INDEX

\[\begin{align*}
\text{Index} \\
\end{align*} \]

0, see zero
1, see one

abundant numbers, 116

algebra
 number sense, 287–291

algebraic number theory, 282

AMC, ix

American Mathematics Competitions, see AMC

American Regions Math League, see ARML

ARML, x

art, see culture

Art of Problem Solving, vii, 320

base
 number systems, 146

base 10, see decimal number system

base number arithmetic, 165

base number systems, 144
 addition of base numbers, 165–167
 commonly used, 148
 converting between bases, 150–154
 creative problem solving, 155–160
 division of base numbers, 172–174
 fractions and conversion, 209–211
 multiplication of base numbers, 170–172
 subtraction of base numbers, 168–170
 units digit arithmetic, 184–186

Benford’s Law, 194

Bhargava, Manjul, 282

binary, 147

Clay Mathematics Institute, 140

codes, 63

commerce
 mathematical development, 3

common divisors, 39–40

common multiples, 43

complementary counting, 96

composite numbers, 25–27
 identifying, 28–32

congruence, 221

congruence classes, see residue classes

conjecture, 110, 111

converting base numbers, see base number systems

Conway, John, 282

coprime, see relatively prime

counting
 addition as fast counting, 4
 bundles, 141–144
 exponentiation as fast counting, 5
 multiplication as fast counting, 5
 subtraction as fast counting, 4

counting numbers, 2

cryptography, 63
 Caesar cipher, 86
 Enigma, 89, 90
 scytales, 81

cubes of integers, see perfect cubes

culture
 Renaissance, art, and mathematics, 3

da Vinci, Leonardo, 3

decimal number system, 143

decimals
 converting to fractions, 205–208
 repeating, 201–205
 terminating, 195–200

deficient numbers, 116

dividend, 48

divisibility, 11–13
number sense, 283–287
divisibility rules
 algebraic problem solving, 255–257
 common rules, 247–254
divisible, 12
Division Algorithm, 48
Division Theorem, 48, 60
divisors, 14–18
 counting game, 106
 counting problems, 94–100
 divisor products, 101
 how to count them, 91–94
 making use of, 18–19
 negative, 15
 proper, see proper divisors

Egyptian fractions, 75
Enigma, see cryptography
equivalence, see congruence
equivalence classes, see residue classes
Eratosthenes, 31
Euclid, 42, 55, 57
Euclidean algorithm, 53–60
Euler, Leonhard, 246
extended Euclidean algorithm, 59

factor, 14
factor trees, 64–68
 game, 64
factorials, 111
 factoring, 113
factoring
 common techniques, 128
 equating algebraic and prime factorizations, 128, 131
 number sense, 283–287
 Simon’s Favorite Factoring Trick, 130
factors, see divisors
Fermat primes, 111
Fermat’s Last Theorem, 135
Fermat, Pierre de, 110, 111, 135
Fibonacci, 124
Fibonacci numbers, 124
forms of numbers
 fractions and decimals, 197, 213
 number sense, 292–293

Fundamental Theorem of Arithmetic, 68
Gauss, Carl Friedrich, 220, 239, 282
GCD, see greatest common divisor
GCF, see greatest common divisor
generalized forms, 133
Germain, Marie-Sophie, 239
Goldbach’s conjecture, 302
greatest common divisor, 41
greatest common factor, see greatest common divisor
guessing, see problem solving strategies
Harvard-MIT Math Tournament, see HMMT
hexadecimal, 149
HMMT, x

incongruent, 242
induction, 237
integers, 1
 counting with, 2
 making integers out of integers, 3–6
 negative, 1
 on the number line, 1
 positive, 1
 solving algebra problems, 125–136
 zero, see zero
inverse, 264
irrational numbers, 204
isolating the variable, 136

Lagrange, Joseph-Louis, 281
LCM, see least common multiple
least common multiple, 44
Legendre, Adrien-Marie, 239, 246
linear congruence equations, 261
lists, see problem solving strategies
lowest terms, 76

Mandelbrot Competition, ix
MATHCOUNTS, ix
Mersenne primes, 110, 117
Mersenne, Marin, 110
Millenium Problems, 140
modular arithmetic, 217–223
 addition and subtraction, 227–232
 algebra, 231, 237

Copyrighted Material
multiplication and exponentiation, 232–238
parametric expressions, 223
patterns, 238–241
using residues, 238
modular inverse, 264
modulo, 220
modulus, 220
multiples, 7–10
natural numbers, 2
notation, iv
mathematical symbols, 20
number line, 1
number sense, 283
practice develops it, 289
number theory, iii
numerals, 141, 144
one
a divisor of every integer, 26
is a special number that is neither prime nor composite, 27
organizing your work, see problem solving strategies
palindromes, 117–120
parameters, 133
parity, 295
patterns
hunting for, 34
modular arithmetic, 240
perfect cubes, 6
perfect numbers, 116, 117
perfect powers, 6
perfect squares, 6
pieces of eight, 211
playing, see problem solving strategies
Poincaré Conjecture, 140
positive integers, 2
prime factorization, 66
cornerstone of number theory, 68
derived from divisor counts, 99
divisors, 73
GCD, 73, 74
LCM, 70, 71
multiples, 70
problem solving, 78–80
relationship between GCDs and LCMs, 80–84
useful information about integers, 70
prime numbers, 25–27, 109
identifying, 28–32
large primes and computing, 110
polynomials, 246
proof of infinitely many, 55
problem solving, v
problem solving strategies
expressing facts in multiple ways, 17
finding new ways to look at problems, 51
guessing, 34
narrowing lists of possible solutions, 296
organize your work, 98
play with simple examples, 34
practice develops number sense, 289
proof, 55
proper divisors, 16
quadratic forms, 282
quotient, 48
radix, see base, 209
radix point, 209
Ramanujan, Srinivasa, 11, 282
rational numbers, 75
reduced form, 76
relatively prime, 42
remainder, 48
Renaissance, see culture
repeating decimals, 201
residue classes, 226
residues, 225
resources, vii
Riemann hypothesis, 140
Riemann Zeta function, 140
Riemann, Georg Friedrich Bernhard, 140
SASTRA Ramanujan Prize, 282
scale, see base
Scherbius, Arthur, 89
sieve, 31
Sieve of Eratosthenes, 28–31
Sieve of Nygard, 32
Simon’s Favorite Factoring Trick, 130
simplification
making ugly equations nicer, 131
number sense, 294–297
of mathematics using notation, 20
using parameters, 134
Sophie Germain prime, 239
squares of integers, see perfect squares
systems of linear congruences, 272

terminating decimals, 195
theorem, 111
tree climbing, 195
Turing, Alan, 90
twin prime conjecture, 111, 302
twin primes, 111

Uccello, Paoli, 3
unit fractions, 75
units digits
arithmetic of, 177–183
casework, 182, 191
patterns in, 188
problem solving, 187–190
unreduced form, 76
unsolved number theory problems, 302
USA Mathematical Talent Search, see USAMTS
USAMTS, x

whole numbers, 2
Wiles, Andrew, 135
word problems
assigning variables, 127
translating words into math, 19

Ying, 43

zero, 1
is a multiple of every integer, 16