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Lifting The Exponent Lemma is a powerful method for solving exponential
Diophantine equations. It is pretty well-known in the Olympiad folklore (see,
e.g., [3]) though its origins are hard to trace. Mathematically, it is a close
relative of the classical Hensel’s lemma (see [2]) in number theory (in both the
statement and the idea of the proof). In this article we analyze this method
and present some of its applications.

We can use the Lifting The Exponent Lemma (this is a long name, let’s call
it LTE!) in lots of problems involving exponential equations, especially when
we have some prime numbers (and actually in some cases it “explodes” the
problems). This lemma shows how to find the greatest power of a prime p –
which is often ≥ 3 – that divides an± bn for some positive integers a and b. The
proofs of theorems and lemmas in this article have nothing difficult and all of
them use elementary mathematics. Understanding the theorem’s usage and its
meaning is more important to you than remembering its detailed proof.

I have to thank Fedja, darij grinberg(Darij Grinberg), makar and ZetaX(Daniel)
for their notifications about the article. And I specially appreciate JBL(Joel)
and Fedja helps about TeX issues.

1 Definitions and Notation

For two integers a and b we say a is divisible by b and write b | a if and only if
there exists some integer q such that a = qb.

We define vp(x) to be the greatest power in which a prime p divides x;
in particular, if vp(x) = α then pα | x but pα+1 ∤ x. We also write pα‖x, if
and only if vp(x) = α. So we have vp(xy) = vp(x) + vp(y) and vp(x + y) ≥
min {vp(x), vp(y)} .

Example. The greatest power of 3 that divides 63 is 32. because 32 = 9 | 63
but 33 = 27 ∤ 63. in particular, 32‖63 or v3(63) = 2.

Example. Clearly we see that if p and q are two different prime numbers, then
vp(p

αqβ) = α, or pα‖pαqβ .

Note. We have vp(0) = ∞ for all primes p.
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2 Two Important and Useful Lemmas

Lemma 1. Let x and y be (not necessary positive) integers and let n be a
positive integer. Given an arbitrary prime p (in particular, we can have p = 2)
such that gcd(n, p) = 1, p | x − y and neither x, nor y is divisible by p (i.e.,
p ∤ x and p ∤ y). We have

vp(x
n − yn) = vp(x − y).

Proof. We use the fact that

xn − yn = (x − y)(xn−1 + xn−2y + xn−3y2 + · · · + yn−1).

Now if we show that p ∤ xn−1 + xn−2y + xn−3y2 + · · ·+ yn−1, then we are done.
In order to show this, we use the assumption p | x − y. So we have x − y ≡ 0
(mod p), or x ≡ y (mod p). Thus

xn−1+xn−2y + xn−3y2 + · · · + yn−1

≡ xn−1 + xn−2 · x + xn−3 · x2 + · · · + x · xn−2 + xn−1

≡ nxn−1

6≡ 0 (mod p).

This completes the proof.

Lemma 2. Let x and y be (not necessary positive) integers and let n be an odd
positive integer. Given an arbitrary prime p (in particular, we can have p = 2)
such that gcd(n, p) = 1, p | x + y and neither x, nor y is divisible by p, we have

vp(x
n + yn) = vp(x + y).

Proof. Since x and y can be negative, using Lemma 1 we obtain

vp(x
n − (−y)n) = vp(x − (−y)) =⇒ vp(x

n + yn) = vp(x + y).

Note that since n is an odd positive integer we can replace (−y)n with −yn.

3 Lifting The Exponent Lemma (LTE)

Theorem 1 (First Form of LTE). Let x and y be (not necessary positive)
integers, let n be a positive integer, and let p be an odd prime such that p | x− y

and none of x and y is divisible by p (i.e., p ∤ x and p ∤ y). We have

vp(x
n − yn) = vp(x − y) + vp(n).

Proof. We may use induction on vp(n). First, let us prove the following state-
ment:

vp(x
p − yp) = vp(x − y) + 1. (1)
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In order to prove this, we will show that

p | xp−1 + xp−2y + · · · + xyp−2 + yp−1 (2)

and
p2 ∤ xp−1 + xp−2y + · · · + xyp−2 + yp−1. (3)

For (2), we note that

xp−1 + xp−2y + · · · + xyp−2 + yp−1 ≡ pxp−1 ≡ 0 (mod p).

