Update on Clinically Relevant Genetic Alterations in AML and Recommendations for Molecular Testing

Amir Behdad, M.D.
LoAnn C. Peterson, M.D.
Feinberg Medical School, Northwestern University
Chicago, Illinois
Speakers Disclosure

In the past 12 months, we have not had a significant financial interest or other relationship with the manufacturer(s) of the product(s) or provider(s) of the service(s) that will be discussed in my presentation.
Outline

• Introduction and historic background
• Brief review of cytogenetic abnormalities
• Gene mutations
 – 2008 WHO classification
 – 2016 probable updates
 – Comprehensive analysis
 – Recommendations for molecular testing
• Myeloid neoplasms with germline predisposition
Morphological Classification

• FAB-French American British
 – Introduced in 1976
 – Based on the type of cell from which the leukemia developed and its degree of maturity (morphology and cytochemistry)
FAB Classification

- Stem cell
 - Erythroid committed progenitor
 - Myeloid committed progenitor
 - Promonocyte/Monoblast
 - Myeloblast
 - Promyelocyte
 - Neutrophil
 - Megakaryocytic committed progenitor
FAB- Prognosis

A

M3

years from start of therapy

Percent Survival

0 1 2 3 4 5 6 7 8

0 25 50 75 100

AML M0: N = 20 (Censored 8)
AML M1: N = 117 (Censored 43)
AML M2: N = 198 (Censored 87)
AML M3: N = 41 (Censored 32)

B

M4eo

years from start of therapy

Percent Survival

0 1 2 3 4 5 6 7 8

0 25 50 75 100

AML M4: N = 104 (Censored 39)
AML M4 Eo: N = 38 (Censored 30)
AML M5: N = 74 (Censored 30)
AML M6: N = 20 (Censored 10)
Cytogenetic Classification

Chromosomal Abnormalities

• Detected in over half of adult AML
• Most important predictor of outcome
• Define diagnostic categories in WHO classification
 – AML with recurrent cytogenetic abnormalities
 – AML with myelodysplasia related changes

Recurrent Cytogenetic Abnormalities in 2008 WHO Classification

Risk largely determined by recurrent genetic abnormality

Intermediate risk but very heterogeneous

Normal Karyotype 45%

Others

Complex

Standard chemotherapy; without allogeneic stem cell transplant

Up front allogeneic stem cell transplant

High risk

Intermediate risk

Low risk

t(8;21)

inv(16)/t(16;16)

t(6;9)

inv(3)/t(3;3)

t(15;17)

t(16;16)/inv(16)

t(9;11)

t(9;11)

Recurrent Cytogenetic Abnormalities in 2008 WHO Classification

Low risk

High risk

Intermediate risk
Genetic Testing for APL

- Karyotyping
- FISH
 - May miss a small subset of PML-RARA
- RT-PCR
 - More sensitive/Quantifiable
 - Suitable for follow up
2016 Probable Updates on Cytogenetic Subgroups

• Refine APL with PML-RARA
 – Some AMLs with RARA variant translocations (PLZF-RARA and STAT5B-RARA) are associated with poor outcomes and resistance to ATRA

• AML with BCR-ABL1
 – Important to recognize for potential upfront TKI therapy
 – p190 or p210 transcript may be seen
 – NPM1 mutations are frequent
 – Clinical features may be similar to the CML-blast phase
 – Deletion of antigen receptor genes (IGH, TCR), IKZF1 and/or CDKN2A may support a diagnosis of de-novo disease

Konoplev et al., Leuk Lymphoma. 2013 Jan;54(1):138-44.
Gene Mutations in AML

• ~50% of AML have no significant chromosomal abnormality (CN-AML)

• Clinical utility of detecting mutations in AML:
 – Diagnosis (disease defining mutations)
 – Prognosis
 – Targeted therapy
 – Disease monitoring (MRD)
Genomic Landscape of AML

- An average of 13 mutations found in genes
- Of these, an average of 5 are in genes that are recurrently mutated
- There are at least one driver mutation in nearly all AML samples
- A complex interplay of genetic events contributes to AML pathogenesis in individual patients

AMLs have less mutations compared to the other neoplasms.

