Server Objects
Server objects represent an entity that exists on the Driverless AI server.
Dataset
Dataset objects correspond to existing datasets on a Driverless AI server. Dataset objects are retrievable using the Client.
API Reference:
-
class
Dataset Interact with a dataset on the Driverless AI server.
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.columns ds.data_source ds.file_path ds.file_size ds.key ds.name ds.shape-
column_summaries(columns: Optional[List[str]] = None) DatasetColumnSummaryCollection Returns a collection of column summaries.
The collection can be indexed by number or column name:
dataset.column_summaries()[0]dataset.column_summaries()[0:3]dataset.column_summaries()['C1']
A column summary has the following attributes:
count: count of non-missing valuesdata_type: raw data type detected by Driverless AI when the data was importeddatetime_format: user defined datetime format to be used by Driverless AI (seedataset.set_datetime_format())freq: count of most frequent valuelogical_types: list of user defined data types to be used by Driverless AI (overridesdata_type, also seedataset.set_logical_types())max: maximum value for numeric datamean: mean of values for numeric datamin: minimum value for numeric datamissing: count of missing valuesname: column namesd: standard deviation of values for numeric dataunique: count of unique values
Printing the collection or an individual summary displays a histogram along with summary information, like so:
--- C1 --- 4.3|███████ |█████████████████ |██████████ |████████████████████ |████████████ |███████████████████ |█████████████ |████ |████ 7.9|████ Data Type: real Logical Types: ['categorical', 'numerical'] Datetime Format: Count: 150 Missing: 0 Mean: 5.84 SD: 0.828 Min: 4.3 Max: 7.9 Unique: 35 Freq: 10Parameters: columns ( Optional[List[str]]) – list of column names to include in the collectionExamples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # print column summary for the first three columns print(ds.column_summaries()[0:3])Return type: DatasetColumnSummaryCollection
-
property
columns: List[str] List of column names.
Return type: List[str]
-
property
creation_timestamp: float Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
data_source: str Original source of data.
Return type: str
-
delete() None Delete dataset on Driverless AI server.
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.delete()Return type: None
-
download(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False) str Download dataset from Driverless AI server as a csv.
Parameters: - dst_dir (
str) – directory where csv will be saved - dst_file (
Optional[str]) – name of csv file (overrides default file name) - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool) – overwrite existing file
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.download()Return type: str- dst_dir (
-
export(**kwargs: Any) str Export dataset csv from the Driverless AI server. Returns a relative path for the exported csv.
Note
Export location is configured on the Driverless AI server.
Return type: str
-
property
file_path: str Path to dataset bin file on the server.
Return type: str
-
property
file_size: int Size in bytes of dataset bin file on the server.
Return type: int
-
head(num_rows: int = 5) Table Return headers and first n rows of dataset in a Table.
Parameters: num_rows ( int) – number of rows to showExamples:
# Load in the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Print the headers and first 5 rows print(ds.head(num_rows=5))Return type: Table
-
property
key: str Universally unique identifier.
Return type: str
-
modify_by_code(code: str, names: Optional[List[str]] = None) Dict[str, Dataset] Create a dictionary of new datasets from original dataset modified by a Python
codestring, that is the body of a function where:- there is an input variable
Xthat represents the original dataset in the form of a datatable frame (dt.Frame) - return type is one of dt.Frame, pd.DataFrame, np.ndarray or a list of those
Parameters: - code (
str) – Python code that modifiesX - names (
Optional[List[str]]) – optional list of names for the new dataset(s)
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Keep the first 4 columns new_dataset = ds.modify_by_code( 'return X[:, :4]', names=['new_dataset'] ) # Split on 4th column new_datasets = ds.modify_by_code( 'return [X[:, :4], X[:, 4:]]', names=['new_dataset_1', 'new_dataset_2'] )The dictionary will map the dataset
namesto the returned element(s) from the Pythoncodestring.Return type: Dict[str,Dataset]- there is an input variable
-
modify_by_code_preview(code: str) Table Get a preview of the dataset modified by a Python
codestring, where:- there exists a variable
Xthat represents the original dataset in the form of a datatable frame (dt.Frame) - return type is one of dt.Frame, pd.DataFrame, np.ndarray or a list of those (only first element of the list is shown in preview)
Parameters: code ( str) – Python code that modifiesXExamples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Keep first 4 columns ds.modify_by_code_preview('return X[:, :4]')Return type: Table- there exists a variable
-
modify_by_recipe(recipe: str, names: Optional[List[str]] = None) Dict[str, Dataset] Create a dictionary of new datasets from original dataset modified by a recipe.