Now, let y = x+ kp, where k is an integer. For an integer 1 ≤ t < p we have

ytxp−1−t ≡ (x + kp)txp−1−t

≡ xp−1−t

(

xt + t(kp)(xt−1) +
t(t − 1)

2
(kp)2(xt−2) + · · ·

)

≡ xp−1−t
(
xt + t(kp)(xt−1)

)

≡ xp−1 + tkpxp−2 (mod p2).

This means

ytxp−1−t ≡ xp−1 + tkpxp−2 (mod p2), t = 1, 2, 3, 4, . . . , p − 1.

Using this fact, we have

xp−1 + xp−2y + · · · + xyp−2 + yp−1

≡ xp−1 + (xp−1 + kpxp−2) + (xp−1 + 2kpxp−2) + · · · + (xp−1 + (p − 1)kpxp−2)

≡ pxp−1 + (1 + 2 + · · · + p − 1)kpxp−2

≡ pxp−1 +

(
p(p − 1)

2

)

kpxp−2

≡ pxp−1 +

(
p − 1

2

)

kp2xp−1

≡ pxp−1 6≡ 0 (mod p2).

So we proved (3) and the proof of (1) is complete. Now let us return to our
problem. We want to show that

vp(x
n − yn) = vp(x − y) + vp(n).

Suppose that n = pαb where gcd(p, b) = 1. Then

vp(x
n − yn) = vp((x

pα

)b − (ypα

)b)

= vp(x
pα

− ypα

) = vp((x
pα−1

)p − (ypα−1

)p)

= vp(x
pα−1

− ypα−1

) + 1 = vp((x
pα−2

)p − (ypα−2

)p) + 1

= vp(x
pα−2

− ypα−2

) + 2

...

= vp((x
p1

)1 − (yp1

)1) + α − 1 = vp(x − y) + α

= vp(x − y) + vp(n).
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Note that we used the fact that if p | x−y, then we have p | xk −yk, because
we have x − y | xk − yk for all positive integers k. The proof is complete.

Theorem 2 (Second Form of LTE). Let x, y be two integers, n be an odd
positive integer, and p be an odd prime such that p | x + y and none of x and y

is divisible by p. We have

vp(x
n + yn) = vp(x + y) + vp(n).

Proof. This is obvious using Theorem 1. See the trick we used in proof of
Lemma 2.

4 What about p = 2?

Question. Why did we assume that p is an odd prime, i.e., p 6= 2? Why can’t
we assume that p = 2 in our proofs?

Hint. Note that p−1
2 is an integer only for p > 2.

Theorem 3 (LTE for the case p = 2). Let x and y be two odd integers such
that 4 | x − y. Then

v2(x
n − yn) = v2(x − y) + v2(n).

Proof. We showed that for any prime p such that gcd(p, n) = 1, p | x − y and
none of x and y is divisible by p, we have

vp(x
n − yn) = vp(x − y)

So it suffices to show that

v2(x
2n

− y2n

) = v2(x − y) + n.

Factorization gives

x2n

− y2n

= (x2n−1

+ y2n−1

)(x2n−2

+ y2n−2

) · · · (x2 + y2)(x + y)(x − y)

Now since x ≡ y ≡ ±1 (mod 4) then we have x2k

≡ y2k

≡ 1 (mod 4) for all

positive integers k and so x2k

+ y2k

≡ 2 (mod 4), k = 1, 2, 3, . . . . Also, since x

and y are odd and 4 | x− y, we have x + y ≡ 2 (mod 4). This means the power
of 2 in all of the factors in the above product (except x − y) is one. We are
done.

Theorem 4. Let x and y be two odd integers and let n be an even positive
integer. Then

v2(x
n − yn) = v2(x − y) + v2(x + y) + v2(n) − 1.

4



Proof. We know that the square of an odd integer is of the form 4k + 1. So
for odd x and y we have 4 | x2 − y2. Now let m be an odd integer and k be a
positive integer such that n = m · 2k. Then

v2(x
n − yn) = v2(x

m·2k

− ym·2k

)

= v2((x
2)2

k−1

− (y2)2
k−1

)

...

= v2(x
2 − y2) + k − 1

= v2(x − y) + v2(x + y) + v2(n) − 1.

5 Summary

Let p be a prime number and let x and y be two (not necessary positive) integers
that are not divisible by p. Then:

a) For a positive integer n

• if p 6= 2 and p | x − y, then

vp(x
n − yn) = vp(x − y) + vp(n).

• if p = 2 and 4 | x − y, then

v2(x
n − yn) = v2(x − y) + v2(n).

