U.S. Operating Systems at
Mid-Century
The Intertwining of Race and UNIX

TARA MCPHERSON
University of Southern California

I begin with two fragments cut from history, around about the 1960s. This essay
will pursue the lines of connection between these two moments and argue
that insisting on their entanglement is integral to any meaningful understanding
of either of the terms this volume’s title brings together: the internet and race.
Additionally, I am interested in what we might learn from these historical
examples about the very terrains of knowledge production in the post-World
War II United States. The legacies of mid-century shifts in both our cultural
understandings of race and in digital computation are still very much with us
today, powerful operating systems that deeply influence how we know self, other
and society.

Fragment One

In the early 1960s, computer scientists at MIT were working on Project MAG,
an early set of experiments in Compatible Timesharing Systems for computing.
In the summer of 1963, MIT hosted a group of leading computer scientists at
the university to brainstorm about the future of computing. By 1965, MULTICS
(Multiplexed Information and Computing Service), a mainframe timesharing
operating system, was in use, with joint development by MIT, GE, and Bell Labs,
a subsidiary of ATT. The project was funded by ARPA of the Defense
Department for two million a year for eight years. MULTICS introduced early
ideas about modularity in hardware structure and software architecture.

In 1969, Bell Labs stopped working on MULTICS, and, that summer, one
of their engineers, Ken Thompson, developed the beginning of UNIX. While
there are clearly influences of MULTICS on UNIX, the later system also moves
away from the earlier one, pushing for increased modularity and for a simpler
design able to run on cheaper computers.

In simplest terms, UNIX is an early operating system for digital computers,
one that has spawned many offshoots and clones. These include MAC OS X
as well as LINUX, indicating the reach of UNIX over the past forty years. The

22 o Tara McPherson

system also influenced non-UNIX operating systems like Windows NT and
remains in use by many corporate IT divisions. UNIX was originally written
in assembly language, but after Thompson’s colleague, Dennis Ritchie,
developed the C programming language in 1972, Thompson rewrote UNIX in
that language. Basic text-formatting and editing features were added (i.e. early
word processors). In 1974, Ritchie and Thompson published their work in the
Journal of the Association for Computing Machinery, and UNIX began to pick
up a good deal of steam.!

UNIX can also be thought of as more than an operating system, as it also
includes a number of utilities such as command line editors, APIs (which, it is
worth noting, existed long before our Google maps made them sexy), code
libraries, etc. Furthermore, UNIX is widely understood to embody particular
philosophies and cultures of computation, “operating systems” of a larger order
that we will return to.

Fragment Two

Of course, for scholars of culture, of gender and of race, dates like 1965 and
1968 have other resonances. For many of us, 1965 might not recall MULTICS
but instead the assassination of Malcolm X, the founding of the United Farm
Workers, the burning of Watts, or the passage of the Voting Rights Act. The
mid-1960s also saw the origins of the American Indian Movement (AIM) and
the launch of the National Organization for Women (NOW). The late 1960s
mark the 1968 citywide walkouts of Latino youth in Los Angeles, the
assassinations of Martin Luther King, Jr. and Robert F. Kennedy, the Chicago
Democratic convention with its police brutality, the Stonewall Riots, and the
founding of the Black Panthers and the Young Lords. Beyond the geographies
of the United States, we might also remember the Prague Spring of 1968,
Tommie Smith and John Carlos at the Mexico Summer Olympics, the Tlatelolco
Massacre, the execution of Che Guevara, the Chinese Cultural Revolution, the
Six-Day War, or May ’68 in Paris, itself a kind of origin story for some
genealogies of film and media studies. On the African continent, thirty-two
countries gained independence from colonial rulers. In the U.S., broad cultural
shifts emerged across the decade, as identity politics took root and counter-
cultural forces challenged traditional values. Resistance to the Vietnam War
mounted as the decade wore on. Abroad, movements against colonialism and
oppression were notably strong.

The history just glossed as ‘Fragment One’ is well known to code junkies
and computer geeks. Numerous websites archive oral histories, programming
manuals, and technical specifications for MULTICS, UNIX, and various
mainframe and other hardware systems. Key players in the history, including
Ken Thompson, Donald Ritchie and Doug Mcllroy, have a kind of geek-chic
celebrity status, and differing versions of the histories of software and hardware
development are hotly debated, including nitty-gritty details of what really

U.S. Operating Systems at Mid-Century o 23

counts as “a UNIX.” In media studies, emerging work in “code studies” often
resurrects and takes up these histories.

Within American, cultural and ethnic studies, the temporal touchstones of
struggles over racial justice, anti-war activism, and legal history are also widely
recognized and analyzed. Not surprisingly, these two fragments typically stand
apart in parallel tracks, attracting the interest and attention of very different
audiences located in the deeply siloed departments that categorize our
universities.

But Why?

In short, I suggest that these two moments cut from time are deeply inter-
dependent. In fact, they co-constitute one another, comprising not independent
slices of history but, instead, related and useful lenses into the shifting
epistemological registers driving U.S. and global culture in the 1960s and after.
Both exist as operating systems of a sort, and we might understand them to be
mutually reinforcing.

This history of intertwining and mutual dependence is hard to tell. As we
delve into the intricacies of UNIX and the data structures it embraces, race in
America recedes far from our line of vision and inquiry. Likewise, detailed
examinations into the shifting registers of race and racial visibility post-1950
do not easily lend themselves to observations about the emergence of object-
oriented programming, personal computing, and encapsulation. Very few
audiences who care about one lens have much patience or tolerance for the
other.

Early forays in new media theory in the late 1990s did not much help this
problem. Theorists of new media often retreated into forms of analysis that
Marsha Kinder has critiqued as “cyberstructuralist,” intent on parsing media
specificity and on theorizing the forms of new media, while disavowing twenty-
plus years of critical race theory, feminism and other modes of overtly
politicized inquiry. Many who had worked hard to instill race as a central mode
of analysis in film, literary, and media studies throughout the late twentieth
century were disheartened and outraged (if not that surprised) to find new media
theory so easily retreating into a comfortable formalism familiar from the early
days of film theory.

