Ciliary neurotrophic factor (CNTF) is one of the best studied neurotrophic agents and is currently in clinical trials for the treatment of retinitis pigmentosa and macular telangiectasia. Recent studies suggest that CNTF provides angio-modulatory effects in ischemic retinopathies. In this study, we tested the effect of CNTF on pathological tuft formation in VLDLR-/- knockout mice and explored the mechanism behind the angio-modulatory effect of CNTF treatment.

Methods: VLDLR-/- knock-out mice received intravitreal injections with recombinant rat CNTF (rrCNTF) at postnatal day 12 (P12) or P19. Intraretinal tuft formation was quantified at P18 or P34. Western blot and qPCR analysis of whole retina lysates were performed to identify downstream signaling pathways activated by CNTF treatment. Immunohistochemical stainings were used to identify CNTF responsive cells. In vitro experiments with primary mouse Müller cells were performed to explore the effect of CNTF on these cells.

Results: Intravitreal injections of rrCNTF at P12 significantly decreased intraretinal tuft formation at P18 and P34 while treatment at later time points (P18) did not reduce the number of intraretinal tufts. Peri-neovascular regions in VLDLR-/- mice showed a decrease in opsin staining in untreated, as well as rrCNTF treated eyes. CNTF treatment strongly induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) 6 hours post injection and increased overall retinal expression levels of STAT3 up to 6 days post injection. Immunohistochemical analysis detected pSTAT3 signals in the inner nuclear layer. In vitro experiments confirmed that Müller cells respond to CNTF treatment with phosphorylation of STAT3.

Conclusions: CNTF treatment shows significant therapeutic potential for retinal neovascular disease. While CNTF treatment effectively prevented intraretinal tuft formation, it could not reduce pre-existing vascular abnormalities. Mechanistic studies showed that CNTF treatment did not prevent localized photoreceptor loss in the peri-neovascular regions of VLDLR-/- retinas. Activation of the Jak/STAT3 signaling pathway following CNTF treatment was detected in retinal Müller, but not photoreceptor, cells suggesting that the anti-angiogenic effect observed in VLDLR-/- is at least partially Müller-cell mediated.
H-1129 suppresses neovascularization through inhibition of secretion of VEGF and proliferation of vascular endothelial cells
Yoko Yoshida1,2, Atsuko Kasai1,2, Hiroyoshi Hidaka1,2, D. Western Therapeutics Institute, Inc., Nagoya, Japan; 1Human Research Promotion and Drug Development, Mie University, Tsu, Japan.
Purpose: We reported that H-1129 bound to Hsp90 specifically in ARVO2012. In this study, we elucidate the mechanism of action of H-1129 against neovascularization. It was investigated that effects of H-1129 on production of vascular endothelial growth factor (VEGF), migration of retinal pigment epithelial cells (RPE cells) and proliferation of vascular endothelial cells (VECs). Effects of H-1129 on hypoxia-inducible factor-1 (HIF-1) were also investigated. HIF-1, a transcription factor regulating expression of VEGF, is stabilized through Hsp90 action (Wu WC et al., 2007).
Methods: H-1129 was discovered, synthesized and patented by D. Western Therapeutics Institute, Inc. (DWTI) laboratory. VEGF concentration in the culture supernatant of ARPE-19 cells following pretreatment with H-1129 was measured by ELISA. Cell migration was assessed by wound healing assay and cell proliferation was assessed by Cell Counting Kit-8 assay. HIF-1 alpha, a subunit of HIF-1, in the cells was analyzed by Western blotting.
Results: H-1129 significantly reduced VEGF secretion from ARPE-19 cells and inhibited migration of ARPE-19 cells. H-1129 also inhibited proliferation of human retinal microvascular endothelial cells (hMVECs) and human umbilical vascular endothelial cells (HUVEC) in the presence of VEGF. Both H-1129 and its main metabolite, H-1129M1, reduced HIF-1 alpha in ARPE-19 cells cultured under hypoxic condition.
Conclusions: H-1129 inhibited cell proliferation of VECs, cell migration of RPE cells and secretion of VEGF from RPE cells. H-1129 and H-1129M1 reduced induction of HIF-1 alpha in RPE cells under hypoxic condition. These results suggest double-action mechanism of H-1129 for suppression of production of VEGF in RPE cells and inhibition of cell proliferation of VECs in the presence of VEGF stimulation. H-1129 has the possibility to become a superior therapeutic drug for choroidal neovascularization.