Recurrent genetic mutations in AML

<table>
<thead>
<tr>
<th>Name</th>
<th>Physiologic Function</th>
<th>Frequency in CN-AML</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutations in current clinical practice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPM1</td>
<td>Nuclear-cytoplasmic shuttling phosphoprotein</td>
<td>30-50%</td>
<td>Favorable</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>Receptor tyrosine kinase</td>
<td>20-30%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>CEBPA</td>
<td>Transcription factor</td>
<td>8-15%</td>
<td>Favorable</td>
</tr>
<tr>
<td>KIT</td>
<td>Receptor tyrosine kinase</td>
<td>30% of CBF-AML</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>Mutations under investigation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3-TK</td>
<td>Receptor tyrosine kinase</td>
<td>5-10%</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>RUNX1</td>
<td>Transcription factor</td>
<td>10-15%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>IDH1/IDH2</td>
<td>Epigenetic modifier</td>
<td>15-30%</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>Epigenetic modifier</td>
<td>20-30%</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>TET2</td>
<td>Epigenetic modifier</td>
<td>10%</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>ASXL1</td>
<td>Chromatin modifier</td>
<td>5-10%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>MLL-PTD</td>
<td>Epigenetic modifier</td>
<td>5-10%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>WT1</td>
<td>Transcription factor</td>
<td>10-15%</td>
<td>Inconclusive</td>
</tr>
<tr>
<td>TP53</td>
<td>Cell cycle regulator</td>
<td>2-5%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>RAS</td>
<td>Membrane associated signaling</td>
<td>10%</td>
<td>Neutral</td>
</tr>
<tr>
<td>PHF6</td>
<td>Chromatin modifier</td>
<td><5%</td>
<td>Unfavorable</td>
</tr>
</tbody>
</table>

Behdad and Betz. “Molecular Testing in Acute Myeloid Leukemia” in *Diagnostic Molecular Pathology, First Edition. Elsevier*
“Two-hit” pathogenesis paradigm

• Gilliland and Griffin proposed a two step pathogenesis model for AML

• Two types of mutations:
 – Class 1 (promote proliferation):
 • Receptor tyrosine kinase genes (\textit{FLT3}, \textit{KIT}, \textit{RAS})
 – Class 2 (impair differentiation):
 • Chromosomal abnormalities such as t(8;21), inv(16)
 • Gene mutations: \textit{CEBPA}, \textit{RUNX1} and \textit{MLL}, \textit{NPM1}

Gilliland DG, Griffin JD. \textit{Blood} 2002; 100(5): 1532-42
Gene mutations in WHO

• 2008 WHO actionable mutations:
 – Diagnostic mutations (defining a provisional entity): $NPM1$, $CEBPA$
 – Prognostic mutations: $FLT3$, KIT

• 2016 possible updates:
 – Possible new entities: $RUNX1$
 – Update on the existing entities: $NPM1$, $CEBPA$
Nucleophosmin 1 (NPM1)

- Nucleolar phosphoprotein, shuttles basic proteins between nuclear and cytoplasmic compartments

- Abnormal cytoplasmic localization of the NPM1 protein (by IHC) led to the discovery of *NPM1* mutations

NPM1 (5q35)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Freq (%)</th>
<th>Nucleotide Sequence</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td>GATCTCTG----GCAGT----GGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLWQWRKSL</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>GATCTCTGTCTGGCAGT----GGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLCLAVEEVSRLK</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>GATCTCTGCGATGGCAGT----GGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLCMAVEEVSRLK</td>
</tr>
<tr>
<td>C</td>
<td>< 1</td>
<td>GATCTCTGCATGGCAGT----GGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLCVAEEVSRLK</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>GATCTCTGCATGGCAGT----GGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLCLAVEEVSRLK</td>
</tr>
<tr>
<td>E</td>
<td>< 1</td>
<td>GATCTCTG----GCAGTCTCTTGGCCAGGAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLWQSLAQVSLRK</td>
</tr>
<tr>
<td>F</td>
<td>< 1</td>
<td>GATCTCTG----GCAGTCTCTTGGAGAAGGAAGTCTCTTTAAGAAAATAG</td>
<td>DLWQSLAVEKSVSLRK</td>
</tr>
<tr>
<td>~40 more</td>
<td>7</td>
<td>GATCTCTG----GCAGTCTCTTGGAGAAGGAAGTCTCTTTAAGAAAATAG</td>
<td></td>
</tr>
</tbody>
</table>
NPM1 mutations: Clinical Implication

