
CIP2017-01-18

Configurable
Pattern Matching Semantics
Stefan Plantikow, Mats Rydberg, Petra Selmer

Outline

Current Semantics

Paths, Morphisms, and Walks

Proposed Semantics

Extensions

Summary

Current Semantics

Simple patterns

MATCH <patterns>

MATCH () // node pattern

MATCH ()-[]->() // relationship pattern
MATCH ()-[]-() // (undirected version)

MATCH p=... // path binding

What happens if we name patterns?

MATCH (a)-[r]->(b)
====> All matches spread across three fields: a, r, b

What happens if we combine patterns?

MATCH (a), (b)
====> Cross product over: a, b

What happens if we connect them?

MATCH (a)-[r1]->(b)<-[r2]-(c)

<===> This is the same as

MATCH (a)-[r1]->(b)
MATCH (b2)<-[r2]-(c)
WITH a, r1, b, r2, c

====> WHERE b = b2: Implicit join on b
====> AND r1 <> r2: Uniqueness

Graph Matching Morphisms

Homomorphism Repeated nodes, Repeated relationships

Cyphermorphism Repeated nodes, No repeated relationships
(Relationship-Isomorphism)

Node-Isomorphism No repeated nodes, No repeated relationships

Cyphermorphism in Cypher

Coined by Oskar van Rest from Oracle at oCIM 1:
"Cyphermorphism is really good"

All relationships matched by the same clause must be different

MATCH ()-[rel]->()-[rel_list*]->()<-[]<-[*]-()

● Doesn't matter if bound to a variable for a single relationship
● Doesn't matter if bound to a variable for a relationship list
● Doesn't matter if not bound to a variable

Benefits of Cyphermorphism

Coined by Oskar van Rest from Oracle at oCIM 1:
"Cyphermorphism is really good"

● GOOD: Fewer results by default

● GOOD: Never returns infinite results (never "stuck in a loop")

● GOOD: Proven in practice

Issues with Fixed Cyphermorphism

● Not always the right choice:
Sometimes all matches are requested by the user

○ Opting out for simple patterns is cumbersome (split MATCH clause)
MATCH (a)-[r1]->(b) MATCH (b)-[r2]->(c), ...

○ Can't opt out for unbounded variable length or shortest path patterns

● Occasionally confusing for new users; why do these patterns interact?
MATCH p1=(a)-[*]->(b), p2=(b)-[*]->(c)

● Should we have picked homomorphism as default back then?
○ Homomorphism more efficient for some path patterns (RPQs)
○ On the other hand: May lead to infinite results when enumerating all paths!

● In any case, let's enable users to switch semantics easily!

CIR-2017-174 Isomorphic pattern matching and configurable uniqueness

CIP-2017-01-18 Configurable Pattern Matching Semantics

What is the next step?

https://github.com/opencypher/openCypher/issues/174
https://github.com/opencypher/openCypher/pull/175

Paths, Morphisms, and Walks

What's a path?

● Sequence of alternating nodes
and relationships

● Starts with a node
● Ends with a node

...and that's where consensus stops :)

We mostly use definitions from
D. Jungnickel. Graphs, Networks and Algorithms.
Springer Publishing Company, 2010

(Rosen seems to be less prevalent; we borrow "tidy path"
though)

What's a walk?

 Walk Repeated nodes, Repeated relationships

 Trail Repeated nodes, No repeated relationships

 (Tidy) Path No repeated nodes, No repeated relationships

 Open|Closed Are start node and end node allowed to be the same node

Every tidy path is a trail

Every trail is a walk

Graph-Matching Morphisms vs Kinds of Walks

Homomorphism <===> Walk

Cyphermorphism <===> Trail

(Node-)Isomorphism <===> Path

Let's leverage this symmetry!