The dictionary will map the dataset
namesto the returned element(s) from the recipe.Parameters: - recipe (
str) – path to recipe or url for recipe - names (
Optional[List[str]]) – optional list of names for the new dataset(s)
Examples:
# Import the airlines dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip', data_source='s3' ) # Modify original dataset with a recipe new_ds = ds.modify_by_recipe( recipe='https://github.com/h2oai/driverlessai-recipes/blob/rel-1.8.4/data/airlines_multiple.py', names=['new_airlines1', 'new_airlines2'] )Return type: Dict[str,Dataset]- recipe (
-
property
name: str Display name.
Return type: str
-
rename(name: str) Dataset Change dataset display name.
Parameters: name ( str) – new display nameExamples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.name ds.rename(name='new-iris-name') ds.nameReturn type: Dataset
-
set_datetime_format(columns: Dict[str, str]) None Set datetime format of columns.
Parameters: columns ( Dict[str,str]) – dictionary where the key is the column name and the value is a valid datetime formatExamples:
# Import the Eurodate dataset date = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/jira/v-11-eurodate.csv', data_source='s3' ) # Set the date time format for column ‘ds5' date.set_datetime_format({'ds5': '%d-%m-%y %H:%M'})Return type: None
-
set_logical_types(columns: Dict[str, Union[str, List[str]]]) None Designate columns to have the specified logical types. The logical type is mainly used to determine which transformers to try on the column’s data.
Possible logical types:
'categorical''date''datetime''id''numerical''text'
Parameters: columns ( Dict[str,Union[str,List[str]]]) – dictionary where the key is the column name and the value is the logical type or a list of logical types for the column (to unset all logical types use a value ofNone)Example:
# Import the prostate dataset prostate = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/prostate/prostate.csv', data_source='s3' ) # Set the logical types prostate.set_logical_types( {'ID': 'id', 'AGE': ['categorical', 'numerical'], 'RACE': None} )Return type: None
-
property
shape: Tuple[int, int] Dimensions (rows, cols).
Return type: Tuple[int,int]
-
split_to_train_test(train_size: float = 0.5, train_name: Optional[str] = None, test_name: Optional[str] = None, target_column: Optional[str] = None, fold_column: Optional[str] = None, time_column: Optional[str] = None, seed: int = 1234) Dict[str, Dataset] Split a dataset into train/test sets on the Driverless AI server and return a dictionary of Dataset objects with the keys
'train_dataset'and'test_dataset'.Parameters: - train_size (
float) – proportion of dataset rows to put in the train split - train_name (
Optional[str]) – name for the train dataset - test_name (
Optional[str]) – name for the test dataset - target_column (
Optional[str]) – use stratified sampling to create splits - fold_column (
Optional[str]) – keep rows belonging to the same group together - time_column (
Optional[str]) – split rows such that the splits are sequential with respect to time - seed (
int) – random seed
Note
Only one of
target_column,fold_column, ortime_columncan be passed at a time.Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Split the iris dataset into train/test sets ds_split = ds.split_to_train_test(train_size=0.7)Return type: Dict[str,Dataset]- train_size (
-
split_to_train_test_async(train_size: float = 0.5, train_name: Optional[str] = None, test_name: Optional[str] = None, target_column: Optional[str] = None, fold_column: Optional[str] = None, time_column: Optional[str] = None, seed: int = 1234) DatasetSplitJob Launch creation of a dataset train/test split on the Driverless AI server and return a DatasetSplitJob object to track the status.
Parameters: - train_size (
float) – proportion of dataset rows to put in the train split - train_name (
Optional[str]) – name for the train dataset - test_name (
Optional[str]) – name for the test dataset - target_column (
Optional[str]) – use stratified sampling to create splits - fold_column (
Optional[str]) – keep rows belonging to the same group together - time_column (
Optional[str]) – split rows such that the splits are sequential with respect to time - seed (
int) – random seed
Note
Only one of
target_column,fold_column, ortime_columncan be passed at a time.Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Launch the creation of a dataset train/test split on the DAI server ds_split = ds.split_to_train_test_async(train_size=0.7)Return type: DatasetSplitJob- train_size (
-
tail(num_rows: int = 5) Table Return headers and last n rows of dataset in a Table.
