INDEX

#, 2
\cap, 5
\sigma, 14
\cup, 4
\delta \varepsilon \text{ definition}, 38
\emptyset, 2
\frac{\infty}{\infty} \text{ indeterminate form}, 200–202, 204
\frac{\pi}{2} \text{ indeterminate form}, 202–203
\gamma, \text{ see Euler’s Constant}
\varepsilon, 2
\infty, \text{ see infinity}
\Theta, 33
\setminus, 6
\subset, 3
\subseteq, 2
30-60-90 triangle, 21
4-dimensional sphere, 185
45-45-90 triangle, 21

acceleration, 106
 due to gravity, 107–108, 123
algebraic numbers, 9
alternating harmonic series, 239
alternating series, 238–241
Alternating Series Test, 239–240
angle-addition formulas, 26, 29
angle-subtraction formulas, 26
annulus, 173
antiderivative, 135, 141
 linearity, 142
 of a continuous function, 139
antidifferentiation, 140, see also integral
AoPS, see Art of Problem Solving
arccos, see inverse cosine
Archimedes spiral, 277

arcsin, see inverse sine
arctan, see inverse tangent
area, 166–169
 between curves, 166
 ellipse, 167–169
 in polar coordinates, 274–276
area under a curve, 126–135
 as sum of rectangles, 130–131
Darboux sum, 131
definite integral, 131
lower area, 131
parabola, 128–130
upper area, 131
argument, 268
Art of Problem Solving, vi, 324
associativity, 8
astroid, 265–267
average value, 176–178

Binomial Theorem, 257
boundary point, 99
bounded, 9
Boundedness Theorem, 51, 55
 proof of, 55
Boyle’s Law, 122

\mathbb{C}, 35
calculator, vii, 165
cardinality, 2
cardioid, 275–277
Cartesian plane, 16
Chain Rule, 73, 157
 differentiation, 72–74
 integration, 147–153
 notation, 74