Early analyses of race and the digital often took two forms, a critique of
representations in new media, i.e. on the surface of our screens, or debates about
access to media, i.e., the digital divide. Such work rarely pushed toward the
analyses of form, phenomenology or computation that were so compelling and
lively in the work of Lev Manovich, Mark Hansen, or Jay Bolter and Richard
Grusin. Important works emerged from both “camps,” but the camps rarely
intersected. A few conferences attempted to force a collision between these areas,
but the going was tough. For instance, at the two Race and Digital Space events
colleagues and I organized in 2000 and 2002, the vast majority of participants

24 o Tara McPherson

and speakers were engaged in work in the two modes mentioned above. The
cyberstructuralists were not in attendance.

But what if this very incompatibility is itself part and parcel of the
organization of knowledge production that operating systems like UNTX helped
to disseminate around the world? Might we ask if there is not something
particular to the very forms of electronic culture that seems to encourage just
such a movement, a movement that partitions race off from the specificity of
media forms? Put differently, might we argue that the very structures of digital
computation develop at least in part to cordon off race and to contain it? Further,
might we come to understand that our own critical methodologies are the heirs
to this epistemological shift?

From early writings by Sherry Turkle and George Landow to more recent
work by Alex Galloway, new media scholars have noted the parallels between
the ways of knowing modeled in computer culture and the greatest hits of
structuralism and post-structuralism. Critical race theorists and postcolonial
scholars like Chela Sandoval and Gayatri Spivak have illustrated the structuring
(if unacknowledged) role that race plays in the work of poststructuralists like
Roland Barthes and Michel Foucault. We might bring these two arguments
together, triangulating race, electronic culture, and post-structuralism, and,
further, argue that race, particularly in the United States, is central to this
undertaking, fundamentally shaping how we see and know as well as the
technologies that underwrite or cement both vision and knowledge. Certain
modes of racial visibility and knowing coincide or dovetail with specific ways
of organizing data: if digital computing underwrites today’s information
economy and is the central technology of post-World War II America, these
technologized ways of secing/knowing took shape in a world also struggling
with shifting knowledges about and representations of race. If, as Michael Omi
and Howard Winant argue, racial formations serve as fundamental organizing
principles of social relations in the United States, on both the macro and micro
levels (1986/1989: 55), how might we understand the infusion of racial
organizing principles into the technological organization of knowledge after
World War II?

Omi and Winant and other scholars have tracked the emergence of a “race-
blind” rhetoric at mid-century, a discourse that moves from overt to more covert
modes of racism and racial representation (for example, from the era of Jim
Crow to liberal colorblindness). Drawing from those 3-D postcards that bring
two or more images together even while suppressing their connections, I have
earlier termed the racial paradigms of the post-war era “lenticular logics.” The
ridged coating on 3-D postcards is actually a lenticular lens, a structural device

that makes simultaneously viewing the various images contained on one card
nearly impossible. The viewer can rotate the card to see any single image, but
the lens itself makes seeing the images together very difficult, even as it conjoins
them at a structural level (i.e. within the same card). In the post-Civil Rights

U.S. Operating Systems at Mid-Century o 25

U.S., the lenticular is a way of organizing the world. It structures representations
but also epistemologies. It also serves to secure our understandings of race in
very narrow registers, fixating on sameness or difference while forestalling
connection and interrelation. As I have argued elsewhere, we might think of
the lenticular as a covert mode of the pretense of “separate but equal,” remixed
for mid-century America (McPherson 2003: 250).

A lenticular logic is a covert racial logic, a logic for the post-Civil Rights
era. We might contrast the lenticular postcard to that wildly popular artifact
of the industrial era, the stereoscope card. The stereoscope melds two different
images into an imagined whole, privileging the whole; the lenticular image
partitions and divides, privileging fragmentation. A lenticular logic is a logic
of the fragment or the chunk, a way of seeing the world as discrete modules or
nodes, a mode that suppresses relation and context. As such, the lenticular also
manages and controls complexity.

And what in the world does this have to do with those engineers Jaboring
away at Bell Labs, the heroes of the first fragment of history this essay began
with? What’s race got to do with that? The popularity of lenticular lenses,
particularly in the form of postcards, coincides historically not just with the
rise of an articulated movement for civil rights but also with the growth of
electronic culture and the birth of digital computing (with both—digital
computing and the Civil Rights movement—born in quite real ways of World
War II). We might understand UNIX as the way in which the emerging logics
of the lenticular and of the covert racism of colorblindness get ported into our
computational systems, both in terms of the specific functions of UNIX as an
operating system and in the broader philosophy it embraces.

Situating UNIX

In moving toward UNIX from MULTICS, programmers conceptualized UNIX
as a kind of tool kit of “synergistic parts” that allowed “flexibility in depth”
(Raymond 2004: 9). Programmers could “choose among multiple shells. . ..
[and] programs normally provide[d] many behavior options” (2004: 6). One
of the design philosophies driving UNIX is the notion that a program should
do one thing and do it well (not unlike our deep disciplinary drive in many
parts of the university), and this privileging of the discrete, the local, and the
specific emerges again and again in discussions of UNIX’s origins and design
philosophies.

Books for programmers that explain the UNIX philosophy turn around a
common set of rules. While slight variations on this rule set exist across
programming books and online sites, Eric Raymond sets out the first nine rules
as follows:

1. Rule of Modularity: Write simple parts connected by clean interfaces.
2. Rule of Clarity: Clarity is better than cleverness.

