcinoma 404
 18.7 Uncommon Breast Tumors 405
 18.7.1 Squamous Cell Carcinoma 405
 18.7.2 Metaplastic Carcinoma of the Breast 405
 18.7.3 Apocrine Carcinoma 405
 18.7.4 Secretory Carcinoma 406
 18.7.5 Adenoid Cystic Carcinoma 406
 18.7.6 Adenomyoepithelioma 406
 18.7.7 Basal-Like Carcinoma 407
 18.7.8 Breast Sarcoma 407
 18.7.9 Hematolymphoid Neoplasms in the Breast 407
 18.7.10 Granular Cell Tumor 408
 18.7.11 Metastatic Malignancies to the Breast 408
 18.8 Nipple Discharge 408
 18.9 References 410

See also DeMay RM. The Art & Science of Cytopathology, 2nd Edition.
Vol 2, Ch 14: Breast, pp 1052-1143.
18: Breast

Introduction

18.1 Introduction

- Fine needle aspiration (FNA) biopsy can be used to evaluate palpable and nonpalpable, mammographically evident breast lesions. This can be done without image-guidance for a palpable mass and with image-guidance for nonpalpable ones.

- The advantages of breast FNA include the fact that it is a rapid, simple, cost effective procedure with rare complications. Breast FNA also has high diagnostic accuracy and is useful in the management of a palpable breast mass (sensitivity 90% and specificity over 99%). Other advantages include the differentiation of benign cysts from cystic neoplasms, psychologic relief for patients with benign breast lesions, and the acquisition of material for diagnostic and prognostic testing, including FISH and other molecular tests. FNA is also an excellent tool for the detection of chest wall recurrences, distant solid organ metastases from breast primaries, and the evaluation of axillary lymph nodes. Breast FNA can occasionally be therapeutic as well as diagnostic in cases of abscess and benign breast cysts.

However, over recent decades many issues have arisen over the use of breast FNA for the initial diagnosis of breast carcinoma. This includes the need for adequate training and experience, the presence of atypical/indeterminate (“grey zone”) diagnoses which, in most cases, require tissue biopsy, the inability to evaluate for invasion, and need for sufficient tissue to perform prognostic studies such as estrogen/progesterone receptor status, cell proliferation index, and Her2neu expression. Another issue is the risk of litigation since breast FNA is one of the most common cytology specimens involved with lawsuits. This is mainly due to false positive diagnoses (eg, interpretive errors, such as overcalling a fibroadenoma), and false negative diagnoses (eg, sampling issues and interpretive errors from missing a lobular carcinoma).

- Obtaining a good clinical history prior to breast FNA biopsy is essential to determine if there is a family or personal history of malignancy. A strong family history of breast carcinoma requires adequate sampling and material for cell block for potential ancillary testing. A history of malignancy such as extra-mammary carcinoma or leukemia/lymphoma will raise the possibility of secondary involvement of the breast tissue and aid appropriate triage of the specimen during on-site evaluation. If the patient is pregnant, lactating or receiving hormonal treatment, this history is important because it will alert the cytologist to possible lactational changes, lessening the chance of over interpretation.

- In addition, the age of the patient is important. In young patients, common diagnoses include benign entities and certain malignancies, such as secretory carcinoma, basal-like carcinoma, or hematolymphoid malignancies.

- Breast implantation is a contraindication to breast FNA.

- On physical exam, the presence of nipple discharge and other characteristics of the mass lesion and overlying skin should be examined. If there is a nipple discharge, this can help in determining the differential diagnosis, and the nipple discharge can be sampled as a separate specimen for evaluation (see discussion on the nipple discharge later in the chapter).

T18.1 Advantages, disadvantages & complications of breast FNA

Advantage of breast FNA
- Rapid and accurate diagnosis (minutes)
- Cost effective
- Can be used for palpable lesions (without US) or for nonpalpable lesion
- Minimal trauma (physically and psychologically)
- Faster management for patients with a breast mass
- Material can be collected for cell block for ancillary studies
- Avoidance of open biopsy (benign lesions, inoperable or recurrent lesions)
- Accurate and rapid assessment of tumor recurrence

Disadvantage of breast FNA
- Requires adequate training and experience
- Still requires open biopsy with atypical category (“gray zone” diagnoses)
- Can not reliably distinguish between in situ and invasive carcinomas
- Inability to offer specific diagnosis for some benign lesions
- Sensitivity is low in certain breast lesions: small, necrotic/cystic, hemorrhagic, desmoplastic, or deeply located tumors

Complications of breast FNA
- Hematoma
- Infection
- Pneumothorax
- Vasovagal reaction
- Tumor seeding
- Epithelial displacement artifacts (may cause false positive on biopsy)
Introduction

- Dedicated passes of aspirated breast tissue can be collected for cell block preparation. The cell block can provide tissue fragments F18.1 & F18.2 and cellular material ancillary studies in selected cases, which can confirm the diagnosis of malignancy (absence of myoepithelial markers p63, CK5/6, SMA, and calponin), subclassify the lesion, and provide prognostic and therapeutic information F18.3.

- Complications from breast FNA biopsy are extremely rare and include pain (mainly in the sub-areolar area), pneumothorax, needle tract seeding, hemorrhage (bleeding/hematoma), infection and vasovagal reaction. Displacement of epithelial cells and reactive tissue changes from the biopsy can cause alterations in the architecture and potentially lead to an erroneous diagnosis of invasive carcinoma on the subsequent excision. Therefore, some advocate performing mammography prior to FNA as changes due to aspiration may alter the mammographic findings T18.1.

- Cytologic findings should be correlated with clinical and radiologic findings (triple test). Additional sampling is indicated if there is any discordance between the FNA findings and the clinical or radiologic findings.