Parameters: num_rows ( int) – number of rows to showExamples:
ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Print the headers and last 5 rows print(ds.tail(num_rows=5))Return type: Table
-
-
class
DatasetJob Monitor creation of a dataset on the Driverless AI server.
-
is_complete() bool Return
Trueif job completed successfully.Return type: bool
-
is_running() bool Return
Trueif job is scheduled, running, or finishing.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
result(silent: bool = False) Dataset Wait for job to complete, then return a Dataset object.
Parameters: silent ( bool) – if True, don’t display status updatesReturn type: Dataset
-
status(verbose: int = 0) str Return job status string.
Parameters: verbose ( int) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
Experiment
Experiment objects correspond to existing experiments on a Driverless AI server. Experiment objects are retrievable using the Client.
API Reference:
-
class
Experiment Interact with an experiment on the Driverless AI server.
-
abort() None Terminate experiment immediately and only generate logs.
Return type: None
-
property
artifacts: driverlessai._experiments.ExperimentArtifacts Interact with artifacts that are created when the experiment completes.
Return type: ExperimentArtifacts
-
property
creation_timestamp: float Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
datasets: Dict[str, Optional[driverlessai._datasets.Dataset]] Dictionary of
train_dataset,validation_dataset, andtest_datasetused for the experiment.Return type: Dict[str,Optional[Dataset]]
-
delete() None Permanently delete experiment from the Driverless AI server.
Return type: None
-
export_dai_file(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False) str Export experiment from Driverless AI server in dai format.
Parameters: - dst_dir (
str) – directory where dai file will be saved - dst_file (
Optional[str]) – name of dai file (overrides default file name) - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool) – overwrite existing file
Return type: str- dst_dir (
-
finish() None Finish experiment by jumping to final pipeline training and generating experiment artifacts.
Return type: None
-
gui() Hyperlink Get full URL for the experiment’s page on the Driverless AI server.
Return type: Hyperlink
-
is_complete() bool Return
Trueif job completed successfully.Return type: bool
-
property
is_deprecated: bool Trueif experiment was created by an old version of Driverless AI and is no longer fully compatible with the current server version.Return type: bool
-
is_running() bool Return
Trueif job is scheduled, running, or finishing.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
log: driverlessai._experiments.ExperimentLog Interact with experiment logs.
Return type: ExperimentLog
-
metrics() Dict[str, Union[str, float]] Return dictionary of experiment scorer metrics and AUC metrics, if available.
Return type: Dict[str,Union[str,float]]
-
property
name: str Display name.
Return type: str
-
notifications() List[Dict[str, str]] Return list of experiment notification dictionaries.
Return type: List[Dict[str,str]]
-
predict(dataset: Dataset, enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = None, include_raw_outputs: Optional[bool] = None, include_shap_values_for_original_features: Optional[bool] = None, include_shap_values_for_transformed_features: Optional[bool] = None, use_fast_approx_for_shap_values: Optional[bool] = None) Prediction Predict on a dataset, then return a Prediction object.
Parameters: - dataset (
Dataset) – a Dataset object corresonding to a dataset on the Driverless AI server - enable_mojo (
bool) – use MOJO (if available) to make predictions (server versions >= 1.9.1) - include_columns (
Optional[List[str]]) – list of columns from the dataset to append to the prediction csv - include_labels (
Optional[bool]) – append labels in addition to probabilities for classification, ignored for regression (server versions >= 1.10) - include_raw_outputs (
Optional[bool]) – append predictions as margins (in link space) to the prediction csv - include_shap_values_for_original_features (
Optional[bool]) – append original feature contributions to the prediction csv (server versions >= 1.9.1) - include_shap_values_for_transformed_features (
Optional[bool]) – append transformed feature contributions to the prediction csv - use_fast_approx_for_shap_values (
Optional[bool]) – speed up prediction contributions with approximation (server versions >= 1.9.1)
Return type: - dataset (
-
predict_async(dataset: Dataset, enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = None, include_raw_outputs: Optional[bool] = None, include_shap_values_for_original_features: Optional[bool] = None, include_shap_values_for_transformed_features: Optional[bool] = None, use_fast_approx_for_shap_values: Optional[bool] = None) PredictionJobs Launch prediction job on a dataset and return a PredictionJobs object to track the status.