26 o Tara McPherson

3. Rule of Composition: Design programs to be connected to other
programs.

4. Rule of Separation: Separate policy from mechanism; separate
interfaces from engines.

5. Rule of Simplicity: Design for simplicity; add complexity only where
you must.

6. Rule of Parsimony: Write a big program only when it is clear by
demonstration that nothing else will do.

7. Rule of Transparency: Design for visibility to make inspection and
debugging easier.

8. Rule of Robustness: Robustness is the child of transparency and
simplicity.

9. Rule of Representation: Fold knowledge into data so program logic
can be stupid and robust. (2004: 13)

Other rules include the Rules of Least Surprise, Silence, Repair, Economy,
Generation, Optimization, Diversity, and Extensibility.

These rules implicitly translate into computational terms the chunked
logics of the lenticular. For instance, Brian Kernighan wrote in a 1976 handbook
on software programming that “controlling complexity is the essence of
computer programming” (quoted in Raymond 2004: 14). Complexity in UNIX
is controlled in part by the “rule of modularity,” which insists that code be
constructed of discrete and interchangeable parts that can be plugged together
via clean interfaces. In Design Rules, Vol. 1: The Power of Modularity, Carliss
Baldwin and Kim Clark argue that computers from 1940 to 1960 had “complex,
interdependent designs,” and they label this era the “premodular” phase of
computing (2000: 149). While individuals within the industry, including John
von Neumann, were beginning to imagine benefits to modularity in computing,
Baldwin and Clark note that von Neumann’s ground-breaking designs for
computers in that period “fell short of true modularity” because “in no sense
was the detailed design of one component going to be hidden from the others:
all pieces of the system would be produced ‘in full view’ of the others” (2000:
157). Thus, one might say that these early visions of digital computers were
neither modular nor lenticular. Baldwin and Clark track the increasing
modularity of hardware design from the early 1950s forward and also observe
that UNIX was the first operating system to embrace modularity and adhere
“to the principles of information hiding” in its design (2000: 324).

There are clearly practical advantages of such structures for coding, but they
also underscore a world view in which a troublesome part might be discarded
without disrupting the whole. Tools are meant to be “encapsulated” to avoid
“a tendency to involve programs with each other’s internals” (Raymond 2004:
15). Modules “don’t promiscuously share global data,” and problems can stay
“local” (2004: 84-85). In writing about the Rule of Composition, Eric Raymond
advises programmers to “make [programs] independent.” He writes, “It should

U.S. Operating Systems at Mid-Century o 27

be easy to replace one end with a completely different implementation without
disturbing the other” (2004: 15). Detachment is valued because it allows a
cleaving from “the particular . . . conditions under which a design problem was
posed. Abstract. Simplify. Generalize” (2004: 95). While “generalization” in
UNIX has specific meanings, we might also see at work here the basic contours
of alenticular approach to the world, an approach which separates object from
context, cause from effect.

In a 1976 article, “Software Tools,” Bell Lab programmers Kernighan and
Plauger urged programmers “to view specific jobs as special cases of general,
frequently performed operations, so they can make and use general-purpose
tools to solve them. We also hope to show how to design programs to look like
tools and to interconnect conveniently” (1976b: 1). While the language here is
one of generality (as in “general purpose” tools), in fact, the tool library that is
being envisioned is a series of very discrete and specific tools or programs that
can operate independently of one another. They continue, “Ideally, a program
should not know where its input comes from nor where its output goes. The
UNIX time-sharing system provides a particularly elegant way to handle input
and output redirection” (1976b: 2). Programs

can profitably be described as filters, even though they do quite
complicated transformations on their input. One should be able to say
program-1 ... | sort | program-2 ...
and have the output of program-1 sorted before being passed to
program-2. This has the major advantage that neither program-1 nor
program-2 need know how to sort, but can concentrate on its main
task. (1976b: 4)

In effect, the tools chunk computational programs into isolated bits, where the
programs’ operations are meant to be “invisible to the user” and to the other
programs in a sequence (1976b: 5): “the point is that this operation is invisible
to the user (or should be). . . . Instead he sees simply a program with one input
and one output. Unsorted data go in one end; somewhat later, sorted data come
out the other. It must be convenient to use a tool, not just possible” (1976b: 5).
Kernighan and Plauger saw the “filter concept” as a useful way to get
programmers to think in discrete bits and to simplify, reducing the potential
complexity of programs. They note that “when a job is viewed as a series of
filters, the implementation simplifies, for it is broken down into a sequence
of relatively independent pieces, each small and easily tested. This is a form of
high-level modularization” (1976b: 5). In their own way, these filters function
as a kind of lenticular frame or lens, allowing only certain portions of complex
datasets to be visible at a particular time (to both the user and the machine).
The technical feature which allowed UNIX to achieve much of its modularity
was the development by Ken Thompson (based on a suggestion by Doug
MclIlroy) of the pipe, i.e., a vertical bar that replaced the “greater than” sign in

28 o Tara McPherson

the operating system’s code. As described by Doug Ritchie and Ken Thf)rnpson
in a paper for the Association of Computing Machinery in 1974 (reprinted by

Bell Labs in 1978),

A read using a pipe file descriptor waits until another process writes using
the file descriptor for the same pipe. At this point, data are passed
between the images of the two processes. Neither process need know that
a pipe, rather than an ordinary file, is involved.

In this way, the ability to construct a pipeline from a series of small programs
evolved, while the “hiding of internals” was also supported. The contents of a
module were not central to the functioning of the pipeline; rather, the input or
output (a text stream) was key. Brian Kernighan noted “that while input/output
direction predates pipes, the development of pipes led to the concept of toolsj
software programs that would be in a ‘tool box,” available when you ne.ed them
and interchangeable.? Pipes reduced complexity and were alsc? linear. . In
Software Tools, Kernighan and Plauger extend their discussion of pipes, noting
that “a pipe provides a hidden buffering between the output of one program
and the input of another program so information may pass betw§en them
without ever entering the file system” (1976a: 2). They also signal the
importance of pipes for issues of data security:

And consider the sequence

decrypt key <file | prog | encrypt key > newfile .

