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It’s not that I’m so smart, it’s just that I stay with problems longer. – Albert Einstein

CHAPTER14
Linear Congruences

14.1 Introduction

A linear congruence equation is a lot like an ordinary linear equation. Here is an example:

3x ⌘ 2 (mod 4).

Definition: A linear congruence equation is a congruence that involves a variable raised only to
the first power.

For the rest of this chapter, we simply refer to linear congruence equations as linear congruences. In
general, for integers a and b, a modulus m, and a single variable x, a linear congruence can be expressed
in the form

ax ⌘ b (mod m),

though expressing a linear congruence in this form sometimes requires simplification as we will see.

Here are a few examples of linear congruences with their solutions:

3x ⌘ 2 (mod 4) is satisfied by x ⌘ 2 (mod 4)
5y ⌘ 7 (mod 8) is satisfied by y ⌘ 3 (mod 8)
6x ⌘ 5 (mod 11) is satisfied by x ⌘ 10 (mod 11)

There are also linear congruences with no solutions, such as

2x ⌘ 1 (mod 4).

This chapter explores both how to determine when linear congruences have solutions and how to find
any solutions they have.
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CHAPTER 14. LINEAR CONGRUENCES

14.2 Modular Inverses and Simple Linear Congruences

Problems 

Problem 14.1: Find all values of x that satisfy each of the following linear congruences.
(a) x � 3 ⌘ 0 (mod 4)

(b) x � 2 ⌘ 0 (mod 4)

(c) x � 1 ⌘ 0 (mod 4)

(d) x + 1 ⌘ 0 (mod 4)

(e) x + 2 ⌘ 0 (mod 4)

(f) x + 3 ⌘ 0 (mod 4)

Problem 14.2:
(a) Find the smallest positive multiple of 4 that is 1 more than a multiple of 5.

(b) Find all solutions to 4n ⌘ 1 (mod 5).

Problem 14.3: For each of the following linear congruences, find all solutions or show that there
are none.

(a) 2x ⌘ 1 (mod 10) (e) 6x ⌘ 1 (mod 10)
(b) 3x ⌘ 1 (mod 10) (f) 7x ⌘ 1 (mod 10)
(c) 4x ⌘ 1 (mod 10) (g) 8x ⌘ 1 (mod 10)
(d) 5x ⌘ 1 (mod 10) (h) 9x ⌘ 1 (mod 10)

Problem 14.4: In this problem we examine when an integer b cannot have an inverse modulo m.
(a) Show that gcd(b,m) is a divisor of bx � tm for any integers x and t.

(b) Show that if there is some x such that bx ⌘ 1 (mod m), then gcd(b,m) | 1.

(c) Conclude that b�1 modulo m does not exist when gcd(b,m) > 1.

Problem 14.5: Let r be a module-60 residue such that gcd(r, 60) = 1.
(a) Show that if rx ⌘ ry (mod 60) for integers x and y, then x and y are members of the same

modulo-60 residue class.

(b) Show that when r is multiplied by each of the modulo-60 residues, no two of the products are
congruent modulo 60.

(c) Show that r has exactly one inverse modulo 60.

Problem 14.6: John bought n boxes of cookies containing 11 cookies each. On the way home from the
store, John noticed that if he ate just one cookie, the total number of cookies remaining would be a
multiple of 23. What is the smallest possible value of n?

Extra!
‡‡‡‡

Nothing endures but change. – Heraclitus
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14.2. MODULAR INVERSES AND SIMPLE LINEAR CONGRUENCES

Problem 14.1: Solve each of the following linear congruences.

(a) x � 3 ⌘ 0 (mod 4) (d) x + 1 ⌘ 0 (mod 4)
(b) x � 2 ⌘ 0 (mod 4) (e) x + 2 ⌘ 0 (mod 4)
(c) x � 1 ⌘ 0 (mod 4) (f) x + 3 ⌘ 0 (mod 4)

Solution for Problem 14.1: We could solve each linear congruence by plugging in all possible modulo-4
residues to find out which, if any, of them work. However, we know that we can add or subtract any
integer to both sides of a congruence to produce another valid congruence. Adding 3 to both sides of
the first congruence, we get

x ⌘ 3 (mod 4),

which describes all possible solutions for x: . . . ,�5,�1, 3, 7, . . . .

