Integrated Hematopathology

Morphology and FCl with IHC
Integrated Hematopathology

Morphology and FCI with IHC

Cherie H Dunphy, MD, FCAP, FASCP

Professor of Pathology and Laboratory Medicine
Associate Director, Core, Flow Cytometry, and Special Procedures Laboratories
Department of Pathology and Laboratory Medicine
University of North Carolina
Chapel Hill, NC
Publishing Team

Adam Fanucci (illustration/production)
Tae Woong Moon (design/production)
Erik N Tanck (editorial content/production)
Joshua Weikersheimer (publishing direction)

Notice

Trade names for equipment and supplies described are included as suggestions only. In no way does their inclusion constitute an endorsement of preference by the Author or the ASCP. The Author and ASCP urge all readers to read and follow all manufacturers’ instructions and package insert warnings concerning the proper and safe use of products. The American Society for Clinical Pathology, having exercised appropriate and reasonable effort to research material current as of publication date, does not assume any liability for any loss or damage caused by errors and omissions in this publication. Readers must assume responsibility for complete and thorough research of any hazardous conditions they encounter, as this publication is not intended to be all-inclusive, and recommendations and regulations change over time.

Copyright © 2010 by the American Society for Clinical Pathology. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Printed in Hong Kong

14 13 12 11 10
Table of Contents

1 General Introduction
 1 Organization and Purpose
 2 Applications of Flow Cytometry to Diagnostic Hematopathology
 2 References

2 Basic Principles and Instrumentation of Flow Cytometry
 3 Basic Theory of FC
 6 Antibodies and Fluorochromes
 7 Sample Handling and Processing
 9 References

3 Advantages and Disadvantages of FCI
 11 Specimen Requirements
 12 Advantages of FCI
 12 Disadvantages of FCI
 15 FCI for Nodal and Extranodal Tissues
 15 FCI for BM Specimen Evaluation
 16 FCI for Evaluation of Lymphomatous Involvement of Small Biopsies
 16 References

4 Phenotypic Markers Commonly Used by FCI in Diagnostic Hematopathology
 19 Panhematopoietic Cell Antigens
 19 HLA-DR (Immune-Associated) Antigens
 21 B-Cell Lineage-Associated Antigens
 24 Prognostic Markers in CLL
 24 T-Cell Lineage-Associated Antigens
 26 Large Granular Lymphocyte- or Natural Killer Cell-Associated Antigens
 27 Monocyte- and Myeloid-Associated Antigens
 30 Progenitor Cell-Associated Antigens
 31 Non-Lineage Antigens
 36 Erythrocyte-Associated Antigens
 36 Platelet-Associated Antigens
 36 CD61
 36 Paroxysmal Nocturnal Hemoglobinuria (PNH)-Associated Deficient Antigens
 37 Monoclonal Antibodies as Targeted Therapy for Hematolymphoid Malignancies
 40 References

5 Normal vs Abnormal FCI Findings: Peripheral Blood, Body Fluids, Bone Marrow, and Lymph Node
 53 Introduction
 54 Patterns of Light Scatter and CD45 Expression
 61 Patterns of Antigen Expression
 65 Thymocytes, Thymoma, and Blasts of Precursor T-Cell Lymphoblastic Lymphoma/Leukemia
 72 References
Classification of Hematolymphoid Neoplasms

75 Chronic Myeloproliferative Diseases (Myeloproliferative Neoplasms, 2008)
75 Myelodysplastic/Myeloproliferative Diseases
75 Myelodysplastic Syndromes
76 Acute Myeloid Leukemia (and Related Precursor Neoplasms, 2008)
76 Precursor B-Cell Neoplasms
76 Precursor T-Cell Neoplasms
77 Mature B-Cell Neoplasms
77 Mature T-Cell and NK-Cell Neoplasms
78 Hodgkin Lymphoma
78 Immunodeficiency-Associated Lymphoproliferative Disorders
78 Histiocytic and Dendritic Cell Neoplasms
78 Mastocytosis
78 References

Myeloproliferative Neoplasms

79 Classification
79 Introduction
79 Chronic Myelogenous Leukemia
82 Non-CML MPNs
83 Summary
83 References

Myelodysplastic Syndromes

85 Classification
85 Introduction
85 Diagnosis/Differentiation from Various Benign Conditions
90 Grading of MDS
91 Predicting Prognosis, Leukemic Transformation, and Relapse
92 Clues to Pathogenesis
92 Summary
93 References