Here a decryption program decodes an encrypted file, passing the
decoded characters to a program having no special security features. '1jhe
output of the program is re-encrypted at the other end. If a true pipe
mechanism is used, no clear-text version of the data will ever appear in
a file. To simulate this sequence with temporary files risks breaching

security. (1976a: 3)

While the affordances of filters, pipes, and hidden data are often talked about
as a matter of simple standardization and efficiency (as when Kernighap and
Plauger argue that “Our emphasis here has been on getting jobs dor'le with an
efficient use of people” (1976a: 6)), they also clearly work in the service of new
regimes of security, not an insignificant detail in the conte>.(t of the Col.d War
era. Programming manuals and UNIX guides again and again stress clarljcy and
simplicity (“don’t write fancy code”; “say what you mean as clearly and d.1rect1y
as you can”), but the structures of operating systems like UN'IX f}mctmn by
hiding internal operations, skewing “clarity” in very particular d1rect1or})s..These
manuals privilege a programmer’s equivalent of “common sense in the
Gramscian sense. For Antonio Gramsci, common sense is a historically situated
process, the way in which a particular group responds to “certain problems posed
by reality which are quite specific” at a particular time (1971: 3?,4). I am here
arguing that, as programmers constitute themselves as a particular class of

U.S. Operating Systems at Mid-Century o 29

workers in the 1970s, they are necessarily lodged in their moment, deploying
common sense and notions about simplicity to justify their innovations in code.
Importantly, their moment is over-determined by the ways in which the U.S,
is widely coming to process race and other forms of difference in more covert
registers, as noted above.?

Another rule of UNIX is the “Rule of Diversity,” which insists on a mistrust
of the “one true way.” Thus UNIX, in the word of one account, “embraces
multiple languages, open extensible systems and customization hooks
everywhere,” reading much like a description of the tenets of neoliberal
multiculturalism if not poststructuralist thought itself (Raymond 2004: 24). As
you read the ample literature on UNIX, certain words emerge again and again:
modularity, compactness, simplicity, orthogonality. UNIX is meant to allow
multitasking, portability, time-sharing, and compartmentalizing. It is not much
of a stretch to layer these traits over the core tenets of post-Fordism, a process
which begins to remake industrial-era notions of standardization in the 1960s:
time-space compression, transformability, customization, a public/private blur,
etc. UNIX’s intense modularity and information-hiding capacity were
reinforced by its design: that is, in the ways in which it segregated the kernel
from the shell. The kernel loads into the computer’s memory at startup and is
“the heart” of UNIX (managing “hardware memory, job execution and time
sharing”), although it remains hidden from the user (Baldwin and Clark 2000:
332). The shells (or programs that interpret commands) are intermediaries
between the user and the computer’s inner workings. They hide the details of
the operating system from the user behind “the shell,” extending modularity
from a rule for programming in UNIX to the very design of UNIX itself.*

Modularity in the Social Field

This push toward modularity and the covert in digital computation also reflects
other changes in the organization of social life in the United States by the 1960s.
For instance, if the first half of the twentieth century laid bare its racial logics,
from “Whites Only” signage to the brutalities of lynching, the second half
increasingly hides its racial “kernel,” burying it below a-shell of neoliberal
pluralism. These covert or lenticular racial logics take hold at the tail end of
the Civil Rights movement at least partially to cut off and contain the more
radical logics implicit in the urban uprisings that shook Detroit, Watts, Chicago,
and Newark. In fact, the urban center of Detroit was more segregated by the
1980s than in previous decades, reflecting a different inflection of the pro-
grammer’s vision of the “easy removal” or containment of a troubling
part. Whole areas of the city might be rendered orthogonal and disposable (also
think post-Katrina New Orleans), and the urban Black poor were increasingly
isolated in “deteriorating city centers” (Sugrue 1998: 198). Historian Thomas
Sugrue traces the increasing unemployment rates for Black men in Detroit,
rates which rose dramatically from the 1950s to the 1980s, and maps a

30 o Tara McPherson

“deproletarianization” that “shaped a pattern of poverty in the postwar city tbat
was surprisingly new” (1998: 262). Across several registers, the emerging
neoliberal state begins to adopt “the rule of modularity.” For instance, we might
draw an example from across the Atlantic. In her careful analysis of the effects
of May 1968 and its afterlives, Kristin Ross argues that the French government
contained the radical force of the uprisings by quickly moving to separate the
students’ rebellion from the concerns of labor, deploying a strategy of separation
and containment in which both sides (students and labor) would ultimately
lose (2004: 69).

Modularity in software design was meant to decrease “global complexity”
and cleanly separate one “neighbor” from another (Raymond 2004: 85). These
strategies also played out in ongoing reorganizations of the political field
throughout the 1960s and 1970s in both the Right and the Left. The widespread
divestiture in the infrastructure of inner cities might be seen as one more
insidious effect of the logic of modularity in the post-war era. But we might
also understand the emergence of identity politics in the 1960s as a kind of social
and political embrace of modularity and encapsulation, a mode of partitioning
that turned away from the broader forms of alliance-based and globally-
inflected political practice that characterized both labor politics and anti-racist
organizing in the 1930s and 1940s.> While identity politics produced concrete
gains in the world, particularly in terms of civil rights, we are also now coming
to understand the degree to which these movements curtailed and short-
circuited more radical forms of political praxis, reducing struggle to fairly
discrete parameters.