Commercial Relationships: Yoko Yoshida, D. Western Therapeutics Institute, Inc. (E); Atsuko Kasai, D. Western Therapeutics Institute, Inc. (E); Hiroyoshi Hidaka, D. Western Therapeutics Institute, Inc. (E)

Program Number: 192 Poster Board Number: B0223
Presentation Time: 8:30 AM–10:15 AM
The Potential Roles of IL-33 and TGF-β1 in the Pathogenesis of Stevens - Johnson syndrome/ Toxic Epidermal Necrolysis
Omer Iqbal1, Charles S. Bouchard2, makio iwashima3, Sean Till2, Ping Bu1.
1Ophthalmology, Loyola University Chicago, Maywood, IL; 2Loyola University Medical Center, Maywood, IL; 3Loyola University Chicago, Maywood, IL.
Purpose: The exact mechanism of keratinocyte apoptosis in the pathogenesis of Stevens - Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) characterized by drug-induced mucocutaneous reactions and ocular involvement leading to corneal blindness remains unclear. We tested the hypothesis that increased levels of Interleukin-33 (IL-33) and transforming growth factor beta one (TGF-β1) in the plasma and also their increased expression in the skin of patients with biopsy confirmed SJS/TEN compared to that with lichen planus as controls obtained and archived from a clinical study may play important roles in keratinocyte apoptosis.
Methods: Under a current, Loyola IRB approved protocol clinical study, collected and archived unstained slides (n=8) of skin from patients with biopsy confirmed SJS/TEN and lichen planus as controls (n=6) were used for this study. Immunohistochemical analysis was performed using IL-33 and TGF-β1 antibodies followed by imaging on a DeltaVision microscope. ELISA analysis was used to determine the levels of IL-33 and TGF-β1 expression in multiple citrated plasma samples totaling 78 from SJS/TEN patients (n=14). Statistical analysis was performed using linear regression analysis, ANOVA, and Turkey’s post-hoc tests on STA-TA software.
Results: Immunofluorescent microscopy of SJS/TEN skin biopsy samples revealed elevated levels of both TGF-β1 and IL-33 in the epithelium compared to lichen planus skin biopsy samples as controls. However, ELISA analysis of SJS/TEN patient plasma samples showed no marked elevation of TGF-β1 or IL-33 compared to normal human plasma (p= 0.41 and 0.26 respectively). The results of this study may enhance our understanding of the pathogenesis of SJS/TEN and lead to the development of new treatment modalities for this disease.
Conclusions: Our results are consistent with our hypothesis that increased expression of IL-33 and TGF-β1 in the skin of patients with SJS/TEN compared to lichen planus as controls play important roles in keratinocyte apoptosis. However, their corresponding undetectable levels in plasma by the ELISA technique needs to be evaluated in freshly obtained larger number of plasma samples. Further large-scale studies are warranted to validate these results.
Commercial Relationships: Omer Iqbal, None; Charles S. Bouchard, None; makio iwashima, None; Sean Till, None; Ping Bu, None
Support: Illinois Society for the Prevention of Blindness

Program Number: 193 Poster Board Number: B0224
Presentation Time: 8:30 AM–10:15 AM
The efficacy of aflibercept in treating retinopathy of prematurity in the mouse model of oxygen-induced retinopathy
Ophthalmology, University of Florida, Gainesville, FL.
Purpose: Many studies have reported on bevacizumab for the treatment of retinopathy of prematurity (ROP); however, there is a scarcity of literature on the efficacy and safety of aflibercept in the treatment of ROP despite anecdotal evidence of promising outcomes in human neonates. The goal of this study was to assess the efficacy of aflibercept in regression of neovascularization in the mouse model of oxygen-induced retinopathy.
Methods: In this study, 14 mice (n=28 eyes) were included and randomly assigned to a room air control (n=10) or hyperoxic conditions with 75% oxygen (n=18). The mice exposed to hyperoxia and its main metabolite, H-1129M1, reduced HIF-1 alpha in ARPE-19 cells cultured under hypoxic condition.

This abstract is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License. Go to http://iovs.arvojournals.org/ to access the versions of record.
due to inadequate dosing or to the short time from injection to enucleation not allowing for treatment effect. Although non-
significant, a clear trend was noted for reduced avascular surface
area in eyes treated with aflibercept compared with the hyperoxic
control. This study will be expanded to increase sample size and to
include groups treated with higher doses of aflibercept. This study
will help clarify the doses of aflibercept associated with the adverse
effect of persistent avascular retina, and ultimately this study can help
establish aflibercept as a potential treatment alternative in human
neonates with ROP.

Commercial Relationships: Sarina M. Amin, None;
Swati Agarwal, None; W. Clay Smith, None; Jade G. Guevara, None

Support: Unrestricted grant from the foundation on Research to
Prevent Blindness

Program Number: 194 Poster Board Number: B0225
Presentation Time: 8:30 AM–10:15 AM

Blockade of Apelin Receptor (APJ) can inhibit developmental retinal vessel outgrowth in pups and promote normal revascularization and reduce pathological neovascularization in OIR model in mice

Eunice Cheung, Panayiotis Stevis, Yonaton Ray, Stanley J. Wiegand, Carl Romano, Ivan Lobov. Regeneron Pharmaceuticals, Tarrytown, NY.

Purpose: During angiogenesis, apelin/apelin receptor (APJ) in combination with VEGF, induces the proliferation and assembly of endothelial cells (H Kidoya, et al. EMBO J, 2008; 27). Much remains to be discovered about the expression of the apelinergic system and precisely how it affects numerous physiological functions. In this study, we evaluate apelin receptor inhibition in normal retinal vascular development and in oxygen retinopathy model (OIR) in mice.