F18.1 Cell block from breast FNA of benign lesions: Upper left, breast FNA with fibrocystic change, upper right, breast FNA with benign lactational changes, lower left, breast FNA of papillary lesion/papilloma, and lower right, breast FNA with acute abscess. H&E, high magnification.

F18.2 Cell block from breast FNA of malignant lesions. Upper left, breast FNA with ductal carcinoma, upper right, breast FNA with lobular carcinoma, pleomorphic variant, lower left, breast FNA of papillary lesion/papillary carcinoma, and lower right, breast FNA with metaplastic carcinoma. H&E, high magnification.

F18.3 Cell block and ancillary studies in a case of ductal carcinoma of the breast (upper left, cell block, H&E; high magnification; upper middle, ER immunostain, upper right, PR immunostain; lower left, FISH testing of Her2neu with positive amplification, lower middle, Her2neu by immunostain 2+; and lower right Ki67 immunostain).
18.2 Normal Cytology & Reporting Terminology

- Adipose tissue, stroma and ductal epithelial cells are normal findings in breast FNA. A cytology specimen normally consists of fat, fibrous tissue, stromal cells and few duct or acinar cells. These epithelial cells should be regularly shaped and arranged in honeycombed sheets. Round to oval myoepithelial cells may be present as stripped nuclei or attached to epithelial sheets, but may not be obvious F18.4.

- Cytology reports should contain a statement of adequacy.

- Diagnostic categories in most laboratories include unsatisfactory for interpretation, negative for malignant cells, atypical/indeterminate, suspicious for malignancy and positive for malignant cells. Each category may have a statement explaining further findings.

- There is no standard for adequacy in breast FNA. If the lesion disappears after aspiration, it may be deemed adequate even when there is scant cellularity. However, most laboratories require a minimum of 6 clusters of epithelial cells (5-10 cells per cluster) on at least 2 slides.

- The unsatisfactory category is used for cases that lack an epithelial component (except in cystic lesions that have completely disappeared, suspected inflammatory lesions, suspected intramammary lymph nodes, or suspected lipoma cases), poorly preserved specimens, specimens significantly obscured by blood or inflammation, and markedly paucicellular specimens.

- Indications for breast FNA include the diagnoses of inflammatory diseases, primary and secondary tumors, and tumor recurrence; in addition to therapeutic drainage of simple/inflammatory cysts.

- False negative diagnoses in breast FNA have been reported due to significant desmoplasia as seen in lobular carcinoma; small carcinomas arising in a benign lesion such as a complex proliferative lesion or papilloma, well differentiated carcinomas such as tubular carcinoma, colloid carcinoma, or secretory carcinoma; rare tumor types (such as metaplastic carcinoma, apocrine carcinoma); and tumors with extensively necrotic or cystic components; and poorly prepared or inadequate smears.

- False positive diagnoses on breast FNA have been reported due to over interpretation of fibroadenomas; proliferative breast diseases with atypia; papillary lesions; pregnancy/lactational changes, fat necrosis, collagenous spherulosis, epidermal inclusion cyst and unusual benign skin adnexal tumors.

18.3 Benign Conditions

18.3.1 Breast Cystic Lesions

- Benign cysts (single or multiple) are common constituting 15% of breast FNA specimens and nearly all have a benign clinical course (>99%).

- Breast FNA in these lesions is diagnostic and therapeutic.

- The aspirate yields clear, cloudy, yellow fluid from a recent cyst or greenish fluid from an older cyst.

- This fluid may be discarded rather than processed for cytology.

- If a solid mass is appreciated after fluid drainage, then adequate sampling by FNA is required to exclude malignancy.

- The specimen is usually scant, with few clusters of ductal cells, apocrine cells and foam cells F18.5 & F18.6.

- The ductal or apocrine cells are arranged in cohesive, honeycomb sheets with a uniform appearance along with a few attached myoepithelial cells at the periphery or naked in the background.
Benign Conditions > Breast Cystic Lesions

- The differential diagnosis includes seroma (usually occurs at a prior breast surgery site and lacks ductal cells) and intracystic carcinoma (usually bloody fluid and suspicious mass by radiology).

18.3.2 Fibrocystic Change

- Fibrocystic changes of the breast are the most common breast abnormality. They are not pathologic but instead a complex of morphologic alterations consisting of any combination of cystic changes, apocrine metaplasia, fibrosis, sclerosing adenosis, ductal hyperplasia, or columnar cell changes.

- The cytologic features of fibrocystic changes are divided into nonproliferative morphology (no increased risk of malignancy) and proliferative morphology (has mild increased risk of malignancy) based on the presence or absence of significant ductal hyperplasia. When present, proliferative breast lesions can be seen without atypia (hyperplasia) or with atypia (atypical ductal or lobular hyperplasia) T18.2.

