Mathematics

I a.

$$
\begin{aligned}
& A+2 x=2 B+C \\
& {\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]+2 x }=2 x\left[\begin{array}{rr}
-3 & 2 \\
4 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] \\
& {\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]+2 x }=\left[\begin{array}{rr}
-6 & 4 \\
8 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] \\
& {\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]+2 x }=\left[\begin{array}{rr}
-2 & 4 \\
8 & 2
\end{array}\right] \\
& 2 x=\left[\begin{array}{rr}
-2 & 4 \\
8 & 2
\end{array}\right]-\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right] \\
& 2 x=\left[\begin{array}{rr}
-4 & 10 \\
6 & 2
\end{array}\right] \\
& x=\left[\begin{array}{rr}
-2 & 5 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

b. Principal, $\mathrm{P}=$ Rs. 4000 , Time $=$ 3yrs
C.I= Rs. 1324

A=P+C.I=Rs.4000+Rs.1324=Rs. 5324

$$
\begin{gathered}
A=P\left[1+\frac{R}{100}\right]^{N} \\
5324=4000\left[1+\frac{R}{100}\right]^{3} \\
\frac{5324}{4000}=\left[1+\frac{R}{100}\right]^{3} \\
\frac{1331}{1000}=\left[1+\frac{R}{100}\right]^{3} \\
\frac{11^{3}}{10^{3}}=\left[1+\frac{R}{100}\right]^{3} \\
{\left[\frac{11}{10}\right]^{3}=\left[1+\frac{R}{100}\right]^{3}} \\
\frac{11}{10}=\frac{100+R}{100} \\
10(100+R)=11 \times 100 \\
100+R=\frac{11 \times 100}{10}=110 \\
R=10 \%
\end{gathered}
$$

c. Observation $=11,12,14,(x-2),(x+4),(x+9), 32,38,47$

Given median $=34$
If n is odd, Median $=\left[\frac{n+1}{2}\right]^{\text {th }}$ item

$$
\begin{aligned}
& \text { ie }\left[\frac{9+1}{2}\right]^{\text {th }} \text { item }=5^{\text {th }} \text { item } \\
& \text { ie } x+4=24 \\
& x=24-4=20 \\
& \text { Mean }=\frac{11+12+14+18+24+29+32+38+47}{9} \\
& =\frac{225}{9}=25 \\
& \text { II. a. Let the number added to be then }
\end{aligned}
$$

$6+x, 15+x, 20+x, 43+x$
Product of extremes $=$ Product of means
ie $(6+x)(43+x)=(15+x)(20+x)$

$$
\begin{gathered}
258+6 \mathrm{x}+43 \mathrm{x}+\mathrm{x}^{2}=300+15 \mathrm{x}+20 \mathrm{x}+\mathrm{x}^{2} \\
258+49 \mathrm{x}=300+35 \mathrm{x} \\
49 \mathrm{x}-35 \mathrm{x}=300-25 \\
14 \mathrm{x}=42 \\
\mathrm{x}=42 / 14=3 \\
\mathrm{~b} . \mathrm{P}(2)=2(2)^{3}+\mathrm{a}(2)^{2}+2 \mathrm{~b}-14=0 \\
16+4 \mathrm{a}+2 \mathrm{~b}-14=0 \\
4 \mathrm{a}+2 \mathrm{~b}=-2-------1 \\
\mathrm{P}(3)=2(3)^{3}+\mathrm{a}(3)^{2}+3 \mathrm{~b}-14=52 \\
54+9 \mathrm{a}+3 \mathrm{~b}-14=52 \\
9 \mathrm{a}+3 \mathrm{~b}+40=52 \\
9 \mathrm{a}+3 \mathrm{~b}=12--------2 \\
1 \times 3 \quad 12 a+6 b=-6 \\
2 \times 2 \begin{aligned}
&-18^{-}+6 b=-24 \\
&-6 a \quad=-30
\end{aligned} \\
a=5
\end{gathered}
$$

c.