Methods: Study 1: Humanized (Hu) ApelinR mice were systemically (IP) injected with 25 mg/kg and 50 mg/kg Fc (control) and anti-Apelin Receptor (αAR) at P2 and collected at P5; Study 2: Repeat of Study 1 at the highest dose, analyzed by masked graders.

Study 3: P2 Hu pups were IP injected with 50 mg/kg Fc, αAR or aflibercept and collected at P5; Study 4: Hu were place in a hyperoxic environment (75% O2) at P6 and returned to room air at P11. Pups were injected systemically with 50 mg/kg Fc (control), αAR, or aflibercept at P12 and collected at P16;

Study 5: OIR Hu mice were injected intravitreally (IVT) with 5 µg Fc, αAR, or aflibercept at P12 and collected at P16. All retinas were stained with FITC-labeled Griffonia simplicifolia lectin I (Vector Laboratories).

Results: By injecting αAR at P2, vascular outgrowth was reduced by 23% (n= 6 eyes/groups; p < 0.05) at 25 mg/kg and 35% (n = 6 eyes/group; p < 0.005) at 50 mg/kg at P6. Aflibercept administration produced 43% reduction in blood vessel outgrowth at 50 mg/kg. In the OIR model, αAR and aflibercept were able to promote vessel regrowth. When pups were IP injected at OIR P12, αAR and aflibercept significantly reduced avascular areas by 29% and 27% (n = 6 eyes/group; p < 0.005) and neovascularizations by 69% and 94% (n = 6 eyes/group; p = 0.0001) at P16 respectively. With IVT administration aflibercept reduced vessel regrowth by 30% (n = 4 eyes/group; p < 0.0001) and eliminated all neovascularization, while αAR was able to promote vessel regrowth by 30% (n = 4 eyes/group; p < 0.0001) and reduce neovascularizations by 60% (n = 4 eyes/group, p < 0.0001).

Conclusions: Our data suggest that apelin/APJ is an important mediator of developmental angiogenesis and both pathologic and normal angiogenesis in hypoxia-driven proliferative retinopathy.

Commercial Relationships: Eunice Cheung, Regeneron Pharmaceuticals, Inc. (E); Panayiotis Stevis, Regeneron Pharmaceuticals, Inc. (E); Yonaton Ray, Regeneron Pharmaceuticals, Inc. (E); Stanley J. Wiegand, Regeneron Pharmaceuticals, Inc. (E); Carl Romano, Regeneron Pharmaceuticals, Inc. (E); Ivan Lobov, Regeneron Pharmaceuticals, Inc. (E)

Program Number: 195 Poster Board Number: B0226
Presentation Time: 8:30 AM–10:15 AM

Therapeutic potential of topical administration of H-1129, an isoquinoline sulfonamide derivative, in wet AMD and proliferative diabetic retinopathy

*Kengo Sumi1, 3, Hiroyoshi Hidaka1, 3, Yoko Yoshida1, 3, Atsuko Kasai1, 3, Takashi Izuhara1, 3, Masahiko Sugimoto1, 3, Mineo Kondo1, 3.
1D. Western Therapeutics Institute, Inc., Nagoya, Japan; 2Department of Ophthalmology, Mie University, Tsu, Japan; 3Human Research Promotion and Drug Development, Mie University, Tsu, Japan.

Purpose: H-1129 is protein kinase and Hsp-90 inhibitor (ARVO 2012). Eye drop administration of H-1129 produced significant intraocular pressure (IOP) decrease in normal human volunteers at Phase I study. H-1129 will be tested in Phase II study after 2017. In this study, the efficacy of H-1129 eye drop against choroidal neovascularization (CNV) in a rat laser-induced model was investigated at effective doses for IOP reduction therapy.

Methods: H-1129 was discovered and synthesized by D. Western Therapeutics Institute, Inc. (DWTI) laboratory. Vascular endothelial growth factor (VEGF) concentration in the culture supernatant of ARPE-19 cells was measured by ELISA following pretreatment with H-1129. Cell migration and proliferation were assessed by wound healing assay with ARPE-19 cells and Cell Counting Kit-8 assay with human retinal microvascular endothelial cells (hRMEC) or human umbilical vascular endothelial cells (HUVEC), respectively. Effects of H-1129 on CNV were investigated in a rat laser-induced CNV model. After laser photocoagulation, Each of H-1129 eye drops (0.5-2%) was topically administered three times per day for two weeks. Progresses of CNV were examined by choroidal flat mount analysis, and evaluated using ImageJ software. Following topical administration of 2% H-1129 in rats, its concentration in the posterior segment of the eye was measured.

Results: H-1129 decreased VEGF secretion from ARPE-19 cells by 30% (p < 0.05 compared with vehicle) and inhibited migration of them by 51% (p < 0.01 compared with vehicle) at doses of 10 µM and 100 µM, respectively. H-1129 also inhibited proliferations of both hRMEC and HUVEC. A significant reduction of CNV by applying H-1129 was observed dose-dependently and 2% H-1129 reduced CNV by 61% (p < 0.05 compared with vehicle). During two weeks of topical H-1129 administration in rat, cumulative increases of H-1129 and its metabolite, H-1129M1 were confirmed in the retinal pigment epithelium/choroid.