T18.2 Cytomorphology of normal & benign noninflammatory breast lesions

<table>
<thead>
<tr>
<th>Cytomorphology of breast FNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scant cellularity</td>
</tr>
<tr>
<td>Small clusters of benign ductal cells</td>
</tr>
<tr>
<td>Ductal cells are uniform with small nuclei & cytoplasm in sheets</td>
</tr>
<tr>
<td>Myoepithelial cells—naked oval/spindle nuclei</td>
</tr>
<tr>
<td>Adipose tissue fragments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytomorphology of nonproliferative breast disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low cellularity</td>
</tr>
<tr>
<td>Monolayered clusters of uniform cells with a honeycomb pattern</td>
</tr>
<tr>
<td>Mixture of apocrine cells; foam cells & myoepithelial cells</td>
</tr>
<tr>
<td>Stromal fragments and/or adipose tissue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytomorphology of proliferative breast disease (without atypia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate to high cellularity</td>
</tr>
<tr>
<td>Marked number of large highly cohesive cell clusters</td>
</tr>
<tr>
<td>Overlapping of nuclei, nuclear enlargement & occasional micronucleoli</td>
</tr>
<tr>
<td>Apocrine cells, histiocytes & myoepithelial cells</td>
</tr>
<tr>
<td>Mild loss of polarity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytomorphology of lactational changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular smears</td>
</tr>
<tr>
<td>Numerous epithelial cells in isolated, loose clusters or sheets</td>
</tr>
<tr>
<td>Background of fat droplets and cellular debris</td>
</tr>
<tr>
<td>The cells have abundant, foamy or vacuolated cytoplasm</td>
</tr>
<tr>
<td>Numerous naked nuclei due to cytoplasmic fragility</td>
</tr>
<tr>
<td>The nuclei exhibit enlargement & prominent nucleoli</td>
</tr>
<tr>
<td>No irregular chromatin contours, rare bipolar naked nuclei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytomorphology of atypical hyperplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular aspirate</td>
</tr>
<tr>
<td>Crowding of epithelial cells with overlapping of the nuclei</td>
</tr>
<tr>
<td>Nuclear enlargement, anisonucleosis & chromatin clumping</td>
</tr>
<tr>
<td>Occasional conspicuous nuclei</td>
</tr>
<tr>
<td>Myoepithelial cells present</td>
</tr>
<tr>
<td>Rare apocrine cells & macrophages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytomorphology of fibroadenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cellularity</td>
</tr>
<tr>
<td>Biphasic (epithelial component & stromal component)</td>
</tr>
<tr>
<td>Sheet of monolayered ductal epithelial cells forming “antler-horn”</td>
</tr>
<tr>
<td>Bipolar naked nuclei; apocrine metaplasia, mucinous changes</td>
</tr>
<tr>
<td>Rare multinucleated giant cells</td>
</tr>
<tr>
<td>Stromal fragments, few</td>
</tr>
</tbody>
</table>

F18.5 Foamy macrophages from a benign breast cyst. Scattered histiocytes with abundant vacuolated cytoplasm and small uniform nuclei are shown. Their cytoplasmic border is well defined and the background has proteinaceous material (left, Diff-Quik, and right, Pap stain, high magnification).

F18.6 Apocrine cyst. Foamy macrophages as well as sheets of benign apocrine cells (left) and reactive epithelial cells (right) are shown in this breast FNA. Pap stain, high magnification.
Benign Conditions > Breast Cystic Lesions

- FNA in nonproliferative breast aspirates may show scant cellularity or occasional hypercellularity depending on the degree of fibrosis. The aspirate shows a mixture of any of the following morphologies: benign cysts (see above); ductal or apocrine cells in sheets or isolated, myoepithelial cells, histiocytes (foam cells), cellular debris, proteinaceous material, crystals and inflammation F18.7. The cells can show degenerative changes, apocrine metaplasia, or columnar configuration in selected cases (papillomatosis). In nonproliferative fibrocystic change, the ductal cells are uniform and arranged in 2-dimensional groups of cohesive orderly, uniform cells F18.8 & F18.9 and associated with myoepithelial cells. Myoepithelial cells are admixed into the epithelial groups or seen as naked, bipolar nuclei. Ductal cells with columnar features may be seen in the spectrum of fibrocystic changes, are usually a minor component and may be indicative of papillomatosis F18.10. Benign apocrine metaplastic cells are often arranged in 2-dimensional sheets and may show considerable pleomorphism and prominent nucleoli F18.11. Nucleoli are commonly seen in benign and malignant lesions and are not a reliable indicator of malignancy. Apocrine carcinoma is extremely rare and usually presents with high grade features, and a large number of anaplastic single cells with multiple prominent nucleoli and necrosis.

- The cytologic features of proliferative breast lesions without atypia show similar morphology, but the specimens are more cellular and the ductal epithelial cells are hyperplastic (proliferative) F18.12 displaying 3-dimensional groups or sheets with a tightly packed crowded appearance (the landmark of this entity).

F18.8 Fibrocystic change. A large fragment of uniform ductal epithelium is shown with mildly crowded nuclei. The sheets are cohesive and exhibit a flat honeycombed architecture (cytospin; left, Diff-Quik, and right, Pap stain; high magnification).

F18.7 Fibrocystic changes (nonproliferative breast disease) with large fragments of apocrine cells arranged in large monolayers. Pap stain, medium and high magnification.

F18.9 Fibrocystic change (nonproliferative breast disease) in Thin Prep preparation. These cohesive sheets of ductal cells have clear chromatin and small nucleoli. Myoepithelial cell nuclei (circle, left) are present within the sheet. Pap stain, intermediate magnification, left and high magnification, right.
Benign Conditions > Breast Cystic Lesions

slightly irregular cytoplasmic borders, and small nucleoli. The presence of myoepithelial cells admixed in the clusters or nearby is quite significant, since they are absent in invasive carcinoma F18.13.

- The cytology of proliferative breast lesions with atypia will show crowded 3-dimensional cell clusters displaying moderate cellular pleomorphism and anisonucleosis, occasional chromatin clumping, micronucleoli and few myoepithelial cells T18.2 (p 389).

F18.10 Ductal cells, columnar cells, and apocrine cells with fibrocystic changes (cytospin preparation). The presence of columnar cells in this specimen suggests a papillomatosis component. Pap stain, intermediate magnification.

F18.11 Apocrine cells in a sheet from a breast FNA with fibrocystic changes (nonproliferative breast disease). The apocrine cells show reactive atypia including nuclear enlargement, pleomorphism, and prominent nucleoli. Diff-Quik, intermediate and high magnification.

F18.12 Ductal hyperplasia without atypia. The ductal cells are crowded and overlapped. There is mild nuclear enlargement and hyperchromasia. Pap stain, intermediate and high magnification.