- Most common genetic aberration in AML
- ~30% of adult AML and 5% pediatric AML
- Prognosis: Favorable outcomes in the absence of cytogenetic abnormalities and FLT3-ITD
- Mutations are stable over the course of disease
 - Useful in monitoring of disease and detection of MRD
 - Founder mutations

Chromosomal abnormalities common in \textit{NPM1}-mutated AML

- +8, +4, -Y, \textbf{del (9q)}, +21 common
- Secondary chromosomal abnormalities
- Phenotypic characteristic and expression profile similar to CN- \textit{NPM1} mutated AML
- Prognosis remains good despite these chromosomal abnormalities

NPM1 2016 Updates

- Moved from provisional to permanent entity
- *NPM1*-AML with morphologic evidence of dysplasia
 - In the absence of chromosomal abnormalities and history of MDS; *NPM1* trumps dysplasia
 - In the presence of del(9q), still remains *NPM1*-AML

CCAAT/ enhanced binding protein α CEBPA mutations

• ~5-10% of AML
• Confer favorable outcomes in CN-AML
• Two types of mutations:
 – Biallelic (dmCEBPA)
 – Monoallelic (smCEBPA)
CEBPA Encodes Two Isoforms

- **p42**: Promotes Differentiation
 - TAD1
 - TAD2
 - bZIP
 - Transcription activation

- **p30**: Promotes Proliferation
 - TAD2
 - bZIP
 - DNA Binding and Dimerization
Double Mutation *CEBPA*

Truncating Mutations (nonsense/frameshift) → **p30**

In-frame Mutations (dup/ins/del) → **p42**

TAD1 | **TAD2** | **bZIP**

Promotes Proliferation

Leukemogenesis

Differentiation

p42 X

p30 X

p2 X
dmCEBPA and NOT smCEBPA Confer favorable outcomes

Fasan A, et al. Leukemia (23 September 2013)
CEBPA
Molecular testing

• Sequencing-based assay is advantageous for CEBPA mutation testing
 – Detection of point mutation
 – Immediate distinction of single and double mutations positive cases
• CEBPA testing is technically challenging
 – Most NGS platforms not optimized
 – Sanger-sequencing assays will maintain an important role
• Missense variants
 – Pathogenic in C-terminal
 – Unknown significance in other regions
• Co-occurring NPM-1 mutations are mainly limited to smCEBPA
CEBPA 2016 Possible Update

- dmCEBPA (not the smCEBPA) upgraded to permanent category
- CEBPA-mutated AML and morphologic evidence of multilineage dysplasia remains in this category

FMS-Like Tyrosine Kinase 3 (FLT3)

- **FLT3L**
- **Juxtamembrane domain**
- **ITD**
- **Point mutation**
- **Disregulated mitogenic activity**
- **Constitutive activity**

Diagram showing the domains of FLT3 and the effects of point mutations and ITD on kinase activity.
FLT3 Mutations

FLT3-ITD
- Found in approximately 20% of AML
- Range 3 - 400 bp (median size 48 bp)
- Always in-frame

- FLT3-TKD mutations found in ~ 5% to 10% of AML
 - Mainly at codons 835 and 836

Frohling S, J Clin Oncol 23:6285-6295, 2005
FLT3 mutations:

Clinical Implications

- **Prognosis:**
 - *FLT3*-ITD confers worse outcomes
 - Impact of *FLT3*-KD mutations remain controversial

- **Minimal residual disease**
 - Not ideal given variability in relapse

- **Therapy:**
 - Stem cell transplantation
 - Phase II and III clinical trials evaluating FLT3 tyrosine kinase inhibitors underway
FLT3-ITD:

Important Considerations

- **FLT3** mutation status may change during relapse
 - May appear or disappear
 - Not founder mutation

