
Chapter 1

Logarithms

As we mentioned in the BIG PICTURE in Volume 1, logarithms were originally devised to turn
multiplication and division problems into addition and subtraction ones. Let’s take a closer look at
how this works.

Suppose we are asked to find (1234)(5678). Normal multiplication would be quite tedious.
Instead, we note that for some x and y, we can write

10x = 1234 and 10y = 5678,

so that
log 1234 = x and log 5678 = y.

Hence, (1234)(5678) = 10x10y = 10x+y. Taking logarithms of this last relation (remember that a
logarithm with no base indicated is assumed to be base 10), we have

log(10x10y) = log(10x+y) = x + y = log 10x + log 10y.

In other words, log(1234)(5678) = log 1234 + log 5678. Neat! The logarithm of a product of two
numbers is the sum of the logarithms of the two numbers.

Think about why this must be so. Recall that the value of a logarithm is an exponent. We add
exponents when we multiply two numbers with the same base. As logarithms are these exponents
(x and y above), their sum must be the exponent of the product (log(1234)(5678) = x + y above).

Now to find the product, we merely look up log 1234 and log 5678 in logarithm tables, find the
sum of the two values, then find the number z from the tables such that log z = log 1234 + log 5678.
If you try this, you may find that your logarithm table only goes from 1 to 10. How can you find
log 1234? Use scientific notation, so that

log 1234 = log(1.234)(103) = log(1.234) + log(103) = 3 + log 1.234.

This relationship between multiplication and addition is not the only useful property of loga-
rithms. Using the same logic as above, division becomes subtraction:

log
1234
5678

= log 1234 � log 5678,

and exponentiation becomes multiplication:

log 12345678 = 5678 log 1234.

/ 3 .

Excerpt from "Art of Problem Solving Volume 2: and Beyond" ©2013 AoPS Inc. 
www.artofproblemsolving.com

Copyrighted Material



4 . CHAPTER 1. LOGARITHMS

These are by no means proofs, nor are these manipulations confined to base 10 logarithms. In the
following pages, we’ll formalize these rules and introduce a few more, as well as show you how to
prove them.

Properties of Logarithms

1. loga bn = n loga b

2. loga b + loga c = loga bc

3. loga b � loga c = loga b/c

4. loga b logc d = loga d logc b

5.
loga b
loga c

= logc b

6. logan bn = loga b

WARNING: Note that in Properties 2, 3, and 5, the bases of the logarithms added, subtracted, or
divided are the same. This is very important to understand; we can’t simplify log2 x2 + log3 y3 with
Property 2 for the same reason we can’t add exponents to evaluate the product 2233, as we would
for 2223.

You should try to prove these properties on your own, as the proofs are fairly simple. Some are
proven on page 5, and the proofs of the others are left as exercises.

EXAMPLE 1-1 Evaluate each of the following in terms of x and y given x = log2 3 and y = log2 5.

i. log2 15
Solution: Since 15 = 3(5) we think of Property 2:

log2 15 = log2 3(5) = log2 3 + log2 5 = x + y.

ii. log2(7.5)
Solution: Since we already know log2 15, we note that 7.5 = 15/2 and think of Property 3. This is

a bit tricky, but remember that in addition to log2 3 and log2 5, we also know log2 2 = 1:

log2(7.5) = log2(15/2) = log2 15 � log2 2 = x + y � 1.

iii. log3 2
Solution: Since we have a di↵erent base in this than in the given quantities x and y, we look for a

property which allows us to change the base. Thus, we use Property 5:

log3 2 =
log2 2
log2 3

=
1
x
.

In general, it is always true that logw z = 1/ logz w. (Can you prove it?) Remember this; you’ll
probably see it again.
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the ART of PROBLEM SOLVING: Volume 2 / 5

iv. log3 15
Solution: First, 15 = 3(5), and we know log3 3, so we use Property 2 to get log3 15 = log3 3+ log3 5 =

1 + log3 5. Now we must find a logarithm with base 3, but we only know base 2 logarithms. This
leads us to Property 5:

log3 15 = 1 + log3 5 = 1 +
log2 5
log2 3

= 1 +
y
x
.

v. log4 9
Solution: Our base is the square of the base we are given in our information, so we look to Property

6. When working problems, always try to manipulate the bases so they are the same, or as close as
possible, throughout the problem. When working with various powers of the same number, like
2 and 4, use Property 6 like this:

log4 9 = log22 32 = log2 3 = x.

vi. log5 6
Solution: Seeing a di↵erent base that is not a power of 2, we look to Property 5. Noting that 6=2(3),

we also apply Property 2:

log5 6 =
log2 6
log2 5

=
log2 3 + log2 2

y
=

x + 1
y
.