F18.13 Ductal hyperplasia without atypia. The ductal cells are crowded and overlapped. Myoepithelial cells are best appreciated above and below the focus plane (right). Pap stain, high magnification.
18.3.3 Fibroadenoma

- Fibroadenoma is the most common benign tumor, and typically occurs in young women between the ages of 20 and 35 years.
- They are usually well circumscribed, freely mobile, solitary, firm, discrete nodules that are roughly 2-3 cm in size, and can be multiple.
- The risk of carcinoma arising from a fibroadenoma is extremely rare, but when present, is usually lobular neoplasia.
- On cytology, fibroadenomas yield highly cellular aspirates showing a characteristic biphasic appearance (epithelial and stromal tissue fragments) in a background of myoepithelial cells F18.14.
- The epithelial component will show cohesive monolayered sheets of well organized ductal-type epithelium with “papillary-like” or “stag horn” branching architecture and scattered naked bipolar myoepithelial nuclei. The stromal component appears as fibrous stromal fragments with bright metachromatic or magenta-colored stromal appearance on Diff-Quik and pale green in Pap stain F18.14-F18.16. The stromal component may show mucinous changes that create the erroneous impression of a mucinous carcinoma F18.16. Furthermore, fibroadenoma may show columnar cell morphology, apocrine cells, foam cells, and multinucleated cells.

- Fibroadenomas are the most common cause of false positive diagnoses in breast FNA, since it can have cytomorphologic overlap with atypical ductal hyperplasia, a papillary lesion (staghorn clusters can be confused with papillae), ductal carcinoma, or mucinous carcinoma.

F18.14 Fibroadenoma (conventional smear). A branching tubular structure is shown combined with a stromal matrix component (right) and myoepithelial cells. Pap stain, high magnification.

F18.16 Fibroadenoma showing myxoid change (conventional smear preparation). A combined stromal and epithelial component is present with abundant single myoepithelial cells in a myxoid background. Diff-Quik, intermediate magnification, left and high magnification, right.
18: Breast

Benign Conditions > Fibroadenoma | Lactational Changes

- Juvenile fibroadenomas may show a more monomorphic appearance with predominantly larger epithelial fragments of a bland uniform columnar type. A papillary architecture can also be a prominent feature.

18.3.4 Lactational Changes

- Lactational changes are seen in breast FNA due to hormonal changes during pregnancy or the postpartum period which may promote the formation of nonneoplastic breast lesions or highlight the presence of preexisting ones.
- Histologically, there is lobular and ductal proliferation characterized by epithelial cells with cytoplasmic vacuolization and intraluminal secretion. These lesions often show a benign course and regress after cessation of hormonal stimuli.
- These nodules are also rarely found in ectopic locations, such as the axilla or vulva.
- The cytologic features of lactational changes include numerous epithelial cells loosely clustered or isolated in a background of fat droplets and cellular debris. The cells have abundant, foamy or vacuolated cytoplasm, and due to the cytoplasmic fragility, most of the cells are present as naked nuclei. The nuclei exhibit nuclear enlargement and prominent nucleoli. However, the chromatin contours of these nuclei are regular with delicate chromatin. A scarce number of bipolar naked nuclei can also be found in these smears as well as the presence of sheets of ductal epithelial cells mixed with myoepithelial cells F18.17.
- Given the high cellularity of these specimens, with prominent nucleoli and nuclear enlargement, and numerous single cells, these aspirates can be overcalled as malignant. Therefore, it is important to recognize secretory changes as compatible with pregnancy or lactational status. These findings, along with the clinical history, help in the distinction from breast carcinomas. If a history of pregnancy/lactation is not provided, the background of fat droplets and cellular debris is a helpful clue.

18.3.5 Mastitis

- Patients present with a painful breast mass.
- Breast abscesses can be associated with or without lactation.

The most common cause of bacterial infection is *Staphylococcus aureus*; however, other bacteria may be involved. On very rare occasions, mycobacterial tuberculosis or nonbacterial infections such as cryptococcus, aspergillus, echinococcus, leishmaniasis, filariasis and cysticercosis may be seen.
- Aspirates that yield frank pus should be submitted for microbiologic culture which may prove very helpful for diagnosis and treatment.
- Aspirates of acute mastitis or abscess show numerous neutrophils; lymphocytes, histiocytes, necrosis and occasionally eosinophils and plasma cells. Histiocytes with ingested material may be prominent F18.18. In rare cases the causative pathogen may be noted and confirmed by Gram stain.
- Ductal cells may be present and show reparative changes with enlarged nuclei and prominent nucleoli; however, they should be cohesive and associated with myoepithelial cells in comparison to invasive ductal carcinoma.
Benign Conditions>

18.3.6 Subareolar Abscess (Zuska Disease)
- Subareolar abscess is located in the periareolar area of the breast and it is associated with squamous metaplasia of the lactiferous ducts and keratin debris. It may present as a painful breast mass, nipple retraction, discharge, and fistula.
- The aspirate shows numerous squamous cells (nucleated and anucleate), keratinized debris, and inflammatory cells including neutrophils, lymphocytes and histiocytes. Foreign-body type giant cells may be seen.
- The differential diagnosis includes epidermal inclusion cyst, especially if ruptured. Knowledge of the location of lesion is helpful as subareolar abscess is periareolar while epidermal inclusion cyst can occur anywhere in the subcutaneous tissue of the breast.

18.3.7 Granulomatous Mastitis
- Granulomatous mastitis is a specific chronic inflammatory condition of the breast that may mimic carcinoma clinically. It may be associated with hematoma. The cause in most cases is unknown; however, occasionally it can be due to mycobacterial or fungal infection.
- The aspirate shows epithelioid histiocytes in loose clusters with ill-defined cytoplasm, multinucleated giant cells, lymphocytes, plasma cells, neutrophils, necrosis, and occasionally ductal epithelial cells with reactive changes.