Let me be clear. By drawing analogies between shifting racial and political
formations and the emerging structures of digital computing in the late 1960s,
I am not arguing that the programmers creating UNIX at Bell Labs and in
Berkeley were consciously encoding new modes of racism and racial under-
standing into digital systems. (Indeed, many of these programmers were
themselves left-leaning hippies, and the overlaps between the counterculture
and early computing culture run deep, as Fred Turner has illustrated.) I also
recognize that their innovations made possible the word processor I am using
to write this article, a powerful tool that shapes cognition and scholarship in
precise ways. Nor am [arguing for some exact correspondence between the
ways in which encapsulation or modularity work in computation and how they

function in the emerging regimes of neoliberalism, governmentality and post-
Fordism. Rather, I am highlighting the ways in which the organization of
information and capital in the 1960s powerfully responds—across many
registers—to the struggles for racial justice and democracy that so categorized
the U.S. at the time. Many of these shifts were enacted in the name of liberalism,
aimed at distancing the overt racism of the past even as they contained and
cordoned off progressive radicalism. The emergence of covert racism and its
rhetoric of colorblindness are not so much intentional as systemic. Computation

U.S. Operating Systems at Mid-Century « 31

is a primary delivery method of these new systems, and it seems at best naive
to imagine that cultural and computational operating systems don’t mutually
infect one another.

Thus we see modularity take hold not only in computation but also in the
increasingly niched and regimented production of knowledge in the university
after the Second World War. For instance, Christopher Newfield comments
on the rise of New Criticism in literature departments in the Cold War era,
noting its relentless formalism, a “logical corollary” to “depoliticization” (2004:
145) that “replaced agency with technique” (2004: 155). He attributes this
particular tendency in literary criticism at least in part to the triumph of a
managerial impulse, a turn that we might also align (even if Newfield doesn’t)
with the workings of modular code (itself studied as an exemplary approach
to “dynamic modeling systems” for business management in the work of
Baldwin and Clark cited above).5 He observes as well that this managerial
obsession within literary criticism exhibits a surprising continuity across the
1960s and beyond. Gerald Graff has also examined the “patterned isolation”
that emerges in the university after World War II, at the moment when New
Criticism’s methods take hold in a manner that de-privileges context and
focuses on “explication for explication’s sake.” Graff then analyzes the
routinization of literary criticism in the period, a mechanistic exercise with input
and output streams of its own (1989: 227). He recognizes that university
departments (his example is English) begin to operate by a field-based and
modular strategy of “coverage,” in which subfields proliferate and exist in their
own separate chunks of knowledge, rarely contaminated by one another’s
“internals” (1989: 250). (He also comments that this modular strategy includes
the token hiring of scholars of color who are then cordoned off within the
department.) Grafflocates the beginning of this patterned isolation in the run-
up to the period that also brought us digital computing; he writes that it
continues to play out today in disciplinary structures that have become
increasingly narrow and specialized. Patterned isolation begins with the
bureaucratic standardization of the university from 1890 to 1930 (1989: 61-62),
but this “cut out and separate” mentality reaches a new crescendo after World
War II as the organizational structure of the university pushes from simply
bureaucratic and Taylorist to managerial, a shift noted as well by Christopher
Newfield. Many now lament the over-specialization of the university; in effect,
this tendency is a result of the additive logic of the lenticular or of the pipeline,

where “content areas” or “fields” are tacked together without any sense of
intersection, context, or relation.

It is interesting to note that much of the early work performed in UNIX
environments was focused on document processing and communication
tools and that UNIX is a computational system that very much privileges text
(it centers on the text-based command line instead of on the Graphical User
Interface, and its inputs and outputs are simple text lines). Many of the

32 o Tara McPherson

methodologies of the humanities from the Cold War jchroug'h the 1980s als?1
privilege text while devaluing context and operate in theflr own chunked
systems, suggesting telling parallels between the operatl‘ng systems an
privileged objects of the humanities and of the computers being developed on
several university campuses in the same period. . o
Another example of the increasing modularity of the Amer1Fan umvs:rsfty
might be drawn from the terrain of area studies. Scholars inc'ludmg Martin W
Lewis and Kiren Wigen have recently mapped the proliferation of area studgs
from the onset of the Cold War era to the present. They show h0w. a c.ouplmg
of government, foundations and scholars began to parse the world in fmf:r and
finer detail, producing geographical areas of study that could work in the
service of the “modernization and development” agenda that was coming to
replace the older models of colonial domination, substituting the‘ covert: stylings
of the post-industrial for the overtly oppressive methods“of earlier regimes. BZ
1958, government funding established university-based “area-studies centers
that grew to “some 124 National Resource Centers [by the .199’())3] o each
devoted to the interdisciplinary study of a particular world region (.Lew1s .and
Wigen 1999: 164). John Rowe has convincingly argued that area st'ud1es thrived
by operating through a kind of isolationism or modularity, with each area
intently focused within its own borders. N
Lev Manovich has, of course, noted the modularity of the digital era and
also backtracked to early twentieth-century examples of modularity fI‘O%‘n the
factory line to the creative productions of avant garde artistg Ina postlgg to
the Nettime list-serve in 2005, he frames modularity as a uniquely twentfeth-
century phenomenon, from Henry Ford’s assembly lir}es to the.1932 furniture
designs of Belgian designer Louis Herman De Kornick. In his acc.ount, the
twentieth century is characterized by an accelerating process of mdustne:.l
modularization, but I think it is useful to examine the digital computer’s
privileged role in the process, particularly given that competing rpodes of
computation were still quite viable until the 1960s, mode§ that might have
pushed more toward the continuous flows of analog computing rather than the
discrete tics of the digital computer. Is the modularity of the 1920s really the
same as the modularity modeled in UNIX? Do these differences m.atter, and
what might we miss if we assume a smooth and teleol.ogical tr1‘ump.h of
modularity? How has computation pushed modularity in new directions,
directions in dialogue with other cultural shifts and ruptures? Why does
modularity emerge in our systems with such a vengeance across the 1960s?
I have here suggested that our technological formations are deeply bou.nd
up with our racial formations, and that each undergo profound changes at mid-
century. am not so much arguing that one mode is causally related to the other,
but, rather, that they both represent a move toward modular }(nowledges,
knowledges increasingly prevalent in the second half of the twentieth cent}lry.
These knowledges support and enable the shift from the overt standardized
bureaucracies of the 1920s and 1930s to the more dynamically modular and