- Homozygous mutations (LOH) confer a worse outcome
 - Result of acquired uniparental disomy
 - Mostly seen in relapse
 - Reporting should indicate **FLT3-ITD** high

FLT3 mutations in APL

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>FLT3</th>
<th>N</th>
<th>CR (%)</th>
<th>P-value</th>
<th>3-year OS</th>
<th>P-value</th>
<th>3-year DFS</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiyoi (1997)</td>
<td>ITD−</td>
<td>59</td>
<td>80%</td>
<td>0.2</td>
<td>60%</td>
<td>0.67</td>
<td>74%</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>15</td>
<td>93%</td>
<td></td>
<td>53%</td>
<td></td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Shih (2004)a</td>
<td>ITD−</td>
<td>85</td>
<td>95%</td>
<td>1</td>
<td>80%</td>
<td>0.86</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>22</td>
<td>100%</td>
<td></td>
<td>79%</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Yoo (2006)</td>
<td>ITD−</td>
<td>66</td>
<td>89%</td>
<td>0.54</td>
<td>NR</td>
<td></td>
<td>71%</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>9</td>
<td>83%</td>
<td></td>
<td>NR</td>
<td></td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Kainz (2002)</td>
<td>ITD−</td>
<td>13</td>
<td>53%</td>
<td><0.05</td>
<td>53%</td>
<td>0.06</td>
<td>81%</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>8</td>
<td>100%</td>
<td></td>
<td>85%</td>
<td></td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>Au (2004)</td>
<td>ITD−</td>
<td>65</td>
<td>82%</td>
<td>0.06</td>
<td>73%</td>
<td>0.052</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>17</td>
<td>59%</td>
<td></td>
<td>35%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noguera (2002)</td>
<td>ITD−</td>
<td>57</td>
<td>96%</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td>66%</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>33</td>
<td>97%</td>
<td></td>
<td>NR</td>
<td></td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Callens (2005)</td>
<td>ITD−</td>
<td>72</td>
<td>100%</td>
<td>0.21</td>
<td>89%</td>
<td>0.09</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITD+</td>
<td>45</td>
<td>98%</td>
<td></td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuchenbauer</td>
<td>Wild</td>
<td>58</td>
<td>NR</td>
<td></td>
<td>88%</td>
<td>0.09</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>-2005</td>
<td>ITD+b</td>
<td>47</td>
<td>NR</td>
<td></td>
<td>78%</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Chillon (2004)</td>
<td>Wild</td>
<td>44</td>
<td>72%</td>
<td>NS</td>
<td>61%</td>
<td>0.45</td>
<td>80%</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>ITD+c</td>
<td>16</td>
<td>88%</td>
<td></td>
<td>65%</td>
<td></td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>Gale (2005)</td>
<td>Wild</td>
<td>115</td>
<td>88%</td>
<td>0.3</td>
<td>72%</td>
<td>0.5</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ITD+d</td>
<td>69</td>
<td>81%</td>
<td></td>
<td>63%</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

- Patients with ITD had inferior 3-year overall survival compared to patients without ITD
- TKD didn’t reach clinical significance
- Other study: FLT3-ITD(positive) patients had a lower 3-year overall survival rate (62%) compared with FLT3-ITD(negative) patients (82%) (P = 0.006).

c-KIT D816 V mutations

? Role for tyrosine kinase inhibitors

Schnittger S, et al. 2006 Mar 1;107(5):1791-9
AML with *RUNX1* mutation

- Mutations seen in 10-15% of CN-AML
- Can also be seen in MDS and AML-MRC
- Prognosis: poor
- Associated mutations:
 - Generally not seen with *NPM1* and dm-*CEBPA* mutations
 - Frequently seen with *MLL(KMT2A)*-PTD

Epigenetic Modifying Genes:
DNMT3a, TET2, IDH1/2

- Regulate DNA methylation/Contribute to genetic instability
- Found at high frequency in conjunction with other mutations
- Variability in data with regard to prognostic value
- Therapy with hypomethylating agents
- Presence at diagnosis may induce *FLT3*-ITD at relapse

IDH1 and IDH2 mutations

- Cumulatively detected in up to 15-30% of AML patients
- All point mutations, affecting codons:
 - R132 of *IDH1*
 - R140 or R172 of *IDH2*
- Same molecular assay used for both gliomas and AML
- Clinical utility:
 - Prognosis: most studies suggest poor prognosis
 - IDH is a target for mutant-selective inhibitors and clinical trials are now beginning ([NCT01915498](https://clinicaltrials.gov/ct2/show/NCT01915498)).