• if p = 2, n is even, and 2 | x − y, then

v2(x
n − yn) = v2(x − y) + v2(x + y) + v2(n) − 1.

b) For an odd positive integer n, if p | x + y, then

vp(x
n + yn) = vp(x + y) + vp(n).

c) For a positive integer n with gcd(p, n) = 1, if p | x − y, we have

vp(x
n − yn) = vp(x − y).

If n is odd, gcd(p, n) = 1, and p | x + y, then we have

vp(x
n + yn) = vp(x + y).

Note. The most common mistake in using LTE is when you don’t check the
p | x ± y condition, so always remember to check it. Otherwise your solution
will be completely wrong.
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6 Problems with Solutions

Problem 1 (Russia 1996). Find all positive integers n for which there exist

positive integers x, y and k such that gcd(x, y) = 1, k > 1 and 3n = xk + yk.

Solution. k should be an odd integer (otherwise, if k is even, then xk and yk

are perfect squares, and it is well known that for integers a, b we have 3 | a2 + b2

if and only if 3 | a and 3 | b, which is in contradiction with gcd(x, y) = 1.).
Suppose that there exists a prime p such that p | x + y. This prime should
be odd. So vp(3

n) = vp(x
k + yk), and using Theorem 2 we have vp(3

n) =
vp(x

k + yk) = vp(k) + vp(x + y). But p | x + y means that vp(x + y) ≥ 1 > 0
and so vp(3

n) = vp(k) + vp(x + y) > 0 and so p | 3n. Thus p = 3. This means
x + y = 3m for some positive integer m. Note that n = v3(k) + m. There are
two cases:

• m > 1. We can prove by induction that 3a ≥ a + 2 for all integers
a ≥ 1, and so we have v3(k) ≤ k − 2 (why?). Let M = max(x, y). Since
x + y = 3m ≥ 9, we have M ≥ 5. Then

xk + yk ≥ Mk = M
︸︷︷︸

≥
x+y

2
= 1

2
·3m

·Mk−1
︸ ︷︷ ︸

≥5k−1

>
1

2
3m · 5k−1

> 3m · 5k−2 ≥ 3m+k−2 ≥ 3m+v3(k) = 3n

which is a contradiction.

• m = 1. Then x + y = 3, so x = 1, y = 2 (or x = 2, y = 1). Thus
31+v3(k) = 1 + 2k. But note that 3v3(k) | k so 3v3(k) ≤ k. Thus

1 + 2k = 3v3(k)+1 = 3 · 3v3(k)
︸ ︷︷ ︸

≤k

≤ 3k =⇒ 2k + 1 ≤ 3k.

And one can check that the only odd value of k > 1 that satisfies the
above inequality is k = 3. So (x, y, n, k) = (1, 2, 2, 3), (2, 1, 2, 3) in this
case.

Thus, the final answer is n = 2.

Problem 2 (Balkan 1993). Let p be a prime number and m > 1 be a positive

integer. Show that if for some positive integers x > 1, y > 1 we have

xp + yp

2
=

(
x + y

2

)m

,

then m = p.

Solution. One can prove by induction on p that xp+yp

2 ≥
(

x+y
2

)p
for all positive

integers p. Now since xp+yp

2 =
(

x+y

2

)m
, we should have m ≥ p. Let d =

gcd(x, y), so there exist positive integers x1, y1 with gcd(x1, y1) = 1 such that
x = dx1, y = dy1 and 2m−1(xp

1 + y
p
1) = dm−p(x1 + y1)

m. There are two cases:
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Assume that p is odd. Take any prime divisor q of x1+y1 and let v = vq(x1+
y1). If q is odd, we see that vq(x

p
1+y

p
1) = v+vq(p) and vq(d

m−p(x1+y1)
m) ≥ mv

(because q may also be a factor of d). Thus m ≤ 2 and p ≤ 2, giving an
immediate contradiction. If q = 2, then m − 1 + v ≥ mv, so v ≤ 1 and
x1 + y1 = 2, i.e., x = y, which immediately implies m = p.

Assume that p = 2. We notice that for x+y ≥ 4 we have x2+y2

2 < 2
(

x+y

2

)2
≤

(
x+y

2

)3
, so m = 2. It remains to check that the remaining cases (x, y) =

(1, 2), (2, 1) are impossible.

Problem 3. Find all positive integers a, b that are greater than 1 and satisfy

ba|ab − 1.