316
proof, 84–86
characteristic polynomial, 292
circle
 as parametric curve, 259–260
 in polar coordinates, 269
closed interval, 11
codomain, 13
commutativity, 8
completeness, 9–10
complex numbers, 35
composition (of functions), 14
concave down, 92, 93
concave up, 93
concavity, 91–95
conditionally converge, 240–241
continuity, 48–52
 algebraic properties, 49
 antiderivative, 139
 Boundedness Theorem, 51, 55
 definite integral, 134
 Extreme Value Theorem, 51
 Intermediate Value Theorem, 50, 54–55
localness of, 49
continuous, 48
converge
 absolute, 238–241
 conditionally, 240–241
 improper integral, 207, 210
 power series, 249–251
 sequence, 221–225
 geometric, 222
 series, 227, 229–241
diminishing, 88, 90, 223
definite integral, 126, 131, see also integral
 approximation techniques, 179–183
 Simpson’s Rule, 181–182, 188–190
 Trapezoid Rule, 180–181
 as continuous sum, 176
 average value, 176–178
 Chain Rule, 151–152
 continuous function, 134
 Fundamental Theorem of Calculus, 135–140
 integrand, 132
 limits of integration, 132
 linearity, 142
 Mean Value Theorem, 179
 properties, 132
 Simpson’s Rule, 181–182, 188–190
 Trapezoid Rule, 180–181
derivative, 57, 60, 61
 as rate of change, 90, 110
Chain Rule, 72–74
 notation, 74
 proof, 84–86
 construction of, 59–60
 definition, 60
 exponential, 70–71
 first derivative, 91
 First Derivative Test, 101
 implicit, 80–82
 inverse function, 75–76
 inverse trig functions, 76
 Leibniz Rule, 84
 linearity, 65
 logarithm, 70–71
 Mean Value Theorem, 79–80
 proof, 86–87
 monomial, 65–67, 77
 Newton’s Method, 113–117
 notation, 61
 of a constant, 90
polynomial, 67–68
Product Rule, 68–69
Quotient Rule, 69, 71
related rates, 117–122
relationship to continuity, 62
Rolle’s Theorem, 77–79
second derivative, 77
Second Derivative Test, 101
tangent line approximation, 108–113
trig functions, 69–70
use in curve sketching, 90–95
where undefined, 64
zero, 90
differentiable, 60
differential equation, 279–295
characteristic polynomial, 292
Euler’s Method, 297–299
exponential decay, 286
exponential growth, 285–286
first-order, 280
heating, 287
homogeneous, 290
initial condition, 279
integrating factor, 296
linear, 290–295
logistic, 287–289
radioactive decay, 286
relative rate (of growth), 285
second-order, 290–294
separable, 283
separation of variables, 282–285
slope field, 280–282
uniqueness of solution, 282
differential notation, 61
discrete function, 221
disjoint (sets), 6
distributive, 8
diverge
 improper integral, 207, 210
 sequence, 221–225
 series, 227
Divergence Test, 230
domain, 13
dominate, 203–204
 little-o notation, 214
double-angle formula, 27, 29
dummy variable, 13, 132
e, 31, 32
 as a limit, 204–205
 formula for, 249
element (of a set), 1
e, 31, 32
 as a limit, 204–205
 formula for, 249
element (of a set), 1
 ellipse, 167–169
 empty set, 2, 4
diary points, 259
epicycloid, 277
equation, 278
error function, 140, 185, 214
Euler’s Constant, 257
Euler’s Formula, 35, 252
Euler’s Method, 282, 297–299
exp, see exponential
exponential, 30, 185–188
 derivative of, 70–71
 integral, 146–147
 Taylor series, 248–249
 exponential function, 31, 32
 exponential growth, 285–286
 exponential indeterminate form, 204–206
 Extended Mean Value Theorem, 215
 extrema, 96
 Extreme Value Theorem, 51
 extreme values, 96
Fibonacci numbers
 Taylor series, 257
Fibonacci sequence, 221
field, 8
finite set, 1
first derivative, 91
First Derivative Test, 101
fixed point, 53
Fourier series, 302
frustum, 121
function, 13–16
 antiderivative, 135
 area under graph, see area under a curve
 asymptote
 horizontal, 192
 vertical, 198–199
 average value, 176–178
codomain, 13
composition, 14
concave down, 92, 93
concave up, 93
concavity, 94
continuous, 48–52
convex, 94
critical points, 96–98
decreasing, 88, 90
 strictly, 89, 90
derivative of, 61, see also derivative
differentiable, 60
discrete, 221
domain, 13
dominate, 199, 203–204, 214
exponential, 29–32, 185–188

derivative of, 70–71
extrema, 96
extreme values, 96
First Derivative Test, 101
global maximum, 99
global minimum, 99
graph, 16–19
image, 15
increasing, 88, 90
strictly, 89, 90
inflection point, 93
inverse, 14
length, 175
local maximum, 100
local minimum, 100
logarithm, 32–33, 185–188