MLL (KMT2A)-PTD

- *MLL-PTDs* are found in 5%-10% of patients with CN-AML
- Result from intragenic duplication of a genomic region between exons 5-11 or 5-12
- Confers an adverse prognosis, irrespective of the presence of *FLT3*-ITD mutation
- Molecular resting: RT-PCR (RNA-based testing)

Functional classification of mutations in AML

<table>
<thead>
<tr>
<th>Signal Transduction</th>
<th>Differentiation</th>
<th>Epigenetic Regulation</th>
<th>Tumor Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLT3</td>
<td>RUNX1 (AML1)</td>
<td>TET2</td>
<td>WT1</td>
</tr>
<tr>
<td>KIT</td>
<td>CEBPA</td>
<td>IDH1, IDH2</td>
<td>TP53</td>
</tr>
<tr>
<td>NRAS, KRAS</td>
<td>NPM1</td>
<td>DNMT3A</td>
<td></td>
</tr>
<tr>
<td>JAK2</td>
<td>PU1</td>
<td>ASXL1</td>
<td></td>
</tr>
<tr>
<td>PTPN11</td>
<td>GATA1, GATA2</td>
<td>EZH2</td>
<td></td>
</tr>
</tbody>
</table>
Is Labeling an AML with a Single Mutation Adequate?

1. The mutations do not occur in isolation
 - Genetic complexity
 - Integrated Genomic profiling

2. AMLs are spatially and temporally heterogeneous
 - Genetic heterogeneity and clonal evolution
Interplay of Genetic Events

<table>
<thead>
<tr>
<th>Cytogenetic Classification</th>
<th>Mutations</th>
<th>Overall Risk Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>Any</td>
<td>Favorable</td>
</tr>
<tr>
<td>Normal karyotype or inter-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mediate-risk cytogenetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3-ITD-negative</td>
<td>Mutant NPM1 and IDH1 or IDH2</td>
<td>Intermediate</td>
</tr>
<tr>
<td>FLT3-ITD-negative</td>
<td>Wild-type ASXL1, MLL-PTD, PHF6, and TET2</td>
<td>Intermediate</td>
</tr>
<tr>
<td>FLT3-ITD-negative or posit</td>
<td>Mutant CEBPA</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Intermediate-risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>karyotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3-ITD-negative</td>
<td>Wild-type MLL-PTD, TET2, and DNMT3A and trisomy 8–negative</td>
<td>Intermediate</td>
</tr>
<tr>
<td>FLT3-ITD-negative</td>
<td>Mutant TET2, MLL-PTD, ASXL1, or PHF6</td>
<td>Intermediate</td>
</tr>
<tr>
<td>FLT3-ITD-positive</td>
<td>Mutant TET2, MLL-PTD, DNMT3A, or trisomy 8, without mutant CEBPA</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>Any</td>
<td>Unfavorable</td>
</tr>
</tbody>
</table>

Other genotypes:
- MT3A, or MLL-PTD
- 8q deletion, or without CEBPA mutation
Role of Next Generation Sequencing in Molecular Profiling of AML

• Clinical need for comprehensive molecular profiling
• Cumbersome and expensive using single-gene assays given the growing list of clinically relevant genes
• High throughput sequencing (NGS) is available for clinical testing
 – Potential for “all in one” testing
 – Evaluating for mutant allele frequencies (clonal heterogeneity and evolution)
Northwestern NGS-Myeloid Panel

33 genes (6 full exons and 27 partial)
Algorithmic approach

Morphology and Phenotype = AML

History of Therapy?

Yes

t-AML

No

History of MDS or MDS-MPN

No

Cytogenetic Abnormalities?