Let the point where the joining lines cut each other be ' A '.
Draw a perpendicular line from point A onto the x-axis.
The point ' P ' where the perpendicular will meet the x -axis will give the mode.
Hence mode $=14.2$ appro:
In the Graph paper
III. a.

$$
\begin{aligned}
& \cos 80=\cos (90-10) \\
& \quad=\sin 10 \\
& \sin 59
\end{aligned}=\sin (90-31) .
$$

b.

$$
\angle B A D=65^{\circ}, \angle A B D=70^{\circ}, \angle B D C=45^{\circ}
$$

(i) $I n \triangle A B D$

$$
\begin{aligned}
\angle A=65^{\circ} \text { and } \angle B & =70^{\circ} \text { (given) } \\
\angle A+\angle B+\angle A D B & =180^{\circ} \\
65+70+\angle A D B & =180^{\circ} \\
135+\angle A D B & =180^{\circ} \\
\angle A D B & =180-135=45^{\circ}
\end{aligned}
$$

$\therefore \angle D=45^{\circ}+45^{\circ}=90^{\circ}$
\Rightarrow AFrom $\triangle A B D$
ii)

$$
\begin{aligned}
\angle B A D+\angle A D B+\angle D N B A & =18^{\circ} \\
65^{\circ}+\angle A D B+70^{\circ} & =180^{\circ} \\
\angle A D B & =180^{\circ}-\left(65^{\circ}+70^{\circ}\right) \\
& =180^{\circ}-135^{\circ}=45^{\circ}
\end{aligned}
$$

Since $\angle A D B=45^{\circ}, \angle A C B=45^{\circ}$ (angle on the same are)
c.

(i) Length of radius $A C=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(3+2)^{2}+(-7-5)^{2}} \\
& =\sqrt{25+144}=\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

(ii) Coordinate of point B be (x, y)
\therefore Coordinate of $0=$ coordinates of midpoint of $A B$ (Since $A B \rightarrow$ diameter O-centre)
$-2,5=\frac{3+x}{2}, \frac{-7+y}{2}$

$$
\frac{3+x}{2}=-2 \Rightarrow 3+x=-4
$$

$$
\Rightarrow x=-4-3=-7
$$

$5=\frac{-7+y}{2} \Rightarrow y=10+7=17$
\therefore coordinate of B are $(-1,17)$
IV. a.

$$
\begin{aligned}
& x^{2}-5 x-10=0 \\
& U \operatorname{sing} \text { Formula } \\
& x=\frac{5 \pm \sqrt{25-4 \times 1 \times-10}}{2 \times 1} \\
& =\frac{5 \pm \sqrt{25+40}}{2} \\
& =\frac{5 \pm \sqrt{65}}{2} \\
& =\frac{5 \pm 8.062}{2} \\
& =\frac{5+8.062}{2}, \frac{5-8.062}{2} \\
& =\frac{13.062}{2}, \frac{-3.062}{2} \\
& =6.531,-1.531 \\
& =6.53,-1.53
\end{aligned}
$$

b. (I)

$\triangle A B C \sim \triangle D E C$

In $\triangle A B C$ and $\triangle D E C$

$$
\angle C D E=\angle C A B
$$

(DEII $A B$)
$\angle C E D=\angle C B A(D E I I A B)$
$\therefore \triangle A B C \sim \triangle D E C$ (by AA similarity)

ii) $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}$
$\mathrm{Ac}=15 \mathrm{~cm}, \mathrm{CD}=$?

$$
\text { In } \triangle A C B \text { and } \triangle D C E
$$

$$
\frac{A B}{D E}=\frac{A C}{D C}
$$

ie $\quad \frac{6}{4}=\frac{15}{x}($ Let $D C$ be $x)$
$\Rightarrow \quad 6 x=60$
$x=\frac{60}{6}=10$
$\therefore \quad C D=10 \mathrm{~cm}$
iii) Ratio of area of two similar Triangle is equal to the squares of their corresponding sides

$$
\therefore \text { Area of } \triangle A B C: \text { area of } \triangle D E C
$$

$$
\begin{aligned}
& =6^{2}: 4^{2} \\
& =36: 16 \\
& =18: 8=9: 4
\end{aligned}
$$

c. (I)