U.S. Operating Systems at Mid-Century o 33

covert managerial systems that are increasingly prevalent as the century wears
on. These latter modes of knowledge production and organization are powerful
racial and technological operating systems that coincide with (and reinforce)
(post-)structuralist approaches to the world within the academy. Both the
computer and the lenticular lens mediate images and objects, changing their
relationship but frequently suppressing that process of relation, much like the
divided departments of the contemporary university. The fragmentary know-
ledges encouraged by many forms and experiences of the digital neatly parallel
the lenticular logics which underwrite the covert racism endemic to our times,
operating in potential feedback loops, supporting each other. If scholars of race
have highlighted how certain tendencies within poststructuralist theory simultan-
eously respond to and marginalize race, this maneuver is at least partially possible
because of a parallel and increasing dispersion of electronic forms across culture,
forms which simultaneously enact and shape these new modes of thinking.
While the examples here have focused on UNIX, it is important to recognize
that the core principles of modularity that it helped bring into practice continue
to impact a wide range of digital computation, especially the C programming
language, itself developed for UNIX by Ritchie, based on Thompson’s earlier B
language. While UNIX and C devotees will bemoan the non-orthogonality and
leakiness of Windows or rant about the complexity of C++, the basic argument
offered above—that UNIX helped inaugurate modular and lenticular systems
broadly across computation and culture—holds true for the black boxes of
contemporary coding and numerous other instances of our digital praxis.
Today, we might see contemporary turns in computing—neural nets, clouds,
semantics, etc.—as parallel to recent turns in humanities scholarship to privilege
networks over nodes (particularly in new media studies and in digital culture
theory) and to focus on globalization and its flows (in American studies and
other disciplines). While this may simply mean we have learned our mid-century
lessons and are smarter now, we might also continue to examine with rigor
and detail the degree to which dominant forms of computation—what David
Golumbia has aptly called “the cultural logic of computation” in his recent
update of Frankfurt School pessimism for the twenty-first century—continue
to respond to shifting racial and cultural formations. Might these emerging
modes of computation be read as symptoms and drivers of our “post-racial”
moment, refracting in some way national anxieties (or hopes?) about a decreas-
ingly “white” America? We should also remain alert to how contemporary
techno-racial formations infect privileged ways of knowing in the academy.
While both the tales of C.P. Snow circa 1959 and the Sokal science wars of the
1990s sustain the myth that science and the humanities operate in distinct realms
of knowing, powerful operating systems have surged beneath the surface of what
and how we know in the academy for well over halfa decade. It would be foolish
of us to believe that these operating systems—in this paper best categorized by
UNIX and its many close siblings—do not at least partially over-determine the
very critiques we imagine that we are performing todayv.

34 o Tara McPherson

Moving Beyond Our Boxes

So, if we are always already complicit with the machine, what are we to d9?
First, we must better understand the machines an.d networks thi‘;l contmcili?el
to powerfully shape our lives in ways that we are ill-equipped to deaitl w11 ats Igein
and humanities scholars. This necessarily involves more th?n simply stu);1 ng
our screens and the images that dance across them, moving .beyonddstu ;Zsi
of screen representations and the rhetorics of vis.uaElty. We.m1ght gea repSes
sentations seeking symptoms of information capital’s fault lines an su;ceis i
but we cannot read the logics of these systems and networ.ks solely at ’t1 e ev;
of our screens. Capital is now fully organized under th.e sign of modu. arltéur
operates via the algorithm and the database, via simulation and process}xlr'lg. iy
screens are cover stories, disguising deeply divided ff)rms of both machine a
human labor. We focus exclusively on them increasingly t? our peril. .
Scholars in the emerging field of “code studies” are taking up the ch?t;ngj
of understanding how computational systems (especially but. not only sfcz 1da;(c;)
developed and operate. However, we must (f.lemand that th.13 r}llascent' z,l e
replay the formalist and structuralist tendencies of new media t .eoryhm: 'mate.
Code studies must also take up the questions of cul:fure an(.l meaning t aL;-if:‘ "
so many scholars of race in fields like the “new A.Ar'nencan studies. Likew 1,
scholars of race must analyze, use and produce digital forms and noic‘ smugﬂ;i
assume that to engage the digital directly is in some Wy to be compf 1011; wi :
the forces of capitalism. The lack of intellectual gener(?’suy across o}tir 1;1 Srj:st
departments only reinforces the “divide and conquer” mentality 1t at'the ot
dangerous aspects of modularity underwrite. We must dev;otp -CSI; or
languages that link the study of code and cultulfe. We must histori e and
politicize code studies. And, because digital media were born as muc -
Civil Rights era as of the Cold War era (and of course these eras al}'le on an
the same), our investigations must incorpi)rate rage frgrr} ‘; e 01111' ‘ >
understanding and theorizing its function as a ghost in tl'.le .dlglta ilnalc ine.
This does not mean that we should “add” race to our analysis in a mo uhar :;va;y,
neatly tacking it on, but that we must understand and the‘orlze ; e 16812
imbrications of race and digital technology even whin our objects }? an.;fly i
(say, UNIX or search engines) seem not to “be a})out race at a?l. This rn :u
be easy. In the writing of this essay, the logic of m(‘)dulant}.f con m? e};
threatened to take hold, leading me into detailed exp.loratxoTls of pipe stfruc utrh
in UNIX or departmental structures in the university, taking me far romt' e
contours of race at mid-century. It is hard work to hold race 'and compcwiltat 11(21
together in a systemic manner, but it is work that we must c.ontmue toun etr 3 n
We also need to take seriously the possibility that questlor.xs of re.presen a 1(})1
and of narrative and textual analysis may, in effect, be a dlStI‘af:thn from 1 1e
powers that be—the triumph of the very particular pattern§ of mformahona;l
ization evident in code. If the study of representation may in fact be pa}rt an .
marcel of the verv logic of modularity that such code inaugurates, a kind o

U.S. Operating Systems at Mid-Century o 35

distraction, it is equally plausible to argue that our very intense focus on
visuality in the past twenty years of scholarship is just a different manifestation
of the same distraction. There is tendency in film and media studies to treat
the computer and its screens as (in Jonathan Beller’s terms) a “legacy”
technology to cinema. In its drive to stage continuities, such an argument tends
to minimize or completely miss the fundamental material differences between
cinematic visuality and the production of the visual by digital technologies.