derivative of, 70–71
maximum, 99
 global, 99
 local, 100
relative, 100
minimum, 99
 global, 99
 local, 100
relative, 100
monotonic, 88
strictly, 89
nondifferentiable, 64
odd, 140
optimization, 96–105
parametric, 259
periodic, 24
preimage, 15
range, 13
rational, 193–195, 236
real-valued, 13
relative maximum, 100
relative minimum, 100
Riemann zeta function, 235
scaling, 18–19
strictly decreasing, 89, 90
strictly increasing, 89, 90
strictly monotonic, 89
translation, 18–19
trigonometric, 19–29
 derivative of, 69–70
Fundamental Theorem of Algebra, 52
Fundamental Theorem of Calculus, 126, 135–140, 178
gamma function, 214
geometric sequence, 220–221, 225
 common ratio, 221
 convergence, 222
geometric series, 226–229
global maximum, 99
global minimum, 99
Grand Integrator, 147
graph, 16–19
length, 175
gravity, 107–108, 123
greatest integer function, 48–49
greatest lower bound, 10
Green’s Theorem, 267
Hôpital, see l’Hôpital’s Rule
half-angle formula, 27, 29
harmonic series, 230–231
 alternating, 239
Harvard-MIT Mathematics Tournament, iv
HMMT, see Harvard-MIT Mathematics Tournament
homogeneous, 290
Hooke’s Law, 294
horizontal asymptote, 192
Horizontal Line Test, 18, 19
hyperbolic cosine, 185
hyperbolic trig functions, 34
hypocycloid, 266, 267
identity element, 8
image, 15
imaginary number, 35
imaginary part, 35
implicit differentiation, 80–82
related rates, 117–122
improper integral, 207–213
 comparison test, 209–210
 converge, 207, 210
 diverge, 207, 210
improper at both ends, 211–213
increasing, 88, 90, 223
indefinite integral, 141–142, see also integral
 linearity, 142
indeterminate form
\[
\frac{0}{0}, 200–202, 204
\frac{\infty}{\infty}, 202–203
\infty – \infty, 206
\text{exponential}, 204–206
\]
index, 220
infimum, 10
infinite set, 1
infinity, 191–199
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>as a limit</td>
<td>196–199</td>
</tr>
<tr>
<td>not a number</td>
<td>197</td>
</tr>
<tr>
<td>inflection point</td>
<td>93</td>
</tr>
<tr>
<td>initial condition</td>
<td>279</td>
</tr>
<tr>
<td>integers</td>
<td>7, 8</td>
</tr>
<tr>
<td>integral</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain Rule</td>
<td>153</td>
</tr>
<tr>
<td>definite, see definite integral</td>
<td></td>
</tr>
<tr>
<td>exponential, 146–147</td>
<td></td>
</tr>
<tr>
<td>improper, see improper integral</td>
<td></td>
</tr>
<tr>
<td>indefinite, 141–142</td>
<td></td>
</tr>
<tr>
<td>integrand</td>
<td>132</td>
</tr>
<tr>
<td>integration by parts, 153–157</td>
<td></td>
</tr>
<tr>
<td>limits of integration, 132</td>
<td></td>
</tr>
<tr>
<td>linearity</td>
<td>142</td>
</tr>
<tr>
<td>partial fractions, 161–162</td>
<td></td>
</tr>
<tr>
<td>polynomials, 142–146</td>
<td></td>
</tr>
<tr>
<td>substitution, 157–161</td>
<td></td>
</tr>
<tr>
<td>trig substitution, 157–160</td>
<td></td>
</tr>
<tr>
<td>trigonometric, 146–147, 152–153, 165</td>
<td></td>
</tr>
<tr>
<td>integral sign</td>
<td>132</td>
</tr>
<tr>
<td>Integral Test, 233–234, 237</td>
<td></td>
</tr>
<tr>
<td>integrand</td>
<td>132</td>
</tr>
<tr>
<td>integrating factor, 296</td>
<td></td>
</tr>
<tr>
<td>integration, see integral</td>
<td></td>
</tr>
<tr>
<td>Product Rule, 153</td>
<td></td>
</tr>
<tr>
<td>integration bee, see MIT Integration Bee</td>
<td></td>
</tr>
<tr>
<td>integration by parts, 153–157</td>
<td></td>
</tr>
<tr>
<td>Intermediate Value Theorem, 50, 54</td>
<td></td>
</tr>
<tr>
<td>proof of, 54–55</td>
<td></td>
</tr>
<tr>
<td>intersection, 5</td>
<td></td>
</tr>
<tr>
<td>interval, 10–12</td>
<td></td>
</tr>
<tr>
<td>closed, 11</td>
<td></td>
</tr>
<tr>
<td>half-open, 11</td>
<td></td>
</tr>
<tr>
<td>open, 11</td>
<td></td>
</tr>
<tr>