Parameters: - dataset (
Dataset) – a Dataset object corresonding to a dataset on the Driverless AI server - enable_mojo (
bool) – use MOJO (if available) to make predictions (server versions >= 1.9.1) - include_columns (
Optional[List[str]]) – list of columns from the dataset to append to the prediction csv - include_labels (
Optional[bool]) – append labels in addition to probabilities for classification, ignored for regression (server versions >= 1.10) - include_raw_outputs (
Optional[bool]) – append predictions as margins (in link space) to the prediction csv - include_shap_values_for_original_features (
Optional[bool]) – append original feature contributions to the prediction csv (server versions >= 1.9.1) - include_shap_values_for_transformed_features (
Optional[bool]) – append transformed feature contributions to the prediction csv - use_fast_approx_for_shap_values (
Optional[bool]) – speed up prediction contributions with approximation (server versions >= 1.9.1)
Return type: - dataset (
-
rename(name: str) Experiment Change experiment display name.
Parameters: name ( str) – new display nameReturn type: Experiment
-
result(silent: bool = False) Experiment Wait for training to complete, then return self.
Parameters: silent ( bool) – if True, don’t display status updatesReturn type: Experiment
-
retrain(use_smart_checkpoint: bool = False, final_pipeline_only: bool = False, final_models_only: bool = False, **kwargs: Any) Experiment Create a new experiment using the same datasets and settings. Through
kwargsit’s possible to pass new datasets or overwrite settings.Parameters: - use_smart_checkpoint (
bool) – start experiment from last smart checkpoint - final_pipeline_only (
bool) – trains final pipeline using smart checkpoint if available, otherwise uses default hyperparameters - final_models_only (
bool) – trains final pipeline models (but not transformers) using smart checkpoint if available, otherwise uses default hyperparameters and transformers (overrides final_pipeline_only) - kwargs (
Any) – datasets and experiment settings as defined inexperiments.create()
Return type: - use_smart_checkpoint (
-
retrain_async(use_smart_checkpoint: bool = False, final_pipeline_only: bool = False, final_models_only: bool = False, **kwargs: Any) Experiment Launch creation of a new experiment using the same datasets and settings. Through kwargs it’s possible to pass new datasets or overwrite settings.
Parameters: - use_smart_checkpoint (
bool) – start experiment from last smart checkpoint - final_pipeline_only (
bool) – trains final pipeline using smart checkpoint if available, otherwise uses default hyperparameters - final_models_only (
bool) – trains final pipeline models (but not transformers) using smart checkpoint if available, otherwise uses default hyperparameters and transformers (overrides final_pipeline_only) - kwargs (
Any) – datasets and experiment settings as defined inexperiments.create()
Return type: - use_smart_checkpoint (
-
property
run_duration: Optional[float] Run duration in seconds.
Return type: Optional[float]
-
property
settings: Dict[str, Any] Experiment settings.
Return type: Dict[str,Any]
-
property
size: int Size in bytes of all experiment’s files on the Driverless AI server.
Return type: int
-
status(verbose: int = 0) str Return job status string.
Parameters: verbose ( int) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
summary() None Print experiment summary.
Return type: None
-
Experiment Artifacts
Experiment artifacts include anything outputted after a successfully completed experiment. These artificats include the autoreport, scoring pipelines, prediction csvs, experiment summary, and logs.
API Reference:
-
class
ExperimentArtifacts Interact with files created by an experiment on the Driverless AI server.
-
create(artifact: str) None (Re)build certain artifacts, if possible.
(re)buildable artifacts:
'autodoc''mojo_pipeline''python_pipeline'
Parameters: artifact ( str) – name of artifact to (re)buildReturn type: None
-
download(only: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, include_columns: Optional[List[str]] = None, overwrite: bool = False) Dict[str, str] Download experiment artifacts from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - only (
Union[str,List[str]]) – specify specific artifacts to download, useexperiment.artifacts.list()to see the available artifacts on the Driverless AI server - dst_dir (
str) – directory where experiment artifacts will be saved - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - include_columns (
Optional[List[str]]) – list of dataset columns to append to prediction csvs - overwrite (
bool) – overwrite existing files
Return type: Dict[str,str]- only (
-
export(only: Optional[Union[str, List[str]]] = None, include_columns: Optional[List[str]] = None, **kwargs: Any) Dict[str, str] Export experiment artifacts from the Driverless AI server. Returns a dictionary of relative paths for the exported artifacts.