Conclusions: H-1129 has the possibility to be an agent providing a novel therapeutic strategy for proliferative diabetic retinopathy as well as wet AMD, not just as IOP reducing agent. The mechanism of CNV suppression by H-1129 is based on the dual inhibitions of both retinal vascular endothelial cell proliferation and VEGF secretion from ARPE-19 cells.

Commercial Relationships: Kengo Sumi, D. Western Therapeutics Institute, Inc. (E); Hiroyoshi Hidaka, D. Western Therapeutics Institute, Inc. (E); Yoko Yoshida, D. Western Therapeutics Institute, Inc. (E); Atsuko Kasai, D. Western Therapeutics Institute, Inc.
The long leap from drug affinity to efficacy: Intervening factors that strongly influence clinical outcomes

Purpose: The clinical efficacy of drug product is strongly impacted by multiple factors. We review data on the relative binding affinity and potency of 2 VEGF inhibitors used to treat retinal diseases (ranibizumab, RBZ; aflibercept, AFL), and assess their relevance to clinical outcomes.

Methods: A comparative review and analysis of key studies on the affinity and potency of VEGF inhibitors and a sensitivity modeling experiment.1,2

Results: RBZ and AFL bind to VEGF under various lab conditions. Using Biacore, Papadopoulos et al reported the affinity (K_a) for AFL binding VEGF as <1 pM while RBZ affinity was 46 pM. However, their RBZ affinity analysis had a major limitation due to rapid dissociation of RBZ from the capture antibody.2 Further, we found that K_a values from Biacore measurements were assay-format dependent.1 Data from an orthogonal method, analytical ultracentrifugation, did not support AFL having a significantly higher affinity to VEGF relative to RBZ. RBZ and AFL showed similar dose-dependent inhibition of VEGF-induced endothelial cell proliferation (IC_50 = 0.088±0.032, 0.090±0.009 nM, respectively). A sensitivity analysis of RBZ and AFL clinical data indicates that, assuming the affinities reported1 and intravitreal half-life of drug are within the reported ranges, there appears to be no improvement in vision gained (Fig 2). This analysis is supported by various clinical trials where the RBZ and AFL doses given provide sufficient inhibition of VEGF and results showed comparable vision gains and dosing intervals for RBZ or AFL.

Conclusions: We have shown that affinity values reported for RBZ by Papadopoulos et al1 are not reliable. Moreover, both molecules appear equipotent in a relevant cell-based assay. Modeling of literature data show that within the range of reported affinities, dosing and pharmacokinetic considerations suggest comparable clinical outcomes. Thus, in this context, affinity is not an important driver of efficacy. Most importantly, clinical trial data from patients support the comparable efficacy and durability of RBZ and AFL.

Figure 2. Results of sensitivity analysis using RBZ and AFL data

Commercial Relationships:
- Eric Wakshull, Genentech, Inc. (E); Eric Day, Genentech, Inc. (E); Jihong Yang, Genentech, Inc. (E); Sandeep Yadav, Genentech, Inc. (E); William Hanley, Genentech, Inc. (E)
- Xiangdan Wang, Genentech, Inc. (E); Sandeep Yadav, Genentech, Inc. (E); William Hanley, Genentech, Inc. (E)

Support: Genentech, Inc., South San Francisco, CA, provided support for the study and participated in the study design; conducting the study; and data collection, management, and interpretation

These abstracts are licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License. Go to http:// iovs.arvojournals.org/ to access the versions of record.
Commercial Relationships: Adam Wylegala, None; Filip Wylegala, None; Edward Wylegala, None

Program Number: 198 Poster Board Number: B0229
Presentation Time: 8:30 AM–10:15 AM
Panobinostat reduces neovascularization in an alkali-induced corneal injury model
Jianping Chen, Shaobo Su. Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Purpose: Histone deacetylases (HDACs) plays a causative role in cancer and central nervous diseases by modification of histone and non-histone protein. Downregulation of HDAC expression by HDAC inhibitors (HDACis) restores or increases the level of histone acetylation and shows the potential approach to treat tumorigenesis and angiogenesis. In this study, we examined the effect of panobinostat, a non-selective HDACis, on inflammatory corneal angiogenesis.

Methods: Corneal inflammation was induced with 1 N NaOH. Panobinostat was applied topically to the injury corneas twice a day for 7 days. Eyes were examined with a slit lamp (Zeiss, Germany) 7 and 14 days after alkali injury. Mice were sacrificed and the corneas were removed from both eyes for total RNA extraction or histological analysis. In vitro, the effect of panobinostat on migration, proliferation and tube formation by human microvascular endothelial cells (HEMC-1) was examined. Total RNA of corneas and HEMC-1 were performed by real time PCR to examine the expression of pro-angiogenic factors. Experiments were repeated at least 3 times.