<td>partition of, 130</td>
<td></td>
</tr>
<tr>
<td>inverse, 8, 14</td>
<td></td>
</tr>
<tr>
<td>inverse cosine, 25</td>
<td></td>
</tr>
<tr>
<td>inverse function</td>
<td></td>
</tr>
<tr>
<td>derivative of, 75–76</td>
<td></td>
</tr>
<tr>
<td>Inverse Function Rule, 75–76</td>
<td></td>
</tr>
<tr>
<td>inverse sine, 25</td>
<td></td>
</tr>
<tr>
<td>derivative of, 76</td>
<td></td>
</tr>
<tr>
<td>integral, 159, 166</td>
<td></td>
</tr>
<tr>
<td>inverse tangent, 25</td>
<td></td>
</tr>
<tr>
<td>derivative of, 76</td>
<td></td>
</tr>
<tr>
<td>integral, 159</td>
<td></td>
</tr>
<tr>
<td>Taylor series, 255</td>
<td></td>
</tr>
<tr>
<td>l’Hôpital’s Rule, 200–206</td>
<td></td>
</tr>
<tr>
<td>indeterminate forms, 200–202, 204</td>
<td></td>
</tr>
<tr>
<td>indeterminate forms, 202–203</td>
<td></td>
</tr>
<tr>
<td>exponential indeterminate forms, 204–206</td>
<td></td>
</tr>
<tr>
<td>proof, 215–219</td>
<td></td>
</tr>
<tr>
<td>least upper bound, 10</td>
<td></td>
</tr>
<tr>
<td>left Riemann sum, 135</td>
<td></td>
</tr>
<tr>
<td>Leibniz Rule, 84</td>
<td></td>
</tr>
<tr>
<td>Leibniz, Gottfried, iii</td>
<td></td>
</tr>
<tr>
<td>length, 173–176, 265</td>
<td></td>
</tr>
<tr>
<td>of parametric curve, 265, 278</td>
<td></td>
</tr>
<tr>
<td>limaçon, 273, 276</td>
<td></td>
</tr>
<tr>
<td>limit, 37–48</td>
<td></td>
</tr>
<tr>
<td>δ-ε definition of, 38</td>
<td></td>
</tr>
<tr>
<td>at infinity, 191–196</td>
<td></td>
</tr>
<tr>
<td>as finite limit, 195–196</td>
<td></td>
</tr>
<tr>
<td>comparison of, 43</td>
<td></td>
</tr>
<tr>
<td>infinite, 196–199</td>
<td></td>
</tr>
<tr>
<td>one-sided, 45–47</td>
<td></td>
</tr>
<tr>
<td>properties, 42–43</td>
<td></td>
</tr>
<tr>
<td>rational function, 193–195</td>
<td></td>
</tr>
<tr>
<td>sequence, 222</td>
<td></td>
</tr>
<tr>
<td>Squeeze Theorem, 44, 48</td>
<td></td>
</tr>
<tr>
<td>uniqueness of, 41–42</td>
<td></td>
</tr>
<tr>
<td>Limit Comparison Test, 235–237</td>
<td></td>
</tr>
<tr>
<td>limits of integration, 132</td>
<td></td>
</tr>
<tr>
<td>line</td>
<td></td>
</tr>
<tr>
<td>as parametric curve, 260–261</td>
<td></td>
</tr>
<tr>
<td>in polar coordinates, 273, 277</td>
<td></td>
</tr>
<tr>
<td>linear, 65, 142</td>
<td></td>
</tr>
<tr>
<td>linear approximation, 111</td>
<td></td>
</tr>
<tr>
<td>links, vii, 303</td>
<td></td>
</tr>
<tr>
<td>Lissajous curve, 267</td>
<td></td>
</tr>
<tr>
<td>little-o notation, 214</td>
<td></td>
</tr>
<tr>
<td>In, 32, see also logarithm</td>
<td></td>
</tr>
<tr>
<td>local, 49</td>
<td></td>
</tr>
<tr>
<td>local linearization, 110</td>
<td></td>
</tr>
<tr>
<td>local maximum, 100, 101</td>
<td></td>
</tr>
<tr>
<td>local minimum, 100, 101</td>
<td></td>
</tr>
<tr>
<td>log, 32, see also logarithm</td>
<td></td>
</tr>
<tr>
<td>logarithm, 32, 185–188</td>
<td></td>
</tr>
<tr>
<td>derivative of, 70–71</td>
<td></td>
</tr>
<tr>
<td>integral, 156</td>
<td></td>
</tr>
<tr>
<td>Taylor series, 252–254</td>
<td></td>
</tr>
<tr>
<td>logistic equation, 287–289</td>
<td></td>
</tr>
<tr>
<td>lower area, 131</td>
<td></td>
</tr>
<tr>
<td>lower bound, 9</td>
<td></td>
</tr>
<tr>
<td>lower Darboux integral, 131</td>
<td></td>
</tr>
<tr>
<td>lower Darboux sum, 131</td>
<td></td>
</tr>
<tr>
<td>Maclaurin polynomial, 245</td>
<td></td>
</tr>
<tr>
<td>Maclaurin series, 247</td>
<td></td>
</tr>
<tr>
<td>magnitude, 268</td>
<td></td>
</tr>
<tr>
<td>maximal element, 11</td>
<td></td>
</tr>
<tr>
<td>maximum, 11, 99</td>
<td></td>
</tr>
</tbody>
</table>
Mean Value Theorem, 79–80, 86, 179
 extended, 215
 proof, 86–87
member (of a set), 1
midpoint Riemann sum, 135
minimal element, 11
minimum, 11, 99
MIT Integration Bee, 147, 184
monotonic, 88, 223