To push my polemic to its furthest dimensions, I would argue that to study
image, narrative and visuality will never be enough if we do not engage as well
the non-visual dimensions of code and their organization of the world. And
yet, to trouble my own polemic, we might also understand the workings of code
to have already internalized the visual to the extent that, in the heart of the labs
from which UNIX emerged, the cultural processing of the visual via the register
of race was already at work in the machine.

In extending our critical methodologies, we must have at least a passing
familiarity with code languages, operating systems, algorithmic thinking, and
systems design. We need database literacies, algorithmic literacies, computa-
tional literacies, interface literacies. We need new hybrid practices: artist-
theorists; programming humanists; activist scholars; theoretical archivists;
critical race coders. We have to shake ourselves out of our small field-based
boxes, taking seriously the possibility that our own knowledge practices are
“normalized,” “modular,” and “black boxed” in much the same way as the code
we might study in our work. That is, our very scholarly practices tend to
undervalue broad contexts, meaningful relation and promiscuous border
crossing. While many of us “identify” as interdisciplinary, very few of us extend
that border crossing very far (theorists tune out the technical, the technologists
are impatient of the abstract, scholars of race mock the computational, seeing
it as corrupt). I'm suggesting that the intense narrowing of our academic
specialties over the past fifty years can actually be seen as an effect of or as
complicit with the logics of modularity and the relational database. Just as the
relational database works by normalizing data—that is by stripping it of
meaningful context and the idiosyncratic, creating a system of interchange-
able equivalencies—our own scholarly practices tend to exist in relatively
hermetically sealed boxes or nodes. Critical theory and post-structuralism have
been powerful operating systems that have served us well; they were as hard to
learn as the complex structures of C++, and we have dutifully learned them.

They are also software systems in desperate need of updating and patching. They
are lovely, and they are not enough. They cannot be all we do.

In universities that simply shut down “old school” departments—at my
university, German and Geography; in the UK, Middlesex’s philosophy
program; in Arizona, perhaps all of ethnic studies—scholars must engage the
vernacular digital forms that make us nervous, authoring in them in order to
better understand them and to recreate in technological spaces the possibility
of doing the work that moves us. We need new practices and new madec nf

36 o Tara McPherson

collaboration; we need to be literate in emerging scientific and technological
methodologies, and we’ll gain that literacy at least partially through an
intellectual generosity or curiosity toward those whose practices are not our own.

We must remember that computers are themselves encoders of culture. If,
in the 1960s and 1970s, UNIX hardwired an emerging system of covert racism
into our mainframes and our minds, then computation responds to culture as
much as it controls it. Code and race are deeply intertwined, even as the struc-
tures of code work to disavow these very connections. Politically committed
academics with humanities skill sets must engage technology and its production,
not simply as an object of our scorn, critique, or fascination, but as a productive
and generative space that is always emergent and never fully determined.

Notes

1 UNIX developed with some rapidity, at least in part because the parent company of Bell Labs,
AT&T, was unable to enter the computer business due to a 1958 consent decree. Eric Raymond
notes that “Bell Labs was required to license its nontelephone technology to anyone who asked”
(2004: 33). Thus a kind of “counterculture” chic developed around UNIX. Eric Raymond
provides a narrative version of this history, including the eventual “UNIX wars” in his The Art
of UNIX Programming (2004). His account, while thorough, tends to romanticize the
collaborative culture around UNIX. For a more objective analysis of the imbrications of the
counterculture and early computing cultures, see Fred Turner’s From Counterculture to
Cyberculture (2006). See also Tom Streeter (2003) for a consideration of liberal individualism
and computing cultures.

2 This quote from Kernighan is from “The Creation of the UNIX Operating System” on the Bell
Labs website. See www.bell-labs.com/history/unix/philosophy.html '

3 For Gramsci, “common sense” is a multi-layered phenomenon that can serve both dominant
groups and oppressed ones. For oppressed groups, “common sense” may allow a method of
speaking back to power and of re-jiggering what counts as sensible. Kara Keeling profitably
explores this possibility in her work on the Black femme. Computer programmers in the 1970s
are interestingly situated. They are on the one hand a subculture (often overlapping with the
counterculture), but they are also part of an increasingly managerial class that will help society
transition to regimes of neoliberalism and governmentality. Their dreams of “libraries” of code
may be democratic in impulse, but they also increasingly support post-industrial forms of labor.

4 Other aspects of UNIX also encode “chunking,” including the concept of the file. For a
discussion of files in UNIX, see You Are Not a Gadget by Jaron Lanier (2010). This account
of UNIX, among other things, also argues that code and culture exist in complex feedback loops.

5 See, for instance, Patricia Sullivan’s Days of Hope (1996) for an account of the coalition politics
of the South in the 1930s and 1940s that briefly brought together anti-racist activists, labor
organizers, and members of the Communist Party. Such a broad alliance became increasingly
difficult to sustain after the Red Scare. I would argue that a broad cultural turn to modularity
and encapsulation was both a response to these earlier political alliances and a way to short-
circuit their viability in the 1960s. My Reconstructing Dixie (2003) examines the ways in which
alenticular logic infects both identity politics and the politics of difference, making productive
alliance and relationality hard to achieve in either paradigm.