Solution. Let p be the least prime divisor of b. Let m be the least positive
integer for which p|am − 1. Then m|b and m | p − 1, so any prime divisor
of m divides b and is less than p. Thus, not to run into a contradiction, we
must have m = 1. Now, if p is odd, we have avp(b) ≤ vp(a − 1) + vp(b), so
a− 1 ≤ (a− 1)vp(b) ≤ vp(a− 1), which is impossible. Thus p = 2, b is even, a is
odd and av2(b) ≤ v2(a−1)+ v2(a+1)+ v2(b)−1 whence a ≤ (a−1)v2(b)+1 ≤
v2(a − 1) + v2(a + 1), which is possible only if a = 3, v2(b) = 1. Put b = 2B

with odd B and rewrite the condition as 23B3 | 32B − 1. Let q be the least
prime divisor of B (now, surely, odd). Let n be the least positive integer such
that q | 3n − 1. Then n | 2B and n | q − 1 whence n must be 1 or 2 (or B has
a smaller prime divisor), so q | 3 − 1 = 2 or q | 32 − 1 = 8, which is impossible.
Thus B = 1 and b = 2.

Problem 4. Find all positive integer solutions of the equation x2009+y2009 = 7z

Solution. Factor 2009. We have 2009 = 72 · 41. Since x + y | x2009 + y2009 and
x + y > 1, we must have 7 | x + y. Removing the highest possible power of 7
from x, y, we get v7(x

2009 + y2009) = v7(x + y) + v7(2009) = v7(x + y) + 2, so
x2009 + y2009 = 49 · k · (x + y) where 7 ∤ k. But we have x2009 + y2009 = 7z,
which means the only prime factor of x2009 + y2009 is 7, so k = 1). Thus
x2009 + y2009 = 49(x+ y). But in this equation the left hand side is much larger
than the right hand one if max(x, y) > 1, and, clearly, (x, y) = (1, 1) is not
a solution. Thus the given equation does not have any solutions in the set of
positive integers.
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7 Challenge Problems

1. Let k be a positive integer. Find all positive integers n such that 3k | 2n − 1.

2 (UNESCO Competition 1995). Let a, n be two positive integers and let p be
an odd prime number such that

ap ≡ 1 (mod pn).

Prove that
a ≡ 1 (mod pn−1).

3 (Iran Second Round 2008). Show that the only positive integer value of a for
which 4(an + 1) is a perfect cube for all positive integers n, is 1.

4. Let k > 1 be an integer. Show that there exists infinitely many positive
integers n such that

n|1n + 2n + 3n + · · · + kn.

5 (Ireland 1996). Let p be a prime number, and a and n positive integers. Prove
that if

2p + 3p = an

then n = 1.

6 (Russia 1996). Let x, y, p, n, k be positive integers such that n is odd and p

is an odd prime. Prove that if xn + yn = pk, then n is a power of p.

7. Find the sum of all the divisors d of N = 1988 − 1 which are of the form
d = 2a3b with a, b ∈ N.

8. Let p be a prime number. Solve the equation ap−1 = pk in the set of positive
integers.

9. Find all solutions of the equation

(n − 1)! + 1 = nm

in positive integers.

10 (Bulgaria 1997). For some positive integer n, the number 3n−2n is a perfect
power of a prime. Prove that n is a prime.

11. Let m, n, b be three positive integers with m 6= n and b > 1. Show that if
prime divisors of the numbers bn − 1 and bm − 1 be the same, then b + 1 is a
perfect power of 2.

12 (IMO ShortList 1991). Find the highest degree k of 1991 for which 1991k

divides the number
199019911992

+ 199219911990

.

13. Prove that the number aa−1 − 1 is never square-free for all integers a > 2.
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14 (Czech Slovakia 1996). Find all positive integers x, y such that px − yp = 1,

where p is a prime.

15. Let x and y be two positive rational numbers such that for infinitely many
positive integers n, the number xn − yn is a positive integer. Show that x and
y are both positive integers.

16 (IMO 2000). Does there exist a positive integer n such that n has exactly
2000 prime divisors and n divides 2n + 1?

17 (China Western Mathematical Olympiad 2010). Suppose that m and k are
non-negative integers, and p = 22m

+ 1 is a prime number. Prove that

• 22m+1pk

≡ 1 (mod pk+1);

• 2m+1pk is the smallest positive integer n satisfying the congruence equa-
tion 2n ≡ 1 (mod pk+1).

18. Let p ≥ 5 be a prime. Find the maximum value of positive integer k such
that

pk|(p − 2)2(p−1) − (p − 4)p−1.