N, 8
natural logarithm, 32, 185
natural numbers, 8
Newton’s Law of Heating, 287
Newton’s Method, 113–117
Newton, Isaac, iii
normal distribution, 301
numbers
 algebraic, 9
 integers, 8
 positive, 7
 natural, 8
 rational, 8
 real, 9
 completeness of, 9–10
 construction of, 9–10
 transcendental, 9
one-sided limits, 45–47
open interval, 11
operator notation, 61
optimization, 96–105

p-series, 230, 232–235
parameterization, 259
parametric curve, 259–266
 astroid, 265–267
 circle, 259–260
 cycloid, 261–265, 267
 hypocycloid, 267
 length, 265, 278
 line, 260–261
 polar curve, 271
 speed, 264–265
 tangent line, 262–264
parametric function, 259
partial fractions, 161–162
partial sum, 226, 227
partition, 130
period, 24
periodic, 24
polar coordinates, 267–276
Archimedes spiral, 277
 area, 274–276
 argument, 268
 cardioid, 275–277
 circle, 269
 conversion to/from rectangular, 268
 curves, 269–271
 epicycloid, 277
 limaçon, 273, 276
 line, 273, 277
 magnitude, 268
 rose, 269–270, 278
 area, 275
 tangent line, 271–273
 positive integers, 7
power series, 247–255
 convergence, 249–251
 radius of convergence, 249–251
preimage, 15
probability density function, 301
Product Rule, 69
 differentiation, 68–69
 integration, 153
proof by contradiction, 9
proper subset, 3
Putnam, see William Lowell Putnam Mathematical Competition
pyramid, 169–170

Q, 8
Q, 9
quadratic approximation, 241–243
Quotient Rule, 69, 71

R, 9
Racetrack Theorem, 123
radians, 20
radius of convergence, 249–251
range, 13
rate of change, 90, 110
Ratio Test, 236–237
 Taylor series, 250–251
rational function, 193–195, 198–199
 series, 236
rational numbers, 8
real numbers, 9
 construction of, 9–10
real part, 35
real-valued, 13
rectangular coordinates, 268
recursive, 221
recursive formula, 221
INDEX

related rates, 117–122
relative maximum, 100
relative minimum, 100
resources, vi
Riemann Hypothesis, 235
Riemann sum, 134–135
Riemann zeta function, 235
right Riemann sum, 135
Rolle’s Theorem, 77–79
Root Test, 238
rose, 269–270, 278
area, 275
Rule of Seventy-two, 124
Russell’s paradox, 34