Results: Topical application of panobinostat to the injured corneas attenuated corneal neovascularization (CNV) in an alkali-induced corneal injury model. In addition, in vivo treatment with panobinostat downregulated the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor beta 1 (TGF-β1), and epidermal growth factor (EGF), but upregulated the expression of the anti-angiogenic factors thrombospondin (TSP)-1, TSP-2, and ADAMTS-1 in the injured corneas. Furthermore, panobinostat inhibited the expression of pro-angiogenic factors, migration, proliferation, and tube formation by human microvascular endothelial cells (HEMC-1) in vitro.

Conclusions: We found that topical application of panobinostat attenuated CNV by inhibition of the expression of the pro-angiogenic factors. The data suggest that panobinostat has therapeutic potential for angiogenesis-associated diseases such as CNV.

Commercial Relationships: Jianping Chen, Shaobo Su, None
Support: 314771122 from the National Natural Science Foundation of China

Program Number: 199 Poster Board Number: B0230
Presentation Time: 8:30 AM–10:15 AM
RGX-314, an AAV8 expressing an anti-VEGF protein, strongly suppresses subretinal neovascularization and vascular leakage in mouse models
Ji-kui Shen†, yuanyuan liu‡, Seth D. Fortmann§, Stephen Yoo‡, Karen Kozarsky‡, Jiuxia Wang‡, Peter A. Campochiaro‡, 1Ophthalmology, Johns Hopkins Wilmer Eye Inst, Baltimore, MD; 2REGENXBIO Inc, Rockville, MD; 3REGENXBIO Inc, Rockville, MD.

Purpose: To test the efficacy of RGX-314, an AAV serotype 8 expressing an anti-VEGF Fab, in transgenic mouse models expressing human VEGF

Methods: Transgenic mice in which the rhodopsin promoter drives expression of VEGF₁₆₅ in photoreceptors (rho/VEGF mice) had a subretinal injection of RGX-314 with doses ranging from 3x10⁻¹⁰-1x10⁻⁸ genome copies (GC) in one eye, or PBS in the fellow eye (n=10 per group) at P14. At P21, the area of subretinal neovascularization (SNV) per eye was measured. Double transgenic mice with doxycycline (DOX)-inducible expression of VEGF₁₆₅ in photoreceptors (Tet/opsin/VEGF mice) had a subretinal injection of 1x10⁻¹⁰-1x10⁻⁸ GC of RGX-314 in one eye and no injection in the fellow eye or 1x10⁻⁸ GC of null vector in one eye and PBS in the fellow eye. Ten days after injection, 2mg/ml of DOX was added to drinking water and after 4 days fundus photos were graded for presence of total, partial, or no retinal detachment (RD). RGX-314 transgene product levels were measured one week after subretinal injection of 1x10⁻¹⁰-1x10⁻⁸ GC of RGX-314 in adult mice by ELISA analyses of eye homogenates.

Results: Compared to eyes of rho/VEGF mice injected null vector, those injected with ≥1x10⁻⁸ GC of RGX-314 had significant reduction in mean area of SNV, with modest reduction in eyes injected with 3x10⁻¹⁰ and >50% reduction in eyes injected with ≥1x10⁻⁸ GC. Eyes injected with 3x10⁻⁹ or 1x10⁻⁸ GC had almost complete elimination of SNV (p<0.01). In Tet/opsin/VEGF mice, compared to the null vector group in which 100% of eyes had total RD, there was significant reduction in exudative RD in eyes injected with ≥1x10⁻⁹ GC of RGX-314 and reduction of total detachments by 70-80% in eyes injected with 3x10⁻⁹ or 1x10⁻⁸ GC (p<0.01). The majority of eyes injected with ≤1x10⁻⁹ GC of RGX-314 had protein levels below the limit of detection, but all eyes injected with 3x10⁻⁹ or 1x10⁻⁸ GC had detectable levels with mean level per eye 342.7ng and 286.2ng.

Conclusions: Gene therapy by subretinal injection of RGX-314 caused dose dependent suppression of SNV in rho/VEGF mice with near complete suppression with doses of 3x10⁻⁹ or 1x10⁻⁸ GC. These same doses showed robust protein product expression and markedly reduced total exudative RD in Tet/opsin/VEGF mice.

Commercial Relationships: Ji-kui Shen, yuanyuan Liu, None; Seth D. Fortmann, None; Stephen Yoo, REGENXBIO Inc (E); Karen Kozarsky, REGENXBIO Inc (E); Jiuxia Wang, None; Peter A. Campochiaro, REGENXBIO Inc (C)

Program Number: 200 Poster Board Number: B0231
Presentation Time: 8:30 AM–10:15 AM
Magnolol reduces retinal neovascularization in the OIR model and protects HUVECs under hypoxia via HIF-1α/VEGF pathway
Xiaoling Liang, Boyu Yang, Yue Xu, Yaguang Hu, Xi Lu, Zhengjie Xu. Zhongshan University, State Key Laboratory, Guangzhou, China.