6 Tobe fair, Newfield also explores a more radical impulse in literary study in the period, evident
in the likes of (surprisingly) both Harold Bloom and Raymond Williams. This impulse valued
literature precisely in its ability to offer an “unmanaged exploration of experience” (2004: 152).

Bibliography
Baldwin, Carliss and Kim Clark. 2000. Design Rules, Vol. 1: The Power of Modularity, Cambridge,
MA: MIT Press.

Beller, Jonathan. 2009. “Re: Perjodizing Cinematic Production.” Post to IDC Listserve. September
2. Archived at https://lists.thing.net/pipermail/idc/2009-September/003851.html.

U.S. Operating Systems at Mid-Century » 37

Bolter, Jay and Richard Grusin. 2000. Remediations: Understanding New Media. Cambridge, MA:
MIT Press.

“The Creation of the UNIX Operating System” on the Bell Labs website. Available at: www.bell-
labs.com/history/unix/philosophy.html.

Galloway, Alex. 2006. Protocol: How Control Exists after Decentralization. Cambridge, MA: MIT Press.

Golumbia, David. 2009. The Cultural Logic of Computation. Cambridge, MA: Harvard University Press.

Graff, Gerald. 1989. Professing Literature: An Institutional History. Chicago, IL: University of Chicago
Press.

Gramsci, Antonio. 1971. Selections from the Prison Notebooks. Translated and edited by Q. Hoare
and G. Nowell Smith. London: Lawrence and Wishart.

Hansen, Mark B.N. 2000. Embodying Technesis: Technology Beyond Writing. Ann Arbor: University
of Michigan Press.

Keeling, Kara. 2007. The Witch’s Flight: The Cinematic, the Black Femme, and the Image of Common
Sense. Durham, NC: Duke University Press.

Kernighan, Brian and Rob Pike. 1984. The Unix Programming Environment. Englewood Cliffs, NJ:
Prentice Hall.

Kernighan, Brian and P.J. Plauger. 1976a. Software Tools. Reading, MA: Addison-Wesley.

——. 1976b. “Software Tools.” ACM SIGSOFT Software Engineering Notes 1.1 (May): 15~20.

Kernighan, Brian and D.M. Ritchie. 1978. The C Programming Language. Englewood Cliffs, NJ:
Prentice Hall. Second edition 1988.

Kinder, Marsha. 2002. “Narrative Equivocations Between Movies and Games,” in Dan Harries, ed.,
The New Media Book, London: BFIL.

Landow, George. 1991. Hypertext: The Convergence of Contemporary Critical Theory and
Technology. Baltimore, MD: Johns Hopkins University Press.

Lanier, Jaron. 2010. You Are Not A Gadget: A Manifesto. New York: Knopf.

Lewis, Martin W. and Karen Wigen. 1999. “A Maritime Response to the Crisis in Area Studies.”
The Geographical Review 89.2 (April): 162.

McPherson, Tara. 2003. Reconstructing Dixie: Race, Place and Nostalgia in the Imagined South.
Durham, NC: Duke University Press.

Manovich, Lev. 2002. The Language of New Media. Cambridge, MA: MIT Press.

——.2005. “We Have Never Been Modular.” Post to Nettime Listserve, November 28. Archived at
www.nettime.org/Lists-Archives/nettime-1-0511/msg00106.html.

Newfleld, Christopher. 2004. Ivy and Industry: Business and the Making of the American University,
1880-1980. Durham, NC: Duke University Press.

Omi, Michael and Howard Winant. 1986/1989. Racial Formation in the United States: From the
1960s to the 1980s. New York: Routledge.

Raymond, Eric. 2004. The Art of UNIX Programming. Reading, MA: Addison-Wesley. 2004.

Ritchie, Dennis. 1984. “The Evolution of the Unix Time-sharing System,” ATeT Bell Laboratories
Technical Journal 63.6 (2): 1577-1593. Available at: http://cm.bell-labs.com/cm/cs/who/dmr/
hist.html

Ritchie, D.M. and K. Thompson. 1978. “The UNIX Time-Sharing System.” The Bell System
Technical Journal 57.6 (2, July-August).

Ross, Kristin. 2004. May ‘68 and Its Afterlives. Chicago: University of Chicago Press.

Rowe, John Carlos. Forthcoming. “Areas of Concern: Area Studies and the New American Studies,”
in Winfried Fluck, Donald Pease, and John Carlos Rowe, eds, Transatlantic American
Studies. Boston: University Presses of New England.

Salus, Peter H. 1994. A Quarter-Century of Unix. Reading, MA: Addison-Wesley.

Sandoval, Chela. 2000. Methodology of the Oppressed. Minneapolis: University of Minnesota Press.

Spivak, Gayatri. 1987. In Other Worlds: Essays in Cultural Politics. New York: Routledge.

Streeter, Thomas. 2003. “The Romantic Self and the Politics of Internet Commercialization.” Cultural
Studies 17.5: 648-668.

Sugrue, Thomas J. 1998. The Origins of the Urban Crisis: Race and Inequality in Post-War Detroit.
Princeton: Princeton University Press.

Sullivan, Patricia. 1996. Days of Hope: Race and Democracy in the New Deal Era. Chapel Hill, NC:
UNC Press. .

Turkle, Sherry. 1997. Life on the Screen: Identity in the Age of the Internet. New York: Simon and
Schuster.

Turner, Fred. 2006. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network,
and the Rise of Digital Utopianism. Chicago: University of Chicago Press.

et e

Race After the Internet

Edited by
Lisa Nakamura
and
Peter A. Chow-White

£J Routledge

o1 gﬁ Taylor & Francis Group
NEW YORK AND LONDON