ii) $\mathrm{A}^{\prime}=(-6,-4)$ and $\mathrm{B}^{\prime}=(0,-4)$
iii) $A B A^{\prime} B^{\prime}$ is a quadrilateral.
iv) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BA}^{\prime}=10 \mathrm{~cm}, \mathrm{~A}^{\prime} \mathrm{B}^{\prime}=6 \mathrm{~cm}, \mathrm{~B}^{\prime} \mathrm{A}=10 \mathrm{~cm}$ therefore perimeter $=4+10+6+10=30 \mathrm{~cm}$
V. a.
$\frac{-x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}$
$\frac{-x}{3}<\frac{x}{2}-1 \frac{1}{3}$ and $\frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}$
$\frac{-x}{3}-\frac{x}{2} \leq \frac{-4}{3}$ and $\frac{x}{2}<\frac{1}{6}+\frac{4}{3}$
$\frac{-5 x}{6} \leq \frac{-4}{3}$ and $\frac{x}{2}<\frac{27}{18}$
$\frac{5 x}{6} \geq \frac{4}{3}$ and $\frac{x}{2}<\frac{27}{18}$
$x \geq \frac{24}{15}$ and $x<\frac{27}{9}$
Solution set $=\left\{\frac{24}{15} \leq x<\frac{27}{9}\right\}$
b.

$$
\begin{aligned}
\text { time } & =\frac{n(n+1)}{2} \text { months }=\frac{36 \times 37}{2 \times 12}=\frac{111}{2} \text { yrs } \\
I & =\frac{P \times R \times T}{100}=\frac{P \times 8 \times 111}{200}=\frac{888 P}{200} \\
A & =n p+I \\
8088 & =36 P+\frac{888 P}{200} \\
\frac{8088}{1} & =\frac{7200 P+888 P}{200} \\
8088 P & =8088 \times 200 \\
P & =\frac{8088 \times 200}{8088}=R s .200
\end{aligned}
$$

c.
(i) Totalinvestment $=$ Market value \times number of shares

$$
\begin{aligned}
& =132 \times 50 \\
& =6600
\end{aligned}
$$

(ii) Dividend $=7.5 \%$

So his income from one share $=7.5 \%$ of Rs. 100

$$
=\frac{7.5}{100} \times 100=R s .7 .50
$$

His annual income $=7.50 \times 50$

$$
=R s .375
$$

(iii) Rs. 7.50 can beearned from one share
\therefore Rs. 150 can be earned from

$$
\frac{1}{7.50} \times 150=20 \text { shares }
$$

VI. a.
$\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A}$
Multiplying congigate on both sides on L.H.S

$$
\begin{aligned}
L . H . S & =\sqrt{\frac{1-\cos A(1-\cos A)}{1+\cos A \times 1-\cos A}} \\
& =\sqrt{\frac{(1-\cos A)^{2}}{1-\cos ^{2} A}}=\sqrt{\frac{(1-\cos A)^{2}}{\sin ^{2} A}}=\frac{1-\cos A}{\sin A} \\
& =\frac{1-\cos A}{\sin A} \times \frac{1+\cos A}{1+\cos A}=\frac{1-\cos ^{2} A}{\sin A(1+\cos A)} \\
& =\frac{\sin ^{2} A \sin A}{\sin A(1+\cos A)}=\frac{\sin A}{1+\cos A} \\
& =\text { R.H.S }
\end{aligned}
$$

b.

$$
\begin{aligned}
\text { given } \angle A B C & =100^{\circ} \\
\angle A C D & =40^{\circ} \\
\text { Since } \angle A B C & =100^{\circ} \\
\angle A D C & =180^{\circ}-100^{\circ}=80^{\circ}
\end{aligned}
$$

$C T$ is a \tan gent tothe circleat C

$$
\begin{aligned}
& \angle B C D=90^{\circ} \\
& \angle B C A+\angle A C D=90^{\circ} \\
& \angle B C A+40=90^{\circ} \\
& \angle B C A=50^{\circ}
\end{aligned}
$$

c.