Parameters: - only (
Union[str,List[str],None]) – specify specific artifacts to export, useex.artifacts.list()to see the available artifacts on the Driverless AI server - include_columns (
Optional[List[str]]) – list of dataset columns to append to prediction csvs
Note
Export location is configured on the Driverless AI server.
Return type: Dict[str,str]- only (
-
property
file_paths: Dict[str, str] Paths to artifact files on the server.
Return type: Dict[str,str]
-
list() List[str] List of experiment artifacts that exist on the Driverless AI server.
Return type: List[str]
-
Experiment Logs
Experiment logs list the events recorded during an experiment.
API Reference:
-
class
ExperimentLog Interact with experiment logs.
-
download(archive: bool = True, dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False) str Download experiment logs from the Driverless AI server.
Parameters: - archive (
bool) – if available, prefer downloading an archive that contains multiple log files and stack traces if any were created - dst_dir (
str) – directory where logs will be saved - dst_file (
Optional[str]) – name of log file (overrides default file name) - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool) – overwrite existing file
Return type: str- archive (
-
head(num_lines: int = 50) None Print first n lines of experiment log.
Parameters: num_lines ( int) – number of lines to printReturn type: None
-
tail(num_lines: int = 50) None Print last n lines of experiment log.
Parameters: num_lines ( int) – number of lines to printReturn type: None
-
Predictions
Prediction objects are created when predicting on a new dataset.
API Reference:
-
class
Prediction Interact with predictions from the Driverless AI server.
-
download(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False) str Download csv of predictions.
Parameters: - dst_dir (
str) – directory where csv will be saved - dst_file (
Optional[str]) – name of csv file (overrides default file name) - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool) – overwrite existing file
Return type: str- dst_dir (
-
property
file_paths: List[str] Paths to prediction csv files on the server.
Return type: List[str]
-
property
included_dataset_columns: List[str] Columns from dataset that are appended to predictions.
Return type: List[str]
-
property
includes_labels: bool Whether classification labels are appended to predictions.
Return type: bool
-
property
includes_raw_outputs: bool Whether predictions as margins (in link space) were appended to predictions.
Return type: bool
-
property
includes_shap_values_for_original_features: bool Whether original feature contributions are appended to predictions (server versions >= 1.9.1).
Return type: bool
-
property
includes_shap_values_for_transformed_features: bool Whether transformed feature contributions are appended to predictions.
Return type: bool
-
property
keys: Dict[str, str] Dictionary of unique IDs for entities related to the prediction: dataset: unique ID of dataset used to make predictions experiment: unique ID of experiment used to make predictions prediction: unique ID of predictions
Return type: Dict[str,str]
-
to_pandas() pandas.DataFrame Transfer predictions to a local Pandas DataFrame.
Return type: pandas.DataFrame
-
property
used_fast_approx_for_shap_values: Optional[bool] Whether approximation was used to calculate prediction contributions (server versions >= 1.9.1).
Return type: Optional[bool]
-
-
class
PredictionJobs Monitor creation of predictions on the Driverless AI server.
-
property
included_dataset_columns: List[str] Columns from dataset that are appended to predictions.
Return type: List[str]
-
property
includes_labels: bool Whether classification labels are appended to predictions.
Return type: bool
-
property
includes_raw_outputs: bool Whether predictions as margins (in link space) are appended to predictions.
Return type: bool
-
property
includes_shap_values_for_original_features: bool Whether original feature contributions are appended to predictions (server versions >= 1.9.1).
Return type: bool
-
property
includes_shap_values_for_transformed_features: bool Whether transformed feature contributions are appended to predictions.
Return type: bool
-
is_complete() bool Return
Trueif all jobs completed successfully.Return type: bool
-
is_running() bool Return
Trueif one or more jobs is running or finishing.Return type: bool
-
property
jobs: Sequence[driverlessai._utils.ServerJob] List of ServerJob objects.
Return type: Sequence[ServerJob]
-
property
keys: Dict[str, str] Dictionary of entity unique IDs: dataset: unique ID of dataset used to make predictions experiment: unique ID of experiment used to make predictions prediction: unique ID of predictions
Return type: Dict[str,str]
-
result(silent: bool = False) Prediction Wait for all jobs to complete.
Parameters: silent ( bool) – if True, don’t display status updatesReturn type: Prediction
-
status(verbose: int = 0) List[str] Returns list of job status strings.