Myelodysplastic/Myeloproliferative Diseases

95 Classification
95 Introduction
95 Chronic myelomonocytic leukemia
97 Juvenile Myelomonocytic Leukemia
99 Comparison with Enzyme Cytochemistry and Immunohistochemistry
99 References

De-Novo Acute Myeloid Leukemia

101 Classification
101 Introduction
101 Diagnosis
107 Correlation of FCI With AML Subtype
115 Detection of Minimal Residual Disease and Relapse
115 FCI Compared With Enzyme Cytochemical and IHC Techniques
119 References

Precursor B-Cell Neoplasms

123 Classification
123 Introduction
123 Diagnosis
128 Detection of Minimal Residual Disease and Relapse
128 Comparison of FCI vs IHC in Precursor B-Lymphoblastic Leukemia/Lymphoma
131 References
12 Mature B-Cell Neoplasms
133 Classification
133 Introduction
136 B-Cell Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma
144 B-Cell Prolymphocytic Leukemia
146 Mantle Cell Lymphoma
151 Follicular Lymphoma
154 Lymphoplasmacytic Lymphoma
157 Plasma Cell Neoplasms: Plasma Cell Myeloma
161 Plasma Cell Neoplasms: Plasma Cell Myeloma
162 Splenic Marginal Zone B-Cell Lymphoma (± Villous Lymphocytes)
168 Extranodal Marginal Zone B-Cell Lymphoma of MALT Type
169 Nodal Marginal Zone B-Cell Lymphoma (± Monocytoid B Cells)
170 Hairy Cell Leukemia
172 Diffuse Large B-Cell Lymphoma
179 Mediastinal (Thymic) Large B-Cell Lymphoma
181 Intravascular Large B-Cell Lymphoma
181 Primary Effusion Lymphoma
183 Burkitt Lymphoma/Burkitt Cell Leukemia
185 Primary Cutaneous Marginal Zone B-Cell Lymphoma
186 Primary Cutaneous Follicle Center Lymphoma
187 Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type
189 References

13 Precursor T-Cell Neoplasms
199 Classification
199 Introduction
199 Diagnosis
206 FCI vs Immunohistochemistry in Precursor T Lymphoblastic Leukemia/Lymphoma
208 References

14 Mature T-Cell and Natural Killer (NK)-Cell Neoplasms
209 Classification
210 Introduction
215 Leukemic/Disseminated T-Cell Prolymphocytic Leukemia (T-PLL)
216 T-Cell Large Granular Lymphocytic Leukemia (LGLL)
220 Aggressive NK-Cell Leukemia
221 Systemic EBV+ T-Cell Lymphoproliferative Disease of Childhood
222 Adult T-Cell Leukemia/Lymphoma (ATLL)
223 Primary Cutaneous Mycosis Fungoides (Indolent)
224 Sézary Syndrome (Aggressive)
225 Primary Cutaneous CD30+ T-Cell Lymphoproliferative Disorders (Indolent)
225 Primary Cutaneous Anaplastic Large Cell Lymphoma
227 Lymphomatoid Papulosis
227 Subcutaneous Panniculitis-Like T-Cell Lymphoma (Indolent)
228 Hydroa Vacciniforme-Like Lymphoma
228 Primary Cutaneous Small-Medium CD4+ TCL (Indolent)
16 Immunodeficiency-Associated Lymphoproliferative Disorders

265 Classification

265 Introduction

265 Lymphoproliferative Diseases Associated with Primary Immune Disorders

273 Lymphomas Associated with Infection by HIV

276 Post-Transplant Lymphoproliferative Disorders

278 Methotrexate (MTX)-Associated Lymphoproliferative Disorders

278 References

17 Histiocytic and Dendritic Cell Neoplasms

283 Classification

283 Histiocytic Sarcoma

284 Langerhans Cell Histiocytosis and Langerhans Cell Sarcoma

286 Interdigitating Dendritic Cell Sarcoma (DCS), Follicular DCS, and DCS, NOS

288 Disseminated Juvenile Xanthogranuloma

288 Additional Applications of FC to Dendritic Cells

288 References

15 Hodgkin Lymphoma

257 WHO Classification

257 Introduction

257 Classical Hodgkin Lymphoma

261 Nodular Lymphocyte-Predominant HL

264 References
18 Mastocytosis

- **Classification**: 289
- **Introduction**: 289
- **Diagnosis**: 289
- **Immunophenotype of Neoplastic Mast Cells**: 290
- **Differential Diagnosis**: 296
- **Mast Cell Sarcoma**: 297
- **Mast Cell Leukemia**: 297
- **References**: 298