18.3.8 Fat Necrosis
- Fat necrosis of the breast is not an uncommon lesion, it typically presents as a firm, irregular, tender breast mass.
- It is usually secondary to trauma and may clinically and radiologically mimic carcinoma. The trauma may, in some patients, be relatively mild and be forgotten by the time the patient presents with a mass lesion.
- The cytologic findings depend on the stage of presentation with early lesions presenting with more degenerative fat and lipophages and later lesions with fibrosis.
- The specimen is often scant in cellularity with an abundance of lipid laden macrophages (lipophages), fat in various stages of degeneration, giant cells, inflammatory cells, endothelial proliferation, and fibrosis.
The background may show degenerated/necrotic fat cells, with dirty granular background. Erythrophagocytosis may also be seen if the lesion is associated with a hematoma F18.22.

Pitfalls include overcalling as carcinoma due to reactive atypia and proliferating fibroblasts F18.22. Other histiocytic lesions should be considered as well. For example, crystal storage histiocytosis has been described in the breast and is frequently associated with a lymphoproliferative disorder, which should be excluded. In crystal storage histiocytosis, there is usually a large number of plasma cells, whereas fat necrosis contains more neutrophils. Breast carcinoma may sometimes be associated with fat necrosis, therefore a woman with a cytologic diagnosis of fat necrosis should be followed until the lesion resolves.

18.3.9 Epidermal Inclusion Cyst

- These cysts are common and found in the subcutaneous tissue.
- They may be secondary to trauma or a dilated hair follicle.
- There can be associated pain when they are ruptured or inflamed. The keratin debris evokes an inflammatory response.
21.1.1 Sampling Techniques & Processing

- Cytologic brushings can be performed if there is a superficial lesion visualized by endoscopy. These brushes can provide smears if the brush is rolled over a slide, which can be helpful if on-site evaluation is desired. In addition, the brush can be submitted in a transport media or CytoLyt/ThinPrep vial. Small tissue fragments can be removed from the brush and submitted as a cell block and/or the remainder of the material on the brush can be removed by vortexing the brush in the transport media and preparation of cytopsin or liquid based cytology (eg, ThinPrep) preparations.
- Fine needle aspirations can be used for deeper lesions, and can provide material for smears, cell block, and liquid based cytology or other preparations. This is particularly helpful because core biopsy may not be able to target these deeper lesions accessible by FNA.

21.1.2 Accuracy

- The sensitivity generally ranges from 75-95% for malignancy; however, the sensitivity varies based on the location in the gastrointestinal tract, the sampling method used, and the type of lesion being sampled. For adenocarcinomas of the gastrointestinal tract, the sensitivity is ~75-95% and the specificity is usually >95%.
- The sensitivity and specificity are optimized with the use of biopsy with cytology. In addition, the accuracy of brushing specimens is greater if done before surgical biopsy (ie, brushing then biopsy).
- The sensitivity and specificity for detecting intestinal metaplasia is lower than that for detecting adenocarcinoma; however, in the setting of dysplasia, cytology does a better job in detection of intestinal metaplasia. In general, the sensitivity for detecting intestinal metaplasia in cytology is ~40% and the specificity is ~85%.

21.2 Esophagus

- Cytologic specimens from normal esophagus will show a predominance of mature squamous cells, occasional glandular epithelial cells from the gastroesophageal junction can also be seen.

21.2.1 Infection/Esophagitis

- Noninfectious causes of esophagitis include trauma, reflux, scleroderma or systemic sclerosis, avitaminosis, hiatal hernia, chemical esophagitis due to medication. However, the precise etiology cannot be determined by cytology and requires clinical correlation.
- Brushing specimens are usually more sensitive than biopsy specimens in the setting of infection due to the greater sampling area.
- Since oropharyngeal contamination with bacteria is common in these specimens, the presence of bacteria in frequently seen, but is usually not clinically significant. The lack of inflammation and the presence of the bacteria in association with mature squamous cells can help in identifying oropharyngeal contamination. In addition, the amount of oropharyngeal contamination is minimized by the use of a sheath to protect the brush before sampling of the lesion in the esophagus.
- Cytologic features will include reactive squamous cell and inflammatory cells, occasionally with prominent inflammatory debris. Reactive squamous cells can occasionally show pseudo-halos with a tight area of clearing around the nucleus F21.1.

- Candida will show pseudohyphae and yeast forms F21.1-F21.2.
Herpes simplex virus (HSV) infection will show the characteristic findings of multinucleation, margination of chromatin, and nuclear molding, in addition to findings seen with ulceration F21.3-F21.5.

Cytomegalovirus (CMV) infection will show more mononuclear cells than seen in HSV and will show a single large intranuclear inclusion with perinuclear halo, and occasionally intracytoplasmic inclusions F21.3.

Nonspecific inflammatory changes without an identifiable organism will be seen in the noninfectious causes of esophagitis, and thus, is essentially a diagnosis of exclusion.

IHC: immunostains are available to detect HSV 1 and 2, in addition to CMV.

Special stains: Grocott/GMS stain is helpful for confirming the presence of fungal organisms and to highlight the morphology of the yeast or hyphae for classification.

In situ hybridization and polymerase chain reaction (PCR) can also be used in the diagnosis of some infectious etiologies.

F21.2 Esophageal brushing with Candida (left, Thin Prep, intermediate magnification; right, Thin Prep, high magnification). Mature squamous cells are seen with intermixed yeast forms and pseudohyphae, compatible with Candida species.

F21.3 Esophageal brushing with cytomegalovirus (CMV) and herpes simplex virus (HSV) (left, CMV, Thin Prep, intermediate magnification; right, HSV, SurePath, high magnification). On the left, there are cells with large intranuclear inclusions in a case of CMV infection in the esophagus. On the right, mature squamous cells are seen with a rare cell showing multinucleation, margination of the chromatin (nuclear clearing with the chromatin condensed at the periphery of the nucleus), and nuclear molding, consistent with the cellular features associated with HSV infection.