Proposed Semantics

Approach

Configurable semantics per walk

Default semantics that minimize breaking existing queries

STEP 1

Change to
Pattern Variable
Uniqueness

MATCH p=...
^^^
Let's call this a pattern variable henceforth

Note: We're going to use `++` for path concatenation in the slides only

(This could go into the future CIP2017-05-18 Plus Operator Reform)

Pattern Variables

https://github.com/Mats-SX/openCypher/blob/plus-operator-cip/cip/1.accepted/CIP2017-05-18-Plus-operator.adoc

Today: Clause Uniqueness

MATCH p1=()-[r1]->(), p2=()-[r2]->()-[r3]->()
RETURN p1, p2

<===>

MATCH p1=()-[r1]->()
MATCH pa=()-[r2]->(x)
MATCH pb=(x)-[r3]->()
WITH * WHERE r1 <> r2 AND r2 <> r3 AND r1 <> r3
RETURN p1, pa++pb AS p2

Proposal: Pattern Variable Uniqueness

MATCH p1=()-[r1]->(), p2=()-[r2]->()-[r3]->()
RETURN p1, p2

<===>

MATCH p1=()-[r1]->()
MATCH pa=()-[r2]->(x)
MATCH pb=(x)-[r3]->()
WITH * WHERE r2 <> r3
RETURN p1, pa++pb AS p2

STEP 2

Introduce
Pattern Variable Class

Pattern Variable Classes
Key Idea:
If *morphisms correspond to different kinds of walks,
then configurable kinds of walks provide configurable morphisms.

MATCH WALK Walk Homomorphism

MATCH TRAIL Trail (Relationship-)Isomorphism

MATCH PATH Path (Node-)Isomorphism

● MATCH TRAILS aka Cyphermorphism remains the proven default

● Implementations are free to provide options for changing this

● Proposal suggests using MATCH WALKS for path patterns only

Default Pattern Variable Class

STEP 3

Introduce
Pattern Match Mode

Advanced Patterns

// variable length patterns
MATCH ()-[*]->() // unbounded
MATCH ()-[*..2]->() // bounded

// shortest path patterns
MATCH shortestPath(...) // single (any)
MATCH allShortestPaths(...) // all

Pattern Match Modes

Change which subset of all walks, trails, paths is to be matched

MATCH ALL ... Every ...

MATCH ALL SHORTEST ... Every shortest ...

MATCH SHORTEST ... Single (any) shortest ...

Path patterns will often be used with shortest path but we don't
want to switch to shortest path only, therefore we default per sub-pattern:

MATCH ()-[]->() <==> MATCH ALL TRAILS ()-[]->()

MATCH ()-[*]->() <==> MATCH ALL TRAILS ()-[*]->()

MATCH ()-//->() <==> MATCH ALL SHORTEST WALKS ()-//->()

Nice, concise syntax for shortest path by default!

Efficient path patterns by default!

Default Pattern Match Mode

Pattern
Variable Class
+ Match Mode

Configurable
Match Semantics

MATCH WALKS ()-[*]->() // Error!

Some patterns produce infinite number of walks for cyclic graphs. To avoid:

(1) Must be requested explicitly by specifying the ALL match mode
(2) Implementations expected to generate warning

MATCH ALL WALKS ()-[*]->() // Ok, but dangerous

Infinite Results

Extensions

Utility Functions

isOpen(p) check if the source and target nodes of p are distinct

isClosed(p) check if the source and target nodes of p are equal

toTrail(p) p if p contains no duplicate relationships, null otherwise

toPath(p) toTrail(p) if p contains no duplicate nodes at all
besides the source and target nodes of p, null otherwise

What if existing applications need a different default?
Per-Parser Option to the rescue!

CYPHER match=all-trails MATCH ...

Change

default pattern variable class,
default pattern match mode,
or both!

Pre-Parser Option

More Match Modes upcoming
MATCH CHEAPEST BY ...
MATCH ALL CHEAPEST BY ...

More Pattern Variable Class Modifiers
// retains clause uniqueness
MATCH UNIQUE NODES ...
MATCH UNIQUE RELS ...

// reachability semantics if not bound
MATCH DISTINCT (a)-[*]->(b)

Summary

● Process Status
○ CIP drafted
○ Companion CIP for MATCH CHEAPEST upcoming
○ Next CIP (Multiple Graphs Syntax):

Aim to finish 1 week before oCIG call for review

● Is this the right approach?
● Is this the right syntax? Is it too graph theory oriented?

○ CON Pattern variable uniqueness will break some queries
○ PRO Enables efficient RPQs / path patterns
○ PRO Grounded in graph theory
○ PRO Gives more control to users
○ PRO More intuitive uniqueness scope
○ PRO Extensible
○ ...

Thank you