	Min. balance between	Min. balance in nearest
Month	$10^{\text {th }}$ day and last day	multiple of 10
February	Rs. 4500	Rs. 4500
March	Rs. 4500	Rs. 4500
April	Rs. 4500	Rs. 4500
May	Rs. 6738	Rs. 6740
June	Rs. 1738	Rs. 1740
July	Rs. 7738	Rs. 7740
		Adding P= Rs. 29720

$$
\begin{aligned}
P & =R s .29720, R=4 \frac{1}{2}=\frac{9}{2}, T=\frac{1}{12} \\
I & =\frac{29720 \times \frac{9}{2} \times \frac{1}{12}}{100}=R s .111 .45 \\
& =\text { Rs. } 111 \text { (Rounding })
\end{aligned}
$$

VII. a. The Coordinates of the midpoints D of the side be are

$$
\frac{7+1}{2}, \frac{8+(-10)}{2}
$$

ie $(4,-1)$
Equation of $A D$ is $y-5=\frac{-1-5}{4-3}(x-3)$
iey $-5=\frac{-6}{1}(x-3)$

$$
y-5=-6(x-3)
$$

$$
y=-6 x+18+5
$$

$$
y=-6 x+23
$$

b. As the VAT is paid on the value added to 12% of value added by the shopkeeper $=$ Rs. 36 Value added by the shopkeeper $=$ Rs. $36 x^{100 / 12}=$ Rs. 300
Profit = Rs. 300
price of article paid by shopkeeper to the wholesaler $=$ Rs. $1500-300=$ Rs. 1200
therefore VAT paid by the shopkeeper to the wholesaler $=12 \%$ of Rs. 1200

$$
={ }^{12} / 100 \times 1200=\text { Rs. } 144
$$

Hence price of article inclusive of VAT which the shopkeeper paid to the wholesaler

$$
\text { = Rs. 1200+Rs. } 144
$$

=Rs. 1344
c.
(i) In right angled $\triangle A B C$

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{A B}{B C} \\
\sqrt{3} & =\frac{60}{B C} \\
B C & =\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{60 \sqrt{3}}{3} \\
& =20 \times 1.732=34.64 \mathrm{~m}
\end{aligned}
$$

(ii) In right angled $\triangle A E D$

$$
\tan 30^{\circ}=\frac{A E}{E D}=\frac{A E}{B C}
$$

$$
\frac{1}{\sqrt{3}}=\frac{A E}{20 \sqrt{3}}
$$

$$
\therefore A E=20 \mathrm{~m}
$$

$$
C D=B E=A B-A E=60-20=40 \mathrm{~m}
$$

height of lamp post $=40 \mathrm{~m}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & 3 x \\
y & 4 y
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
12
\end{array}\right]} \\
& {\left[\begin{array}{l}
2 x+3 x \\
2 y+4 y
\end{array}\right]=\left[\begin{array}{l}
5 \\
12
\end{array}\right]} \\
& 5 x=5, x=1
\end{aligned}
$$

VIII. a. $6 y=12, y=2$
b.

Radius of sphere $=15 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \times \frac{22}{7} \times 15 \times 15 \times 15$

$$
=\frac{22}{7} \times 20 \times 225 \mathrm{~cm}^{3}
$$

Radius of cone $=2.5 \mathrm{~cm}$
Height of cone $=8 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \times \frac{22}{7} \times 2.5 \times 2.5 \times 8$
No. of cones recast $=\frac{\text { Volume of sphere }}{\text { Volume of cone }}$

$$
\begin{aligned}
& =\frac{\frac{22}{2} \times 20 \times 225}{\frac{1}{3} \times \frac{22}{7} \times 2.5 \times 2.5 \times 8} \\
& =\frac{225 \times 3}{2.5}=270
\end{aligned}
$$

c. Equation has real and equal roots
$\therefore b^{2}-4 a c=0$
Here $b=p-3, a=1, C=p$
$i e(P-3)^{2}-4 \times 1 \times P=0$
$P^{2}-6 P+9-4 P=0$
$P^{2}-10 P+9=0$ $(P-9)(P-1)=0$ $P=9$ or 1
IX.
a. Area of $\frac{1}{4}$ th portion of circle $=\frac{1}{4} \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5 \\
& =\frac{11 \times 0.5 \times 3.5}{2}=9.625 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $\triangle O A D=\frac{1}{2} b h$

$$
=\frac{1}{2} \times 3.5 \times 2 \mathrm{~cm}^{2}=3.5 \mathrm{~cm}^{2}
$$

Area of portion $=9.625-3.5=6.125 \mathrm{~cm}^{2}$
b. Let the num ber of black balls ben