F21.4 Brushing of an oral lesion in a transplant patient (left, Diff-Quik, high magnification; right, Pap stain, high magnification). The aspirates from this oral lesion reveal squamous cells with prominent margination of the chromatin and multinucleation. The margination of the chromatin is easily seen on the Pap stain. Viral changes like this can mimic malignancy, particularly keratinizing squamous cell carcinoma; however, the chromatin pattern is helpful in excluding the coarse chromatin of malignancy.
The differential diagnosis includes reactive/reparative changes in the absence of infection, and malignancy. Malignancy will usually show more obvious nuclear pleomorphism and variability in nuclei, with a lack of viral inclusions or chromatin clearing, and an absence of an acute inflammatory response.

21.2.2 Ulceration & Reactive/Reparative Changes

- In the setting of esophageal ulcers or other mucosal injury, the squamous epithelium can undergo reactive and reparative changes, and may be associated with granulation tissue that can mimic malignancy cytologically.
- Radiation and other treatment-related effects, such as those that occur with chemotherapy, can also mimic malignancy; however, there is usually not an elevated nuclear-to-cytoplasmic ratio, since the nuclear size and cytoplasm both increase. In addition, the 2-tone cytoplasm, cytoplasmic vacuolization, and occasional multinucleation, along with a pertinent clinical history, can help in supporting reactive or treatment-related changes.

- Other changes in the esophagus can also cause reactive changes that can mimic malignancy, including pemphigus vulgaris, where the squamous epithelial cells have bullet or bar-shaped nuclei, discohesion, and monotony. The predominance of single cells occurs due to the autoimmune destruction of intercellular junctions.
- Reactive and reparative atypia can give rise to false positive diagnoses of malignancy and lower the specificity; thus, it is important to adhere to strict criteria when evaluating these specimens to avoid an overdiagnosis.
- The cytologic features that favor a benign/reactive process over malignancy include small prominent nucleoli, fine chromatin, uniform appearing cells with streaming of the cells in a 2-dimensional sheet, and the presence of inflammation (infiltrating neutrophils or an inflammatory background) F21.6. Also, a low nuclear-to-cytoplasmic ratio, 2-tone cytoplasm, and cytoplasmic vacuolization can be a clue to the reactive nature of the changes.
21.2.3 Intestinal Metaplasia

- Barrett esophagus occurs in patients with gastroesophageal reflux when the esophageal squamous epithelium is replaced by intestinal columnar epithelium with goblet cells.
- >90% of esophageal or gastroesophageal adenocarcinomas arise from Barrett esophagus.
- Sensitivity and specificity for detecting intestinal metaplasia is less than that for detecting malignancy, due to the cytomorphologic overlap with normal gastric mucosa with features that can mimic goblet cells (e.g., pseudogoblet mucus cells). However, in the setting of dysplasia, the sensitivity for cytologic detection of intestinal metaplasia is improved.
- Cytologic features of intestinal metaplasia include the presence of goblet cells where there is a single, large vacuole within the cytoplasm of glandular cells, usually pushing and indenting the nucleus. In the setting of dysplasia, there can be crowded groups of cells with nuclear atypia that approaches the cytologic changes seen in adenocarcinoma.
- Differential diagnosis includes gastric epithelium, which usually appears as glandular cells without discrete large vacuoles. However, “pseudogoblet cells” can be seen and may be difficult to distinguish from intestinal metaplasia on Papanicolaou staining. On an H&E stained cell block, the goblet cells have more gray-pale blue staining (acid mucin) in their cytoplasm, whereas “pseudogoblet cells” have pink vacuoles (neutral mucin). In the setting of dysplasia, it is usually easier to definitively see intestinal metaplasia in the background. The differential diagnosis for dysplasia in Barrett includes reactive change and malignancy. Most cases of dysplasia will lead to indeterminate cytologic diagnoses (atypical or suspicious) with a recommendation for biopsy to exclude the possibility of invasive carcinoma, since there is cytologic overlap. In fact, high grade dysplasia and adenocarcinoma have so much morphologic overlap, that one of the only helpful features is the amount of atypia present (focal in dysplasia and more diffusely present in carcinoma) and the presence of diathesis or necrosis in the background; however, in the setting of specimens with limited cellularity, this can be difficult.

21.2.4 Benign Neoplasms

- Benign neoplasms in the esophagus include papillomas, which are similar to condyloma acuminatum, and may be associated with HPV infection. The cytology in these lesions reveals benign/reactive squamous cells with occasional koilocytic changes, and without distinctive features of malignancy, in a clean background devoid of necrotic debris. Endoscopic correlation is important to identify if a papillary or raised lesion was identified.
- In addition, rare reports of granular cell tumors and leiomyomas have also been reported in esophageal cytology specimens.

21.2.5 Malignancies

- The primary malignancies of the esophagus include adenocarcinomas of the gastroesophageal junction, and squamous cell carcinomas, including variants, such as basaloid squamous cell carcinomas.
- These primary tumors are most often sampled with biopsy, or cytologic brushings with biopsy, given that there is usually a luminal mass that is visualized and easily sampled with a biopsy.
In the setting of a periesophageal mass being sampled, it is important to ask the endoscopist if there are endoscopic findings suggestive of a luminal tumor, Barrett esophagus, or dysplasia because there are reports of FNA needle contamination from the FNA needle passing directly through a luminal tumor or atypical/dysplastic epithelium, or contamination by tumor cells within the luminal fluid from a nearby tumor. This is important because contamination involving a periesophageal lymph node EUS FNA sample could lead to a false positive diagnosis of malignancy (if the FNA is contaminated by atypical/dysplastic epithelium that is overinterpreted as malignancy), or an overdiagnosis of metastatic malignancy (if the FNA is contaminated by luminal tumor in a lymph node sample) with resultant overstaging of a patient.