secant, 24
secant line, 57, 58
second derivative, 77, 91
Second Derivative Test, 101
second-order, 243
separable, 283
separation of variables, 282–285
sequence, 220–225
bounded, 222–225
converge, 221–225
decreasing, 222–224
diverge, 221–225
Fibonacci, 221
geometric, see geometric sequence
increasing, 222–224
index, 220
limit, 222
monotonic, 222–224
recursive definition, 221
series, 226–255
absolute convergence, 238–241
alternating, 238–241
alternating harmonic, 239
Alternating Series Test, 239–240
conditionally converge, 240–241
converge, 227, 229–241
diverge, 227
Divergence Test, 230
geometric, 226–229
harmonic, 230–231
Integral Test, 233–234, 237
Limit Comparison Test, 235–237
Maclaurin, 247, see also Taylor series
p-series, 230, 232–235
partial sum, 226, 227
power, see power series
Ratio Test, 236–237
rational functions, 236
Root Test, 238
Series Comparison Test, 231–232
sum, 226
Taylor, see Taylor series
telegraphing, 229
Series Comparison Test, 231–232
set, 1–7
cardinality, 2
difference, 6, 7
disjoint, 6
distributive law, 6
element, 1
empty, 2, 4
finite, 1
infinite, 1
intersection, 5
member, 1
Russell’s paradox, 34
subset, 2
proper, 3
superset, 3
symmetric difference, 33
union, 4
set difference, 6, 7
sign graph, 90
Simpson’s Rule, 181–182, 188–190
sin⁻¹, see inverse sine
sine, 20–24
angle-addition formula, 26
angle-subtraction formula, 26
derivative of, 69–70
domain and range of, 23
double-angle formula, 27
half-angle formula, 29
hyperbolic, 34
integral, 146–147
inverse, see inverse sine
period of, 24, 26
Taylor series, 251–252
sinh, 34
slicing, 170–171
slope field, 280–282
Snell’s Law, 124
solid of revolution, 171–173
sphere, 171
4-dimensional, 185
square wave, 302
Squeeze Theorem, 44, 48
strictly decreasing, 30, 89, 90, 223
strictly increasing, 89, 90, 223
strictly monotonic, 89
INDEX

subset, 2
 proper, 3
warning about notation, 3
substitution method, 157–161
sum, 226, 227
superset, 3
supremum, 10, 223
symmetric difference, 33
tan\(^{-1}\), see inverse tangent
tangent, 20
 angle-addition formula, 29
derivative of, 70
domain and range of, 23
double-angle formula, 29
half-angle formula, 29
inverse, see inverse tangent
period of, 26
tangent line, 57–60, 263
 approximation using, 108–113
definition, 60
 in polar coordinates, 271–273
to parabola, 57–58
to parametric curve, 262–264
tangent line approximation, 108–113, 241
 error, 110–111, 113, 124
 Newton’s Method, 113–117
Taylor polynomial, 241–247
 error, 245–247
Taylor series, 247–255
 differentiation, 254–255
 exponential, 248–249
 logarithm, 252–254
 radius of convergence, 249–251
 Ratio Test, 250–251
 trigonometric, 251–252, 255
telescoping, 136, 229
torus, 178
transcendental number, 9
Trapezoid Rule, 180–181
triangle
 30-60-90, 21
 45-45-90, 21
trig substitution, 157–160
union, 4
unit circle, 22
upper area, 131
upper bound, 9
upper Darboux integral, 131
upper Darboux sum, 131
velocity, 106

along parametric curve, 264–265
vertical asymptote, 198–199
Vertical Line Test, 17, 19
volume, 169–173
 4-dimensional sphere, 185
 by slicing, 170–171
cylindrical shell method, 172
 pyramid, 169–170
 solid of revolution, 171–173
 sphere, 171
torus, 178

whole numbers, 8
William Lowell Putnam Mathematical Competition, iv
Wolfram|Alpha, vii

Z, 8