Purpose: To investigate whether Magnolol may reduce retinal neovascularization (RNV) in an oxygen-induced retinopathy (OIR) model and protect human umbilical vein endothelial cells (HUVECs) under hypoxia.
Methods: The neonatal C57BL/6J mice were exposed to 75% O2 from postnatal day (P) 7 to P12 and subsequently returned to room air. Mice were injected with 25mg/kg Magnolol intraperitoneally once a day from P12 to P17, then retinas were harvested and flat-mounted at P17 to assess the retinal vessels. To further explore the protective effect of Magnolol (20µM) on the HUVECs in vitro, cobalt chloride (CoCl2), a hypoxia-mimicking agent, was used to induce the hypoxia model. HUVECs were incubated with VEGF and CoCl2 in the presence or absence of Magnolol to perform the capillary-like tube formation assay. HUVECs migration was evaluated with wound healing assay. To clarify the molecular mechanisms of Magnolol, we observed the level of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF), which were assessed with immunofluorescence staining, RT-PCR and western blotting.

Results: Magnolol significantly inhibited angiogenesis in vivo and in vitro evidenced by the reduction of RNV in OIR model and by the attenuation of hypoxia and VEGF-induced capillary tube-like structure formation of HUVECs, respectively. In addition, Magnolol inhibited hypoxia-induced HUVECs migration. In hypoxia, the expression of HIF-1α and VEGF in HUVECs were increased significantly. However, decreased levels of HIF-1α and VEGF were detected under hypoxia after Magnolol treatment.

Conclusions: These findings indicated that the anti-angiogenic activity of Magnolol is mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggested that Magnolol might have potential for the treatment of pathological retinal angiogenesis.

Commercial Relationships: Xiaoling Liang, None; Boyu Yang, None; Yue Xu, None; Yaguang Hu, None; Xi Lu, None; Zhengjie Xu, None

Program Number: 202 Poster Board Number: B0233
Presentation Time: 8:30 AM–10:15 AM

Anti-VEGF induced nephropathy following intravitreal administration: a potential toxicity

Deepak Mangla1, Manjot Gill1, Susan E. Quaggin2. 1Department of Ophthalmology, Northwestern University, Chicago, IL; 2Northwestern Department of Medicine, Feinberg Cardiovascular Institute, Chicago, IL.

Purpose: Anti-VEGF induced kidney injury has rarely been described in the ophthalmology literature. Consideration of this potential toxicity will become increasingly important as the use and indications of anti-VEGF treatment are broadened.

Methods: This is a case report and review of the literature. We present a patient with neovascular AMD receiving anti-VEGF injections who developed declining renal function. We reviewed both the ophthalmology literature and nephrology literature for renal injury secondary to alterations in systemic VEGF levels.

Results: After extensive work-up to exclude other etiologies for renal failure including renal biopsy, injections were halted temporarily per the nephrology service. A renal biopsy showed chronic tubulointerstitial disease.

Conclusions: The nephrology team believed the renal injury to be secondary to ocular anti-VEGF injections. Studies have shown that serum VEGF levels are depressed following intraocular anti-VEGF injection, however the extent is dictated by each drug’s pharmacokinetics. Ophthalmologists should be aware of this entity as patients may require pretreatment counseling particularly for those with pre-existing renal disease. Close monitoring of the patient may be required in order to assess renal function before and after the intravitreal administration of anti-VEGF.

Commercial Relationships: Deepak Mangla, None; Manjot Gill, None; Susan E. Quaggin, None

Program Number: 203 Poster Board Number: B0234
Presentation Time: 8:30 AM–10:15 AM

The effect of nicotinamide phosphoribosyl transferase inhibitor JN5MPT-029 on corneal neovascularization

Jiayi Jin, ShaoBo Su. Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Purpose: Many diseases, such as heart failure, tumor occurrence, Huntington’s disease are associated with aberrant energy metabolism. Nicotinamide phosphoribosyl transferase (NAMPT) is a...
rate limiting enzyme catalyzing the synthesis of cellular nicotinamide adenine dinucleotide (NAD+), which is required for ATP production. In this study, we examined the effect of JSNMPT-029, an inhibitor of NAMPT, on inflammatory corneal angiogenesis.

Methods: Alkali-induced injured corneas of mice were topically applied with JSNMPT-029 twice a day. Eyes were examined with a slit lamp 7 and 14 days after alkali injury. Mice were sacrificed and the corneas were harvested for total RNA extraction for real time PCR or for histological analysis with 10% neutral formalin fixation. In vitro, the effect of JSNMPT-029 on migration, proliferation and tube formation by human umbilical vein endothelial cells (HUVECs) were examined. The expression of pro/anti-angiogenic factor in corneas and HUVECs were examined by real time PCR.

Results: Topical application of JSNMPT-029 to the injured corneas attenuated corneal neovascularization (CNV) with down-regulation of the expression of the pro-angiogenic factors VEGF, b-FGF, TGFβ1 and EGF but up-regulation of the expression of the anti-angiogenic factors Tsp-1, Tsp-2 and ADAMTS-1 in the injured corneas. Furthermore, JSNMPT-029 inhibited the expression of pro-angiogenic factors, migration, proliferation and tube formation by human umbilical vein endothelial cells (HUVECs) in vitro.

Conclusions: Topical application of JSNMPT-029 to the injured corneas attenuated CNV by inhibition of the expression of the pro-angiogenic factors but promotion of the expression of the anti-angiogenic factors in the injured corneas. The data suggest that JSNMPT-029 has therapeutic potential for angiogenesis-associated diseases such as CNV.