19 FCI for Fine Needle Aspirate Specimens

- **Recommended Triage Procedures for FNAs**: 301
- **Initial Diagnosis of NHL**: 302
- **Evaluation of Recurrent NHL**: 304
- **Limitations of FNA Combined with FCI in the Evaluation of Primary and Recurrent Lymphomatous Involvement**: 304
- **Classical Hodgkin Lymphoma (cHL)**: 305
- **Composite Lymphoma**: 305
- **Situations Requiring Biopsy, Based on FNA and FCI Results**: 305
- **Detecting Hematopoietic Malignancy Granulocytic Sarcoma Chloroma, Monocytic Sarcoma, Erythroid Sarcoma**: 305
- **Determining Presence of Metastatic Non-Hematolymphoid Malignancy**: 306
- **References**: 306

20 FCI for Body Fluids

- **Introduction**: 307
- **Types of Specimens Suitable and Specimen Requirements**: 307
- **Non-Hodgkin Lymphoma**: 307
- **Detecting Hematopoietic Malignancy**: 310
- **FISH and PCR to Diagnose NHL with Serous Effusions**: 312
- **Determining Presence of Metastatic Non-Hematolymphoid Malignancy**: 312
- **Limitations**: 312
- **References**: 312
Preface

Diagnostic hematopathology relies heavily on combining cytomorphology and histology with ancillary techniques, such as applying immunophenotyping and molecular/cytogenetic analysis. This book focuses on the applications of flow cytometric immunophenotyping (FCI) in combination with morphology for diagnostic hematopathology.

FCI is a particularly useful tool in diagnostic hematopathology. Virtually all types of specimens evaluated for hematolymphoid neoplasms (e.g., peripheral blood, body fluids, bone marrow aspirates and core biopsies, fine needle aspirates, and fresh tissue biopsies) are suitable for FCI.

Of course, FCI represents only one useful tool used in diagnostic hematopathology and must never be interpreted without correlation with the cytomorphologic and histomorphologic features of each case. This comprehensive flow cytometry text appropriately covers, in depth, the technical aspects of FCI with a thorough coverage of the phenotypic markers, as well as the advantages and disadvantages of FCI. Subsequently, there is a detailed description of the phenotypic findings of normal peripheral blood, body fluids, bone marrow, and particularly lymphoid tissue elements, and then comprehensive discussions of FCI within the specific hematolymphoid neoplasms, mirroring the outline and terminology of the 2008 WHO classification. Within each discussion of a specific hematolymphoid neoplasm is a discussion of the typical immunophenotypes, which are then illustrated in variant cases, both morphologically (e.g., H&E images) and immunophenotypically (e.g., color dot plots). These are then correlated with molecular and cytogenetic findings as is useful. There is incorporation of the discussions of the utility of FCI in the identification of clonal B cells, at the beginning of the discussion of the B-cell neoplasms; the identification of abnormal T cells and clonality of T cells by FCI, at the beginning of the discussion of the T-cell neoplasms, the identification of myeloblasts by FCI, at the beginning of the discussion of the AMLs; the identification of B and T lymphoblasts by FCI, at the beginning of the discussions of precursor B-cell neoplasms and precursor T-cell neoplasms, respectively; and the identification of features of dyserythropoiesis by FCI, at the beginning of the discussion of the myelodysplastic syndromes. This text also has separate chapters regarding the unique applications of FCI to the evaluation of fine needle aspirate specimens and body fluids.

Also provided is a CD companion to the text that contains the listmode files of selected cases that are found within the book. The listmode files may be viewed by individuals who already have access to the software as described in the instructions for use of the CD below.

Using FACSDiva software

1. Open the Experiment that will contain the imported files
2. Files can be imported into an open Experiment only, either by opening an existing Experiment or creating a new one
3. Change Area to Height for all parameters within the analysis template
4. Choose File > Import > FCS files
5. Locate the files you want to import in the dialog box that appears
6. Use the buttons in the dialog box to find the files to be imported
7. Select multiple files by holding down the Control key as you click the file names

Using CellQuest software

1. Open FACS Convert
2. Locate files on the CD
3. Select All > Convert
4. Converted files will be located in the FACS Convert folder
5. Open an analysis template
6. Edit > Select All > Plots > Change Data File
7. Select file (inside the FACS Convert folder) > Open