Parameters: verbose ( int) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: List[str]
-
property
used_fast_approx_for_shap_values: Optional[bool] Whether approximation was used to calculate prediction contributions (server versions >= 1.9.1).
Return type: Optional[bool]
-
property
Interpretation
Interpretation objects correspond to existing interpretations on a Driverless AI server. Interpretation objects are retrievable using the Client.
API Reference:
-
class
Interpretation Interact with a MLI interpretation on the Driverless AI server.
-
property
artifacts: driverlessai._mli.InterpretationArtifacts Interact with artifacts that are created when the interpretation completes.
Return type: InterpretationArtifacts
-
property
creation_timestamp: float Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
dataset: Optional[driverlessai._datasets.Dataset] Dataset for the interpretation.
Return type: Optional[Dataset]
-
delete() None Delete MLI interpretation on Driverless AI server.
Return type: None
-
property
experiment: Optional[driverlessai._experiments.Experiment] Experiment for the interpretation.
Return type: Optional[Experiment]
-
gui() Hyperlink Get full URL for the interpretation’s page on the Driverless AI server.
Return type: Hyperlink
-
is_complete() bool Return
Trueif job completed successfully.Return type: bool
-
is_running() bool Return
Trueif job is scheduled, running, or finishing.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
rename(name: str) Interpretation Change interpretation display name.
Parameters: name ( str) – new display nameReturn type: Interpretation
-
result(silent: bool = False) Interpretation Wait for job to complete, then return an Interpretation object.
Return type: Interpretation
-
property
run_duration: Optional[float] Run duration in seconds.
Return type: Optional[float]
-
property
settings: Dict[str, Any] Interpretation settings.
Return type: Dict[str,Any]
-
status(verbose: int = 0) str Return job status string.
Parameters: verbose ( int) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
property
Interpretation Artifacts
Interpretation artifacts include anything available for download after a successfully completed interpretation.
API Reference:
-
class
InterpretationArtifacts Interact with files created by a MLI interpretation on the Driverless AI server.
-
download(only: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False) Dict[str, str] Download interpretation artifacts from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - only (
Union[str,List[str]]) – specify specific artifacts to download, useinterpretation.artifacts.list()to see the available artifacts on the Driverless AI server - dst_dir (
str) – directory where interpretation artifacts will be saved - file_system (
Optional[ForwardRef]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool) – overwrite existing files
Return type: Dict[str,str]- only (
-
property
file_paths: Dict[str, str] Paths to artifact files on the server.
Return type: Dict[str,str]
-
list() List[str] List of interpretation artifacts that exist on the Driverless AI server.
Return type: List[str]
-
Project
Project objects correspond to existing projects on a Driverless AI server. Project objects are retrievable using the Client.
API Reference:
-
class
Project Interact with a project on the Driverless AI server.
-
property
datasets: Dict[str, Sequence[driverlessai._datasets.Dataset]] Datasets linked to the project.
Return type: Dict[str,Sequence[Dataset]]
-
delete() None Permanently delete project from the Driverless AI server.
Return type: None
-
property
description: Optional[str] Project description.
Return type: Optional[str]
-
property
experiments: Sequence[driverlessai._experiments.Experiment] Experiments linked to the project.
Return type: Sequence[Experiment]
-
gui() Hyperlink Get full URL for the project’s page on the Driverless AI server.
Return type: Hyperlink
-
property
key: str Universally unique identifier.
Return type: str
-
link_dataset(dataset: Dataset, dataset_type: str, link_associated_experiments: bool = False) Project Link a dataset to the project.
Parameters: - dataset (
Dataset) – a Dataset object corresonding to a dataset on the Driverless AI server - dataset_type (
str) – can be one of:'train_dataset(s)','validation_dataset(s)', or'test_dataset(s)' - link_associated_experiments (
bool) – also link experiments that used the dataset (server versions >= 1.9.1)
Return type: - dataset (
-
link_experiment(experiment: Experiment) Project Link an experiment to the project.
Parameters: experiment ( Experiment) – an Experiment object corresonding to a experiment on the Driverless AI serverReturn type: Project
-
property
name: str Display name.
Return type: str
-
redescribe(description: str) Project Change project description. Requires server version >= 1.9.1.
Parameters: description ( str) – new descriptionReturn type: Project
-
rename(name: str) Project Change project display name.
Parameters: name ( str) – new display nameReturn type: Project
Share a project. Requires server versions >= 1.9.3 with H2O.ai Storage connected.