Commercial Relationships: Jiayi Jin, None; Shaobo Su, None

Support: 31471122 from the National Natural Science Foundation of China

Program Number: 204 Poster Board Number: B0235
Presentation Time: 8:30 AM–10:15 AM

Effects of anti-angiogenic drugs on expression patterns of genes involved in different AMD pathogenic pathways

Mohamed Mohamed, M. Tarek Moustafa, Shari R. Atilano, Abdul Sami Memon, Mohamed Riazi, Sean W. Tsao, Cristina M. Kenney, Baruch D. Kuppermann, Regeneron (F), Ophthotech (C), Genentech (R), Alcon (C), Allergan (F), Allergan (R), Regeneron (C), Regeneron (R), Catalyst (C), Genentech (F), Novartis (C), GSK (F), Novartis (R), Genentech (C), Alcon (F), Ophthotech (F), Apellis (F), Allergan (C)

Support: Funding Supported by Discovery Eye Foundation, Polly and Michael Smith, Iris and B. Gerald Cantor Foundation, Max Factor Family Foundation. Supported by an RPB Unrestricted Grant.

Program Number: 205 Poster Board Number: B0236
Presentation Time: 8:30 AM–10:15 AM

Ciliary neurotrophic factor in patients with age-related cataract

Purpose: Analysis of the ciliary neurotrophic factor (CNTF) content in the eye may be of great importance for clarification of the pathogenesis of different ophthalmological diseases and evaluation of the efficacy of treatment. However, in practice this analysis is impossible except for during surgical interventions. The aim of the study was to measure and compare CNTF levels in the aqueous humor, tears, and blood serum in patients with age-related cataract.

Methods: Fifty-five patients (55 eyes) operated for age-related cataract were examined. Exclusion criteria were any serious ophthalmic or somatic pathology, high refractive errors. Mean age of patients was 68.7±7.9 years (range 53-85 years); there were 16 sex.

These abstracts are licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License. Go to http://iovs.arvojournals.org/ to access the versions of record.
null
The Effect of Interleukin 38 on Angiogenesis in a Model of Oxygen-induced Retinopathy

Jing Zhang, Shaobo Su. Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Purpose: Interleukin 38 (IL-38) is a novel identified cytokine of IL-1 family in which some members are important in inflammation and angiogenesis. However, the role of IL-38 in angiogenesis is unknown. The aim of the present study is to explore the effect of IL-38 on angiogenesis.

Methods: Mouse oxygen-induced retinopathy (OIR) model was induced by exposure of hyperoxia (75% oxygen) to C57BL/6J mice from postnatal day 7 (P7) to P12 and then returned to room air. The mice were intravitreal injection with 1μl of IL-38 dissolved at different concentrations (0, 5, or 25 ng/μl) at P12. At P17, neovascular region (tufts) and avascular area were analyzed. In addition, the effect of IL-38 on the migration, proliferation and tube formation were examined by human umbilical vein endothelial cells (HUVECs) in vitro.

Results: In vitro, IL-38 was expressed in endothelial cells and was down-regulated under hypoxic condition. IL-38 reduced the proliferation, migration and tube formation of endothelial cells in a dose-dependent manner. In vivo, IL-38 was expressed in mouse retina. Neonatal mice administrated with IL-38 in a mouse model of oxygen-induced retinopathy (OIR) showed that retina neovascularization was reduced.

Conclusions: Our findings suggest that IL-38 is an antiangiogenic cytokine in pathophysiological settings.

Commercial Relationships: Jing Zhang, None; Shaobo Su, None

Support: 31471122 from the National Natural Science Foundation of China

Program Number: 208 Poster Board Number: B0240
Presentation Time: 8:30 AM–10:15 AM

An increased expression of IL-17 and Foxp3 is observed in contrast to other Th genes in primary pterygium

Oxygen-induced Retinopathy

Purpose: An increasing number of pro-inflammatory cytokines, angiogenic and fibrogenic growth factors and their receptors have been related to pterygium (Pt). T helper cells CD4+ (Th) are an important constituent on Pt tissues, however The effect of Th cytokines on Pt pathogenesis has been poorly studied. To date, only interleukin 4 (IL-4) from Th cells has been linked to pterygium recurrence. Therefore, this study was undertaken to evaluate the expression of Th cytokines and Th transcription factors in primary Pt.

Methods: Pterygia heads were collected from 28 eyes of 28 Mexican patients undergoing primary pterygium excision with conjunctival autografting. Conjunctival biopsies from 8 patients undergoing cataract surgery were used as control group. Gene expression of the Th cytokines; interferon gamma (IFN-γ), IL-13, IL-17, IL-10, as well as the gene expression of the Th transcription factors; T-bet, GATA3, Foxp3 and RORγt were analyzed by real time RT-PCR using TaqMan assays. The 2^-ΔΔCt method was used for data analysis.