21.2.5.1 Squamous Cell Carcinoma

- Most common malignancy in the esophagus, and unrelated to intestinal metaplasia or Barrett esophagus.
- Esophageal squamous cell carcinoma presents with difficulty swallowing due to mass obstruction.
- Some of these tumors can be HPV-related, and some show a strong correlation with diet (e.g., nitrosamine intake).
- The cytologic features vary depending on the differentiation of the tumor. Some tumors are well differentiated or keratinized and show abundant keratin debris with discohesive cells that have orangophilic cytoplasm, nuclear hyperchromasia, nuclear enlargement and irregular nuclear contours. Well differentiated tumors showing more single keratinized cells with orangophilic cytoplasm on Papanicolaou staining and tadpole-like shapes with long cytoplasmic tails. However, unlike benign squamous cells, there is marked nuclear atypia with hyperchromasia and irregularities. In more poorly differentiated tumors, there is scant cytoplasm with enlarged hyperchromatic nuclei that lack the single keratinized cells and tend to have more conspicuous nucleoli. Some squamous cell carcinomas may also show a small round blue cell type morphology with nuclear molding, nuclear-to-cytoplasmic ratios, palisading, crush artifact, and discohesion, which can be seen in the basaloid variant of squamous cell carcinoma.
- The differential diagnosis includes reparative/reactive changes, especially in the setting of ulceration or radiation, dysplasia, and other malignancy (poorly differentiated adenocarcinoma).

21.2.5.2 Adenocarcinoma

- The rate of adenocarcinoma of the esophagus and gastroesophageal junction has increased dramatically in the past 2 decades.
- Usually (>90%) arises in the background of intestinal metaplasia or Barrett esophagus.
- The distinction between high grade dysplasia and intramucosal or invasive adenocarcinoma may be difficult in some scenarios, and in these cases, a concurrent endoscopic biopsy can be helpful.

F21.8 Poorly differentiated squamous cell carcinoma of the esophagus (left, Diff-Quik, intermediate & high magnification; right, H&E, high magnification). The specimen reveals clusters of cells with hyperchromasia, increased nuclear-to-cytoplasmic ratios, and nuclear pleomorphism. These cells were positive for p53, and the corresponding resection showed poorly differentiated squamous cell carcinoma with basaloid features.
21: Gastrointestinal Tract & Bile Ducts

Esophagus > Malignancies

| Stomach > Infection/Gastritis |

- The cytologic features depend on the type of adenocarcinoma, but usually there is a high cellularity with tumor diathesis and a background of goblet cells. Intestinal type adenocarcinoma will show features typical of an adenocarcinoma, including disorganized cohesive clusters with nuclear enlargement, prominent nucleoli, elevated nuclear-to-cytoplasmic ratios, nuclear irregularities, and glandular formation. Signet-ring type or poorly differentiated adenocarcinomas will show more single cells and may have more vacuolated cytoplasm, which can make the diagnosis difficult, especially in cases with limited cellularity.

- IHC & special stains: mucicarmine+, variably CK7+, CK20+ & CDX2+; p63– & CK5/6–.

- The differential diagnosis includes reactive/reparative changes (less atypia, inflammatory background, does not meet all features of malignancy T21.2, dysplasia, and other poorly differentiated tumors (particularly squamous cell carcinoma).

21.2.5.3 Other Malignancies

- Other rare malignancies reported in the esophagus include salivary gland-type tumors (eg, adenoid cystic carcinoma), sarcomas, choriocarcinomas, and primary esophageal melanomas.

21.3 Stomach

- Cytologic specimens from normal stomach will show a predominance of benign glandular epithelial cells with columnar morphology, moderate amounts of cytoplasm, and centrally located round nuclei F21.9. These benign glandular cells can be seen in strips, honeycomb (2-dimensional sheets; F21.9), or tubular arrangement when cells are vigorously brushed causing the entire gland to be seen intact. Occasional squamous cells may be seen from the esophagus or oropharyngeal contamination.

21.3.1 Infection/Gastritis

- The infections in the stomach, include fungus and viral infections, as seen in the esophagus, but also Helicobacter pylori (H pylori) and atypical mycobacteria.
21.3.2 Reactive Changes

There are a myriad of cases of reactive atypia in the stomach, including, but not limited to medications (e.g., aspirin, other analgesics), granulomatous disease, infection, and vitamin deficiencies (e.g., pernicious anemia).

The cytologic features of reactive change include flat, cohesive clusters with regular, smooth nuclear membranes and without significant variability in nuclear size. Uniform, prominent, often multiple, nucleoli can also be seen. There is often a prominent inflammatory background or presence of inflammatory cells attached to the cell groups with atypia. Usually the changes in reactive atypia are seen in a few cells and exist with a spectrum of changes from benign to reactive, whereas in malignancy, the changes are seen in more of the cells in the sample, there are more single cells, and there are 2 distinct populations without a continuum.

Differential diagnosis includes chronic inflammatory process, infection-related atypia, chemoradiation effect, or other reactive process, in addition to dysplasia, intramucosal carcinoma, and invasive gastric adenocarcinoma.

21.3.3 Spindle Cell Lesions/Tumors

Spindle cell lesions can occur in the stomach can be attributed to a variety of causes, but most commonly leiomyomas, gastrointestinal stromal tumors (GISTs), or neural tumors (e.g., schwannomas). Rarely vascular neoplasms and glomus tumors can present in the stomach.

IHC findings can be critical for determining the type of spindle cell lesion.

21.3.3.1 Gastrointestinal Stromal Tumor (GIST)

Spindle cell or epithelioid neoplasms that can recapitulate differentiation towards the interstitial cells of Cajal, which are involved with coordinating gut motility.