We add to or subtract from each side of each congruence in order to isolate the variable:

x � 2 ⌘ 0 (mod 4) ) x ⌘ 2 (mod 4)
x � 1 ⌘ 0 (mod 4) ) x ⌘ 1 (mod 4)
x + 1 ⌘ 0 (mod 4) ) x ⌘ 3 (mod 4)
x + 2 ⌘ 0 (mod 4) ) x ⌘ 2 (mod 4)
x + 3 ⌘ 0 (mod 4) ) x ⌘ 1 (mod 4)

So, we have solutions to each of the simple linear congruences. 2

Concept: In much the same way that we solve ordinary algebraic linear equations,
we solve simple linear congruences by manipulating both sides of the
congruence until the variable is isolated.

Unfortunately, not all of the same methods we use to solve algebraic equations are available in mod-
ular arithmetic. We need to develop other methods for solving more complicated linear congruences.

Problem 14.2: Find all solutions to 4n ⌘ 1 (mod 5).

Solution for Problem 14.2:

Bogus Solution:� First, we find a multiple of 4 that is congruent to 1 (mod 5):

4n ⌘ 1 ⌘ 6 ⌘ 11 ⌘ 16 (mod 5).

Dividing both sides of 4n ⌘ 16 (mod 5) by 4, we get n ⌘ 4 (mod 5).

Extra!
‡‡‡‡

I have learned throughout my life as a composer chiefly through my mistakes and pursuits of false
assumptions, not by my exposure to founts of wisdom and knowledge. – Igor Stravinsky
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CHAPTER 14. LINEAR CONGRUENCES

While the answer in the bogus solution is correct, the method is not. Division is not a valid operation
in modular arithmetic. However, matching 1 with a congruent multiple of 4 was a good start! We note
that

4 · 4 ⌘ 1 (mod 5).

We can use this fact to solve our original linear congruence. Multiplying both sides of 4n ⌘ 1 (mod 5)
by 4 we get

16n ⌘ 4 (mod 5).

But 16 ⌘ 1 (mod 5), so the left-hand side is 16n ⌘ 1n ⌘ n (mod 5). Finally, our congruence becomes
n ⌘ 4 (mod 5), which are the solutions to the congruence 4n ⌘ 1 (mod 5). 2

WARNING!!
j

Division is not defined in modular arithmetic!

Here’s an example where division fails to find all the solutions to
a linear congruence:

3x ⌘ 3 (mod 6)

Dividing both sides of this linear congruence by 3, we get x ⌘ 1
(mod 6). While these solutions satisfy the original linear congruence,
so do x ⌘ 3 (mod 6) and x ⌘ 5 (mod 6).

Without the operation of division available to us, we used multiplication to solve Problem 14.2. We
multiplied 4 by a number we found (which happened also to be 4) to get 1 (mod 5). In other words, we
multiplied 4 by its inverse modulo 5 in order to isolate the variable n.

Definition: A modular inverse of an integer b modulo m is an integer b�1 such that

b · b�1 ⌘ 1 (mod m).

More simply, we refer to b�1 as an inverse.

For instance, using the modulo-5 multiplication table at right,
we find inverses of some modulo-5 residues:

1�1 ⌘ 1 (mod 5)
2�1 ⌘ 3 (mod 5)
3�1 ⌘ 2 (mod 5)
4�1 ⌘ 4 (mod 5)

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that 1 is its own inverse with any modulus because 1 · 1 ⌘ 1 (mod m). Also, 0 · x ⌘ 0 (mod m),
so 0 never has an inverse with any modulus.

Extra!
‡‡‡‡

The sorcery and charm of imagination, and the power it gives to the individual to transform his
world into a new world of order and delight, makes it one of the most treasured of all human
capacities. – Frank Barron
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14.2. MODULAR INVERSES AND SIMPLE LINEAR CONGRUENCES

Problem 14.3: Find the inverses of all modulo-10 residues that have inverses.

Solution for Problem 14.3: We write out an entire modulo-10 multiplication table to be sure we find all
the inverses of modulo-10 residues (and thus all integers modulo 10):

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

From the modulo-10 multiplication table, we
find that

1�1 ⌘ 1 (mod 10)
3�1 ⌘ 7 (mod 10)
7�1 ⌘ 3 (mod 10)
9�1 ⌘ 9 (mod 10)

and that there is no inverse modulo 10 for 0,
2, 4, 5, 6, or 8.