Results: The expression of T-bet, GATA3, RORγt, IFN-γ, IL-13 and IL-10 were downregulated in Pt. Interestingly, the lowest transcript expression for IL-13 and GATA3 were reached at maximum corneal invasion. The expressions of IL-17 and Foxp3 were increased up to 6 fold changes in Pt tissues (P< 0.0001), and occurred for the latter gene in a Pt size and Pt extension dependent manner.

Conclusions: The increased expression of IL-17 and Foxp3 in Pt specimens suggest the presence of IL-17 Foxp3+ T cells, a subset of Th population which suppress T cell proliferation and promotes tumor progression. Therefore, IL17 Foxp3+ T cells could be a therapeutic target to prevent pterygium growth.

Commercial Relationships: JOSE NAVARRO-PARTIDA, None; Carlos D. Díaz-Palomera, None; RAMSES ROSALES DIAZ, None; ABRIL B. MARTINEZ-RIZO, None; Adolfo D. Rodriguez-Carrizalez, None; ARTURO SANTOS, None

Program Number: 210 Poster Board Number: B0241
Presentation Time: 8:30 AM–10:15 AM

Quantification of aflibercept and ranibizumab efficacy in DL-2-aminoacidic acid (DLAAA)-induced retinal neovascularization and vascular leakage in nonhuman primates

Wenzheng Hu, Dominica James, Anish Kurian, Jordan Attwood, Cyrene Phipps, Akeem Browne, Vernard Woodley, Akeba Matthew, Alex Lewis, Robin J. Goody, Matthew S. Lawrence. RxGen Inc, Hamden, CT.

Purpose: To define the optimal strategy for grading and quantifying the retinal neovascularization and leakage induced by intravitreal (IVT) injection of DLAAA in the green monkey and to further validate the model by evaluating the comparative magnitude of response to IVT aflibercept and ranibizumab treatments.

Methods: DLAAA was administered intravitreally at one dose of 5 mg in adult St. Kitts green monkeys (Chlorocebus sabaeus). Weekly ophthalmic examinations including slit lamp microscopy, color fundus photography, fluorescein angiography and optical coherence tomography were conducted up to 18 weeks. Aflibercept, ranibizumab or normal saline were injected intravitreally at 8 weeks post-DLAAA following randomization of eyes to treatment on the bases of week 8 leakage. The area and fluorescence intensity of retinal vascular leakage were quantified from the 1 and 3 minute angiograms by Amira software (Materials & Structural Analysis, Hillsboro, OR).

Results: Both aflibercept and ranibizumab treatments attenuated the area and fluorescence intensity of retinal vascular leakage, starting from 1 week, peaking around 4 weeks, with gradual reoccurrence of leakage to a level less than the pre-treatment condition at 10 weeks post-administration. Treatment with aflibercept resulted in a 75% reduction in average leakage area in 3 minute angiograms while a 50% reduction was observed in response to ranibizumab. The changes in area and intensity were quite similar between 1 and 3 minute angiograms, however, a complete inhibition of leakage was only observed at the 1 minute angiogram interval in eyes treated with aflibercept.

Conclusions: Measurement of the area and fluorescence intensity of DLAAA-induced neovascularization and leakage using Amira software provides an additional reproducible method for quantitative analysis of retinal vascular leakage. Both aflibercept and ranibizumab treatments significantly reduced retinal vascular leakage, with aflibercept exhibiting a more pronounced effect. Reference to the established behaviour of these control articles in the DLAAA test system and application of these quantitative methods will allow more robust screening of candidate anti-angiogenic compounds.
Comparison of pain and comfort for intravitreal administration of anti-VEGF agents using blepharostat vs non blepharostat techniques

Jose Ramon R. Mier1, David Magana1, Efrain Romo-Garcia1, Wilehaldo Quiñónez1, Alonso Meza1, Gilberto Noe Gutierrez Ruiz1. 1Ophthalmology, ISSSTE, MERIDA, Mexico; 2Retina, CIDOCS / UAS, Culiacán, Mexico.

Purpose: Compare patients pain and comfort on both techniques with blepharostat and non blepharostat, to choose the comfortable, safe and adequate technique for the patient intravitreal administration of anti-VEGF.

Methods: Patients eligible for intravitreal administration of anti-VEGF agents due to various types of retinal diseases were interrogated to assess pain and comfort, using blepharostat vs non-blepharostat with appropriate aseptic techniques and Antiseptic prior iodine instillation 5%. To evaluate pain, we are using the numerical scale of pain score 0-10 (0 = no pain - 5 = moderate pain, 10 = worst pain). In addition, signs of cataract, inflammation or infection were sought immediately and at 28 days

Results: Intravitreal administration without blepharostat was less painful and more comfortable for patients, also in both groups were not found signs of cataract secondary to intravitreal administration, infectious or inflammatory signs.

Conclusions: Adequate intravitreal administration of anti-VEGF technique without blepharostat is less painful, more comfortable and safe for the patient than using a blepharostat technique.

Commercial Relationships: Jose Ramon R. Mier, None; David Magana, None; Efrain Romo-Garcia, None; Wilehaldo Quiñónez, None; Alonso Meza, None; Gilberto Noe Gutierrez Ruiz, None