19. Let a, b be distinct real numbers such that the numbers

a − b, a2 − b2, a3 − b3, . . .

are all integers. Prove that a, b are both integers.

20 (MOSP 2001). Find all quadruples of positive integers (x, r, p, n) such that
p is a prime number, n, r > 1 and xr − 1 = pn.

21 (China TST 2009). Let a > b > 1 be positive integers and b be an odd
number, let n be a positive integer. If bn | an − 1, then show that ab > 3n

n
.

22 (Romanian Junior Balkan TST 2008). Let p be a prime number, p 6= 3,
and integers a, b such that p | a + b and p2 | a3 + b3. Prove that p2 | a + b or
p3 | a3 + b3.

23. Let m and n be positive integers. Prove that for each odd positive integer b

there are infinitely many primes p such that pn ≡ 1 (mod bm) implies bm−1 | n.

24 (IMO 1990). Determine all integers n > 1 such that

2n + 1

n2

is an integer.

25. Find all positive integers n such that

2n−1 + 1

n
.

is an integer.

9



26. Find all primes p, q such that
(5p − 2p)(5q − 2q)

pq
is an integer.

27. For some natural number n let a be the greatest natural number for which
5n − 3n is divisible by 2a. Also let b be the greatest natural number such that
2b ≤ n. Prove that a ≤ b + 3.

28. Determine all sets of non-negative integers x, y and z which satisfy the
equation

2x + 3y = z2.

29 (IMO ShortList 2007). Find all surjective functions f : N → N such that for
every m, n ∈ N and every prime p, the number f(m + n) is divisible by p if and
only if f(m) + f(n) is divisible by p.

30 (Romania TST 1994). Let n be an odd positive integer. Prove that ((n −
1)n + 1)2 divides n(n − 1)(n−1)n+1 + n.

31. Find all positive integers n such that 3n − 1 is divisible by 2n.

32 (Romania TST 2009). Let a, n ≥ 2 be two integers, which have the following
property: there exists an integer k ≥ 2, such that n divides (a− 1)k. Prove that
n also divides an−1 + an−2 + · · · + a + 1.

33. Find all the positive integers a such that 5a+1
3a is a positive integer.
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8 Hints and Answers to Selected Problems

1. Answer: n = 2 · 3k−1s for some s ∈ N.

2. Show that vp(a − 1) = vp(a
p − 1) − 1 ≥ n − 1.

3. If a > 1, a2 +1 is not a power of 2 (because it is > 2 and either 1 or 2 modulo
4). Choose some odd prime p|a2 + 1. Now, take some n = 2m with odd m and
notice that vp(4(an + 1)) = vp(a

2 + 1) + vp(m) but vp(m) can be anything we
want modulo 3.

5. 2p + 3p is not a square, and use the fact that v5(2
p + 3p) = 1 + v5(p) ≤ 2.

8. Consider two cases : p = 2 and p is an odd prime. The latter does not give

any solutions.

9. (n, m) = (2, 1) is a solution. In other cases, show that n is an odd prime and
m is even. The other solution is (n, m) = (5, 2).

12. Answer: max(k) = 1991.

13. Take any odd prime p such that p | a − 1. It’s clear that p2 | aa−1 − 1.

14. Answer: (p, x, y) = (2, 1, 1), (3, 2, 1).

18. Let p − 1 = 2sm and show that vp(2
s−1m) = 0. The maximum of k is 1.

19. Try to prove Problem 15 first.

20. Show that p = 2 and r is an even positive integer.

22. If p | a, p | b, then p3 | a3 + b3. Otherwise LTE applies and vp(a + b) =

vp(a
3 + b3) ≥ 2.

24. The answer is n = 1 or n = 3.

26. Answer: (p, q) = (3, 3), (3, 13).

27. If n is odd, then a = 1. If n is even, then a = v2(5
n − 3n) = v2(5 − 3) +

v2(5 + 3) + v2(n) − 1 = 3 + v2(n). But, clearly, b ≥ v2(n).

30. n | (n − 1)n + 1, so for every p | (n − 1)n + 1, we have

vp((n − 1)(n−1)n+1 + 1) = vp((n − 1)n + 1) + vp

(
(n − 1)n+1 + 1

n

)

= 2vp((n − 1)n + 1) − vp(n)

which completes the proof.

31. n ≤ v2(3
n − 1) ≤ 3 + v2(n), so n ≤ 4.

33. a must be odd (otherwise the numerator is 2 mod 3). Then a ≤ v3(5
a+1) =

1 + v3(a) giving a = 1 as the only solution.
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