Number of white balls $=30$
\therefore probability of drawing ablack ball $a=\frac{n}{30+n}$
Probability of drawing a white ball $=\frac{30}{30+n}$
Now, from question

$$
\frac{n}{30+n}=\frac{1}{5} \times \frac{30}{30+n}
$$

$\therefore n=6$
\therefore No. of black balls $=6$
c. Shop Deviation method

$$
A=a+l \frac{\sum d i f i}{\sum}
$$

$$
d i=m i-s s \quad d i=\frac{d i}{10}
$$

Classinlevel ClassMark Frequency $\quad d i=m i-a \quad d i=\frac{d i}{l} \quad d i j i$

$20-30$	25	10	-30	-3	-75
$30-40$	35	6	-20	-2	-70
$40-50$	45	8	-10	-1	-45
$50-60$	55	12	0	0	0
$60-70$	65	5	10	1	65
$70-80$	75	9	20	2	150

$$
\begin{aligned}
\Rightarrow A & =a+l \cdot \frac{\sum d i^{\prime} f}{\sum f} \\
& =55+10 \cdot \frac{25}{50} \\
& =55+5=60
\end{aligned}
$$

X. a.
I)

ii) Draw a circle with BC as diameter.

Draw angle bisector of
iii) Measure the angle
b.
I)

Marks	No.of students	c.f
$0-10$	5	5
$10-20$	9	14
$20-30$	16	30
$30-40$	22	52
$40-50$	26	78
$50-60$	18	96
$60-70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120
Median $=\frac{n}{2}^{\text {th }}$ term $={\frac{120^{\text {th }}}{2}}^{\text {th }}$ term $=60^{\text {th }}$ term		

ii) Using graph we can find number of students who obtained more than 75% marks in the text (120113=7)
iii) Write from the graph (52)
iv)

XI.
a. Point $P(-3 / 4)$ on AB divides

AB in ratio 2:3 ie $\mathrm{L}: \mathrm{M}=2: 3$
Let the co-ordinate of A be $(\mathrm{x}, 0)$ and B be (o, y) then

$$
\begin{aligned}
& \frac{l x_{2}+m x_{1}}{l+m}, \frac{l y_{2}+m y_{1}}{l+m}=-3,4 \\
& \frac{2 \times 0+3 \times x}{2+3}, \frac{2 \times y+3 \times 0}{2+3}=-3,4 \\
& \text { ie } \frac{3 x}{5}=-3, \frac{2 y}{5}=y^{2} \\
& x=-5, y=10
\end{aligned}
$$

\therefore Coordinate of A and B are $(-5,0)$ and $(0,10)$
b.

$$
\begin{aligned}
& \frac{x^{4}+1}{2 x^{2}}=\frac{17}{8} \\
& \text { By } u \sin g \text { componends and dividends } \\
& \frac{x^{4}+1+2 x^{2}}{x^{4}+1-2 x^{2}}=\frac{17+8}{17-8}\left[\frac{a+b}{a-b}=\frac{c+d}{c-d}\right] \\
& \Rightarrow \frac{\left(x^{2}+1\right)^{2}}{\left(x^{2}-1\right)^{2}}=\frac{25}{9} \\
& \frac{x^{2}+1}{x^{2}-1}=\frac{5}{3} \\
& \Rightarrow x^{2}=5-1=4 \\
& \text { or } \quad x= \pm 2 \\
& x^{2}=3+1=4 \\
& x= \pm 2
\end{aligned}
$$

c.

Let the no of books be y
and cost of arebook $=x$
$\therefore x y=960--------1$
According to qn .
$(x-8)(y+4)=960$
$x y+y x-8 y-32=960$
$960+y x-8 y-32=960[\because x y=960]$

$$
y x-8 y=32
$$

ie $x-2 y=8------------2$
$x=8+2 y$
Put 2 in 1

$$
\begin{aligned}
& \quad(8+2 y) y=960 \\
& 2 y^{2}+8 y-960=0 \\
& y^{2}+4 y-480=0 \\
& (y+2 y)(y-20)=0 \\
& y=20[\because y \text { cannot be negative }] \\
& \therefore x=\frac{960}{20}=48
\end{aligned}
$$