Parameters: - username (
str) – Driverless AI username of user to share with - role (
str) – one of “Default” or “Reader”
Return type: None- username (
-
property
sharings: List[Dict[str, Optional[str]]] Users the project is shared with. Requires server versions >= 1.9.3 with H2O.ai Storage connected.
Return type: List[Dict[str,Optional[str]]]
-
unlink_dataset(dataset: Dataset, dataset_type: str) Project Unlink a dataset from the project.
Parameters: - dataset (
Dataset) – a Dataset object corresonding to a dataset on the Driverless AI server - dataset_type (
str) – can be one of:'train_dataset(s)','validation_dataset(s)', or'test_dataset(s)'
Return type: - dataset (
-
unlink_experiment(experiment: Experiment) Project Unlink an experiment from the project.
Parameters: experiment ( Experiment) – an Experiment object corresonding to a experiment on the Driverless AI serverReturn type: Project
Unshare a project. Requires server versions >= 1.9.3 with H2O.ai Storage connected.
Parameters: username ( str) – Driverless AI username of user to unshare withReturn type: None
-
property
Recipe
Recipe objects correspond to existing recipes on a Driverless AI server. Recipe objects are retrievable using the Client.
API Reference:
-
class
ExplainerRecipe Interact with an explainer recipe on the Driverless AI server.
-
property
for_binomial: bool Trueif explainer works for binomial models.Return type: bool
-
property
for_iid: bool Trueif explainer works for I.I.D. models.Return type: bool
-
property
for_multiclass: bool Trueif explainer works for multiclass models.Return type: bool
-
property
for_regression: bool Trueif explainer works for regression models.Return type: bool
-
property
for_timeseries: bool Trueif explainer works for time series models.Return type: bool
-
property
id: str Identifier.
Return type: str
-
property
is_custom: bool Trueif the recipe is custom.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
search_settings(search_term: str, show_description: bool = False) None Search explainer settings and print results. Useful when looking for explainer kwargs (see
explainer.with_settings()) to use when creating interpretations.Parameters: - search_term (
str) – term to search for (case insensitive) - show_description (
bool) – include description in results
Return type: None- search_term (
-
property
settings: Dict[str, Any] Explainer settings set by user.
Return type: Dict[str,Any]
-
with_settings(**kwargs: Any) ExplainerRecipe Changes the explainer settings from defaults. Settings reset to defaults everytime this is called.
Note
To search possible explainer settings for your server version, use
explainer.search_settings(search_term).Return type: ExplainerRecipe
-
property
-
class
ModelRecipe Interact with a model recipe on the Driverless AI server.
-
property
is_custom: bool Trueif the recipe is custom.Return type: bool
-
property
is_unsupervised: bool Trueif recipe doesn’t require a target column.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
property
-
class
ScorerRecipe Interact with a scorer recipe on the Driverless AI server.
-
property
description: str Recipe description.
Return type: str
-
property
for_binomial: bool Trueif scorer works for binomial models.Return type: bool
-
property
for_multiclass: bool Trueif scorer works for multiclass models.Return type: bool
-
property
for_regression: bool Trueif scorer works for regression models.Return type: bool
-
property
is_custom: bool Trueif the recipe is custom.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
property
Utility
API Reference:
-
class
Hyperlink Renders clickable link in notebooks but otherwise behaves the same as
str.
Visualization
Visualization objects correspond to existing dataset visualizations on a Driverless AI server. Visualization objects are retrievable using the Client.
API Reference:
-
class
Visualization Interact with a dataset visualization on the Driverless AI server.
-
delete() None Permanently delete visualization from the Driverless AI server.
Return type: None
-
gui() Hyperlink Get full URL for the visualization’s page on the Driverless AI server.
Return type: Hyperlink
-
is_complete() bool Return
Trueif job completed successfully.Return type: bool
-
property
is_deprecated: Optional[bool] Trueif visualization was created by an old version of Driverless AI and is no longer fully compatible with the current server version.Return type: Optional[bool]
-
is_running() bool Return
Trueif job is scheduled, running, or finishing.Return type: bool
-
property
key: str Universally unique identifier.
Return type: str
-
property
name: str Display name.
Return type: str
-
result(silent: bool = False) Visualization Wait for job to complete, then return self.
Parameters: silent ( bool) – if True, don’t display status updatesReturn type: Visualization
-
status(verbose: int = 0) str Return job status string.
Parameters: verbose ( int) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-