EXAMPLE

What is 11×11?

We already know $10 \times 10 = 100$.

To get from a 10×10 square to an 11×11 square, we just add 10 squares on the side and 11 squares on the top:

$$11 \times 11 = (10 \times 10) + (10 + 11) = 100 + 21 = 121.$$

PRACTICE

34. Now that we know $11 \times 11 = 121$, what is 12×12?

35. 13×13

36. 14×14

37. How much larger is 15 squared than 14 squared?
To get from a 20×20 square to a 19×19 square, we remove a row on top and a column on the side. To find 19×19, we subtract 20 and 19 from 400.

Subtracting 20 and 19 is the same as subtracting 39:
19×19 = (20×20) − 20 − 19 = 400 − 39 = 361.

PRACTICE

38. Now that we know 19×19 = 361, what is 18×18?

39. What is (18×18) − (17×17)?

40. What is (93×93) − (92×92)?
PRACTICE

Complete these sequences of perfect squares.

41. 200 \times 200 = \underline{\hspace{2cm}}
 201 \times 201 = \underline{\hspace{2cm}}
 202 \times 202 = \underline{\hspace{2cm}}

42. 35 \times 35 = \underline{\hspace{2cm}}
 36 \times 36 = \underline{\hspace{2cm}}
 37 \times 37 = \underline{\hspace{2cm}}

43. 50 \times 50 = \underline{\hspace{2cm}}
 49 \times 49 = \underline{\hspace{2cm}}
 48 \times 48 = \underline{\hspace{2cm}}

44. 25 \times 25 = \underline{\hspace{2cm}}
 24 \times 24 = \underline{\hspace{2cm}}
 23 \times 23 = \underline{\hspace{2cm}}

45. 29 \times 29 = \underline{\hspace{2cm}}
 30 \times 30 = \underline{\hspace{2cm}}
 31 \times 31 = \underline{\hspace{2cm}}

46. 39 \times 39 = \underline{\hspace{2cm}}
 40 \times 40 = \underline{\hspace{2cm}}
 41 \times 41 = \underline{\hspace{2cm}}