No

AML-MRC

Yes

AML with recurrent cytogenetic abnormalities

AML-MRC

CN-AML, AML NOS

Family history of a myeloid neoplasm

Myeloid Neoplasms with Germline Predisposition
AML no history of MDS or therapy

Cytogenetic Abnormalities?

Yes

AML with recurrent cytogenetic abnormalities:
 t(15;17)
 t(8;21)
 inv 16/t(16;16)
 t(6;9)
 inv3/t(3;3)
 BCR-ABL

CN-AML, AML,NOS

No

AML-MRC:
 Complex karyotype
 -7/del(7q)
 -5/del(5q)
 i(17q)/t(17p)
 -13/del(13q)
 del(11q)
 del(12p)/t(12p) – del(9q)**
 idic(X)(q13)
 Balance translocations

Yes

CN-AML, AML,NOS
CN-AML

AML without:
- History of therapy
- History of MDS
- Recurrent or MDS-related Cytogenetic Abnormality

Gene Mutation analysis

AML with NPM1
AML with CEBPA
AML with RUNX1

None

Dysplasia?

No
AML, NOS

Yes
AML-MRC
Which Molecular Assays are Essential for Newly diagnosed AML

• In CN-AML:
 – NPM1: Can be Single Gene Assay (SGA) or part of NGS-myeloid
 – FLT3-ITD: Has to be evaluated by SGA even if part of NGS
 – CEBPA: Can be SGA or part of NGS-myeloid
 – RUNX1: Is usually part of NGS-Myeloid

• In inv (16) and t(8;21) AML:
 – KIT: Can be SGA or part of NGS-myeloid
Which molecular assays are currently optional but recommended in newly diagnosed AML

- IDH1/2: SGA or part of NGS-myeloid
- TET2, DNMT3A, WT1: Usually part of NGS-Myeloid
- MLL-PTD: SGA (RNA based)
- In t(15;17):
 - FLT3-ITD
- In AML-MRC with Complex karyotype:
 - TP53: Usually part of NGS-Myeloid
Myeloid Neoplasms with Germline Predisposition

Familial AML and MDS
MDS/AML with Germline Predisposition

• Traditionally considered rare
• Most well described are those associated with syndromic bone marrow failure disorders, e.g. Fanconi anemia – usually present in childhood
• Also occur in Down Syndrome and Neurofibromatosis 1
• Increasing recognition of cases with autosomal dominant inheritance and MDS/AML as a main clinical feature - can present at any age
Myeloid Neoplasms with Germline Predisposition

WHO Provisional 2016

<table>
<thead>
<tr>
<th>Myeloid Neoplasms with germline predisposition without a pre-existing disorder or organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>- AML with germline CEBPA mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline DDX41 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisposition and pre-existing platelet disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Myeloid neoplasms with germline RUNX1 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline ANKRD26 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline ETV6 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisposition and other organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Myeloid neoplasms with germline GATA2 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with bone marrow failure disorders</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with telomere biology disorders</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with Noonan syndrome</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with trisomy 21 (Down syndrome)</td>
</tr>
</tbody>
</table>
Incidence of Known Familial MDS/AML

• Not well characterized
• NGS study of sporadic acute leukemia in childhood showed pathogenic or probable pathogenic mutations in 26 of 588 (4%)*
• Challenges
 – Many families with MDS/AML clustering are negative for known mutations
 – Many familial genes also found as somatic mutations

Myeloid Neoplasms with Germline Predisposition

WHO Provisional 2016

<table>
<thead>
<tr>
<th>Myeloid Neoplasms with germline predisp. without a pre-existing disorder or organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ AML with germline CEBPA mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline DDX41 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisp. and pre-existing platelet disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Myeloid neoplasms with germline RUNX1 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline ANKRD26 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline ETV6 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisp. and other organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Myeloid neoplasms with germline GATA2 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with bone marrow failure disorders</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with telomere biology disorders</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with Noonan syndrome</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with trisomy 21 (Down syndrome)</td>
</tr>
</tbody>
</table>
AML with Germline $CEBPA$ mutation