Can show either spindle cell morphology (70%) or epithelioid morphology (30%).

These tumors can arise in a variety of locations in the gastrointestinal tract and the behavior of these tumors is related to its site, with tumors in the small bowel having the worst behavior prognosis. They are most common in the stomach, followed by the small intestine, and are rare in the colon.
Stomach>Spindle Cell Lesions/Tumors

- When in the stomach, they usually arise in the submucosa, so are not usually visualized on the mucosal surface by endoscopy, and may be missed by superficial biopsy or brushing.
- The majority of these tumors are benign, but 10-30% are malignant and represent ~1% of GI malignancies. Determination of the biologic behavior of these tumors is best analyzed upon surgical resection. Some of the features that favor malignancy include the following: size >5 cm, necrosis, hemorrhage, hyper-cellularity, nuclear atypia, and mitotic activity (mitotic count >5/50 HPF).
- Some GISTs respond to the targeted therapy, imatinib mesylate, which is also used in the treatment of chronic myelogenous leukemia.
- Local recurrences and metastases commonly develop in the abdominal cavity and liver, but are rare in the bone, soft tissue and lymph nodes.
- Cytologic features include cellular specimens with a uniform population of discohesive or loosely cohesive spindle or epithelioid cells with delicate cytoplasmic extensions and inconspicuous nuclei. These cells are seen in loose clusters or sheets. Occasional paranuclear vacuoles and stripped nuclei can also be seen. Some cases have metachromatic background material or necrosis in the background. The malignant cases tend to have more pleomorphism, more mitoses (>5/50 HPF), and may have necrosis.

IHC: c-kit/CD117+, DOG1+, and sometimes CD34+; negative for desmin and smooth muscle actin.

Molecular studies have revealed mutually exclusive mutations in KIT (60-80%) and PGFRA (5-10%) genes.

The differential diagnosis of GISTs depends on the predominant cellular morphology.

F21.11 Epithelioid gastrointestinal stromal tumor (GIST) (Diff-Quik, high magnification). Loosely cohesive epithelioid cells are seen with interlacing metachromatic stromal material. The tumor cells have occasional vacuoles in the cytoplasm, and some appear as stripped nuclei.

F21.12 Spindle cell gastrointestinal stromal tumor (GIST) (left, Diff-Quik, high magnification; right, Pap stain, high magnification). The tumor cells appear in cellular clusters and have uniform, long, cigar-shaped nuclei within a metachromatic background.

F21.13 Spindle cell gastrointestinal stromal tumor (GIST) (left, H&E, high magnification; right upper, CD117/c-kit stain; right lower, DOG1 stain). The cell block shows similar features and the immunostains confirmed positivity for CD117/c-kit (right upper) and DOG1 (right lower).
Those tumors comprised of spindle cells should be differentiated from smooth muscle tumors (e.g., leiomyoma), fibromatosis, solitary fibrous tumor, inflammatory myofibroblastic tumor and neural tumors (e.g., schwannoma). If the spindle cells show significant pleomorphism, then leiomyosarcoma, malignant fibrous histiocytoma and dedifferentiated liposarcoma, should be considered. However, the cellular features in these tumors show much more pleomorphism than in GISTs (even malignant lesions), and immunohistochemistry for CD117, CD34 and DOG1 are all negative.

GISTs comprised of epithelioid cells should be differentiated from poorly differentiated carcinoma (cytokeratin+; CD117–, CD34– and DOG1–), melanoma or clear cell sarcoma (S100+, HMB45+, and Melan-A+, while CD117–), glomus tumor (SMA+, but CD117–), ganglioneuroblastoma (neuroendocrine carcinoma (synaptophysin+, but CD117–) and benign epithelioid nerve sheath tumor like a schwannoma or neurofibroma (S100+, but CD117–).

21.3.3.2 Leiomyoma & Leiomyosarcoma

- Spindle cell tumors of smooth muscle origin that usually arises in the wall of the esophagus, stomach or colorectum. Leiomyosarcoma is exceedingly rare, as the majority of these are leiomyomas.

- Cytologic aspirates of these lesions are usually limited in cellularity or nondiagnostic. If there is material, there are usually discohesive spindle cells with plump oval nuclei and ill-defined extensions of cytoplasm. Leiomyomas tend to have lower cellularity and thick tissue fragments with abundant cytoplasm.

Leiomyosarcomas have greater cellularity and thin tissue fragments with abundant cytoplasm.

F21.14 Gastric leiomyoma (left, Diff-Quik, intermediate magnification; right, Pap stain, high magnification). The aspirates reveal dense tissue fragments with elongated spindle cell nuclei and a syncytial appearance without discrete cell borders, and dense appearing cytoplasm.

F21.15 Gastric leiomyoma (left, H&E, intermediate magnification; right, h-caldesmon stain, high magnification). The cell block shows tissue fragments of a hypocellular, bland appearing spindle cell neoplasm with abundant eosinophilic cytoplasm. The immunostain for h-caldesmon was positive (right), while the stains for cytokeratin, CD117, CD34, and S100 were all negative.

<table>
<thead>
<tr>
<th>Differential diagnosis of epithelioid GIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomus tumor</td>
</tr>
<tr>
<td>Neuroendocrine tumor</td>
</tr>
<tr>
<td>Poorly differentiated carcinoma</td>
</tr>
<tr>
<td>Melanoma</td>
</tr>
<tr>
<td>Sarcoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential diagnosis of spindle cell GIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leiomyoma/leiomyosarcoma</td>
</tr>
<tr>
<td>Nerve sheath tumor (e.g., schwannoma)</td>
</tr>
<tr>
<td>Inflammatory myofibroblastic tumor</td>
</tr>
<tr>
<td>Fibromatosis</td>
</tr>
<tr>
<td>Solitary fibrous tumor</td>
</tr>
</tbody>
</table>