2
Problem 14.4: Prove that b�1 modulo m does not exist when gcd(b,m) > 1.

Solution for Problem 14.4: When b�1 exists, it’s the solution to the linear congruence

bx ⌘ 1 (mod m).

This means that for some value of x,
bx � tm = 1,

for some integer t. Now, let d = gcd(b,m). Thus, d | bx and d | tm. Since a divisor of two integers is a
divisor of their di↵erence,

d | (bx � tm).

But we know that bx � tm = 1, so d | 1. Hence d = 1. Thus, when b�1 exists, the GCD of b and m is 1. So,
when gcd(b,m) > 1, b�1 does not exist. 2

Important: If gcd(b,m) > 1, then b does not have an inverse modulo m.

In Problem 14.3, we found that each modulo-10 residue that is relatively prime to 10 has an inverse.
In fact, every modulo-10 residue appears as a product in each row and column (of the modulo-10
multiplication table) started with a multiplicand that is relatively prime to 10.

Problem 14.5: Let r be a modulo-60 residue such that gcd(r, 60) = 1. Show that r has an inverse
modulo 60.

Solution for Problem 14.5: Let x and y be integers such that rx ⌘ ry (mod 60). Thus,

rx � ry = r(x � y) = 60t
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CHAPTER 14. LINEAR CONGRUENCES

for some integer t. This means that 60 | r(x � y). But, since gcd(r, 60) = 1, we know that 60 | (x � y).
Thus, x ⌘ y (mod 60). This means that when x . y (mod 60), we have rx . ry (mod 60). So, when we
multiply r by each of the modulo-60 residues, none of the products are equivalent modulo 60 to each
other. This means that each product is equivalent to a di↵erent modulo-60 residue, one of which is 1.
Thus, exactly one of the modulo-60 residues is an inverse modulo 60 of r. 2

Notice that in Problem 14.5, nothing in our solution depended specifically on the number 60. We can
just as easily replace 60 with any modulus m and our solution shows that when r and m are relatively
prime, r�1 modulo m exists. Combining this with the fact that residues not relatively prime with m don’t
have inverses modulo m, we summarize our work:

Important: For a given modulus m, a residue r has a single modulo-m residue that
is an inverse of r modulo m if and only if gcd(m, r) = 1. Otherwise, r has
no inverse modulo m.

Note that when the modulus m is prime, every residue other than 0 is relatively prime to the modulus,
thus every nonzero residue has an inverse modulo m.

Problem 14.6: John bought n boxes of cookies containing 11 cookies each. On the way home from
the store, John noticed that if he ate just one cookie, the total number of cookies remaining would be
a multiple of 23. What is the smallest possible value of n?

Solution for Problem 14.6: John bought 11n cookies where 11n ⌘ 1 (mod 23). Our goal is to find the
smallest positive integer n that satisfies the congruence. Our answer will be the inverse of 11 modulo 23.

Solution 1: We add multiples of 23 to 1 until we reach an integer that is a multiple of 11:

1 ⌘ 24 ⌘ 47 ⌘ 70 ⌘ 93 ⌘ 116 ⌘ 139 ⌘ 162 ⌘ 185 ⌘ 208 ⌘ 231 (mod 23).

Since 11 · 21 = 231 ⌘ 1 (mod 23), 21 is the inverse of 11 modulo 23.

Solution 2: While looking for an integer n such that 11n ⌘ 1 (mod 23), we find that

11 · 2 ⌘ �1 (mod 23).

Multiplying both sides of the congruence by �1 and organizing, we get

11 · (�2) ⌘ 1 (mod 23).

Since �2 ⌘ 21 (mod 23), we have 11 · 21 ⌘ 1 (mod 23). So 21 is the inverse of 11 modulo 23. 2

Exercises 

14.2.1 Find all solutions to each of the following linear congruences.

(a) x � 5 ⌘ 2 (mod 3) (c) 5x ⌘ 1 (mod 11)
(b) x + 223 ⌘ 114 (mod 8) (d) 2x + 17 ⌘ 0 (mod 9)

14.2.2 Find the inverses modulo 11 for the residues 1-10 inclusive.

14.2.3 Which modulo-15 residues have inverses?

14.2.4? Prove that an integer cannot have more than one inverse for a given modulus.
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