- No prior blood abnormalities or physical findings - nearly all develop AML as *children or young adults*
- Biallelic $CEBPA$ mutations – 1 germline and a second acquired at time of AML progression
- Biallelic $CEBPA$ mutations new entity in 2016 WHO update – subset could be familial - current data indicates prevalence could be up to 1% of AML
- AML morphology FAB M1-M2 with frequent Auer rods, aberrant CD7 expression, normal karyotype
- Multiple relapses common but overall favorable prognosis
AML with Germline *DDX41* mutation

- Only a limited number of pedigrees reported
- Subset have biallelic mutations – germline and another acquired somatic *DDX41* mutation
- **Long latency** – average age of onset 61 years
- High grade myeloid neoplasms with normal karyotype and poor prognosis – MDS with multilineage dysplasia, MDS with excess blasts, MDS with 5q-, AML
- Lymphoid neoplasms also reported
Myeloid Neoplasms with Germline Predisposition

WHO Provisional 2016

<table>
<thead>
<tr>
<th>Myeloid Neoplasms with germline predisposition without a pre-existing disorder or organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>- AML with germline CEBPA mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline DDX41 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisposition and pre-existing platelet disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Myeloid neoplasms with germline RUNX1 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline ANKRD26 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms with germline ETV6 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisposition and other organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Myeloid neoplasms with germline GATA2 mutation</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with bone marrow failure disorders</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with telomere biology disorders</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with Noonan syndrome</td>
</tr>
<tr>
<td>- Myeloid neoplasms associated with trisomy 21 (Down syndrome)</td>
</tr>
</tbody>
</table>
Myeloid neoplasms with germline predisp. and pre-existing platelet disorder

• Germline mutations associated with autosomal disorders with variable thrombocytopenia/bleeding tendencies
 – \textit{RUNX1} - Familial platelet disorder with propensity to myeloid malignancy
 • \textit{RUNX1} mutations also occur in sporadic myeloid neoplasms
 – \textit{ANKRD26} - Thrombocytopenia 2
 – \textit{ETV6} - Thrombocytopenia 5
• Increased risk of MDS/AML often at young age (other malignancies reported)
• Challenge for pathologists – dysmegakaryopoiesis often part of the disorder - may not indicate a neoplasm
Germline ANKRD26 Mutation
Myeloid Neoplasms with Germline Predisposition

WHO Provisional 2016

<table>
<thead>
<tr>
<th>Myeloid Neoplasms with germline predisp. without a pre-existing disorder or organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ AML with germline CEBPA mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline DDX41 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisp. and pre-existing platelet disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Myeloid neoplasms with germline RUNX1 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline ANKRD26 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms with germline ETV6 mutation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid neoplasms with germline predisp. and other organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Myeloid neoplasms with germline GATA2 mutation</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with bone marrow failure disorders</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with telomere biology disorders</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with Noonan syndrome</td>
</tr>
<tr>
<td>▪ Myeloid neoplasms associated with trisomy 21 (Down syndrome)</td>
</tr>
</tbody>
</table>
50 y/o F - Presented with circulating blasts

CBC
- WBC 8.7 K/uL
- Hb 9.5 g/dL
- Hct 30.6%
- MCV 80 fl
- RDW 23.8%
- PLT 55 K/uL

Differential
- Neutrophils 56%
- Lymphocytes 13%
- Monocytes 3%
- Eosinophils 3%
- Basophils 3%
- Blasts 24%
- NRBC’s 1/100
PMH and Family History

- Patient – 25 yr history of thrombocytopenia
- Family history of thrombocytopenia - mother, maternal aunt, siblings and their children and her children – mother, maternal aunt died of MDS
Touch Preparation (No aspirate)

FC - CD34+, CD117+, CD13+, CD33+, MPO+, HLADR+, partial CD7+, neg for other lymphoid and neg for monocytic markers
Karyotype

46,XX,del(7)(q22q36)[20]
Molecular Results

• No mutations
 – FLT3 ITD, FLT3 D835, NPM1 or cKIT
 – RUNX1 or CEBPA

• GATA2 mutations in region of 2nd Zinc finger:

![Diagram showing mutations in GATA2 region with Thr358Asn and Leu359Val highlighted]
Diagnosis

- AML with germline \textit{GATA2} mutation
GATA2

- Encodes zinc finger transcription factors essential for hematopoietic differentiation and lymphatic formation
- Critical for genesis and function of hematopoietic stem cells and preferential differentiation to erythroid/megakaryocyte lineages
- Mutations cause loss of mutated allele → haploinsufficiency, transmitted with autosomal dominant inheritance
- Mutations heterogeneous – not common in sporadic AML

Clinical syndromes associated with germ line GATA2 mutations

- Familial MDS/AML
- Emberger: lymphedema with warts and predisposition to MDS/AML
- MonoMAC: monocytopenia and susceptibility to Mycobacterium avium complex infections, predisposition to MDS/AML
- Dendritic cell, monocyte, NK and B lymphocyte deficiency with susceptibility to viral infections
- Chronic neutropenia
Clinical features of GATA2 deficiency by organ system

Head & neck:
- Embolic stroke
- Sensorineural hearing loss
- Hypothyroidism
- HSV ulcers

Thorax:
- Pulmonary alveolar proteinosis
- Ventilatory and diffusion defects
- Culture-negative endocarditis
- Solid organ tumors

Bone marrow:
- Cytopenias
- MDS/AML
- Disseminated NTM infection
- Severe C. difficile infection

Abdomen:
- Disseminated NTM infection
- Severe C. difficile infection

Upper extremities:
- Chronic arthralgias
- Clubbing
- Extragenital warts

Pelvis:
- Miscarriage
- Genital dysplasia
- Genital warts

Lower extremities:
- Panniculitis/Erythema nodosum
- Bony infarcts
- Lymphedema
- Deep venous thrombosis

Horwitz M S Blood 2014;123:799-800

Spinner M A et al. Blood 2014;123:809-821
Hematologic Manifestations of GATA2 deficiency

- Cytopenias common (hematologic parameters prior to MDS/AML normal in <10%)
 - Decreased B cells (86%), NK cells (82%), monocytes (78%), CD4+ T cells (51%), neutrophils (47%)
- MDS/AML develops in ~70% at med. age 29 yrs (4-78 yrs)

Hypocellular, atypical megs, ↑ reticulin fibrosis

Spinner M A et al. Blood 2014;123:809
Micol JB et al. Haematologica 2014;99:201
AML/MDS with Germline GATA2 mutation

• Frequent del(7) or monosomy 7
• Acquisition of additional mutations likely important in leukemogenesis – somatic mutations of ASXL1
• Poor outcome unless transplanted – severe infection frequent cause of death

Patient Follow Up

• 7+3 induction therapy with residual disease
• Recurrent Legionella pneumonia, respiratory failure requiring intubation
• Received double cord allo-HSCT - 5 months s/p tx no residual disease, normal karyotype, neg FISH for del(7)
• Continued respiratory failure, pneumonia and septic shock – expired 6 mo post transplant
• Family members declined testing for GATA2
Why is it important to recognize MDS/AML with germline predisposition?

• Prognostic and therapeutic implications
• Diagnostic implications
• Identification and follow up of mutation carriers – i.e. consider baseline bone marrow biopsy for mutation carriers
• Unrelated donor or mutation negative donors for stem cell transplant
• Aid in understanding biology of *de novo* AML
How to identify familial MDS/AML

• Familiarity with predisposition syndromes (clinical findings, biallelic CEBPA, cytopenias, etc)
• Careful family history (i.e. any close relatives with cytopenias, aplastic anemia, MDS, acute leukemia?)
• Young age of onset of MDS/AML
Lab Testing

• Test for germline mutation in specimen containing only non-leukemic cells
 – Skin fibroblasts (recommended)
Take home message....

• AML/MDS with germline predisposition rare but likely more common than currently appreciated – more entities continue to be recognized
• Family history, early disease onset, disease in multiple close relatives, etc. raise suspicion
• Genetic testing is available
• Clinical implications for diagnosis, management and therapy of patients and their families
• Will be included in WHO update 2016 as provisional entity