We’ll now prove three of the six properties; the proofs of the other three are left as exercises. The
first step for the proofs, since we can’t do anything with the expressions as they are written, is to
write the logarithms in exponential notation. Thus, we let

x = loga b, y = loga c, and z = logb c,

from which we have
ax = b, ay = c, and bz = c.

These relationships will be used in the first two proofs below.

EXAMPLE 1-2 Prove Properties 1, 2, and 4.

i. Property 1: loga bn = n loga b.
Proof: Let w = loga bn. We want to show that w = n loga b = nx. Make sure you understand why

this will complete the proof. Putting our expression for w in exponential notation, we have aw = bn.
Since ax = b, we find aw = bn = (ax)n = axn, so xn = w. Thus, n loga b = loga bn.

ii. Property 2: loga b + loga c = loga bc.
Proof: We wish to show that loga bc = x + y. Since ax = b and ay = c, we can get the quantity x + y

by multiplying ax and ay: axay = ax+y = bc. Putting this last equality in logarithmic notation gives
us loga bc = x + y = loga b + loga c. (Notice how this proof is similar to our discussion of evaluating
log(1234)(5678).)

iii. Property 4: loga b logc d = loga d logc b .
Proof: We let

x = loga b, y = logc d, w = loga d, and z = logc b.

Excerpt from "Art of Problem Solving Volume 2: and Beyond" ©2013 AoPS Inc. 
www.artofproblemsolving.com

Copyrighted Material



6 . CHAPTER 1. LOGARITHMS

We wish to show that xy = wz. As before, we write the above logarithmic equations exponentially.
We find

b = ax = cz d = aw = cy,

a = c(z/x) a = c(y/w),

c(z/x) = c(y/w).

Thus we have z
x
=

y
w
,

from which we have the desired xy = wz.
Using this relation we can show that loga b logb c = loga c, a frequently occurring identity

sometimes called the chain rule for logarithms.

It is important that you realize that these proofs are not just pulled out of thin air. They involve
methods that you should learn, namely, the practice of changing logarithmic notation to exponential
notation and manipulating the exponential expressions. Make sure you understand this method
before proceeding to the exercises. After writing logarithmic expressions in exponential notation,
ask yourself what you wish to prove in terms of the exponents (x, y, etc. above). Then, manipulate
the exponential equations to complete the proof.

EXERCISE 1-1 Prove Properties 3, 5, and 6 without using Properties 1, 2, and 4.

EXERCISE 1-2 Prove the chain rule for logarithms using Property 4.

WARNING: Don’t overlook the fact that the base and the argument of all logarithms must
be positive, for sometimes devious, or careless, test writers will create problems in which some
seemingly correct solutions violate one of these rules.

EXAMPLE 1-3 Find all x such that log6 (x + 2) + log6 (x + 3) = 1.

Solution: Seeing the sum of two logarithms with the same base, we think of Property 2, which
yields

log6 (x + 2) + log6 (x + 3) = log6 (x2 + 5x + 6) = 1.

Putting this equation in exponential notation gives x2 + 5x + 6 = 6, or x2 + 5x = 0, so our solutions
are x = �5 and x = 0. You may be tempted to stop here and claim that these are both valid solutions,
but your last step in all problems involving logarithms must be checking that each solution makes
the argument and the base of all logarithms positive. In the given problem the arguments of the
initial logarithms are negative when x = �5, so this is not a valid solution. The only valid solution
is x = 0.

EXAMPLE 1-4 Find the sum

log
1
2
+ log

2
3
+ log

3
4
+ · · · + log

99
100
.
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the ART of PROBLEM SOLVING: Volume 2 / 7

Solution: Seeing the sum of logarithms we think of log x+ log y = log xy. Calling our given sum
S, this identity gives

S = log
1
2
· 2

3
· 3

4
· · · · · 97

98
· 98

99
· 99

100
= log

1
100
= log 10�2 = �2.

Notice that in the product every number from 2 to 99 appears once in the numerator and once in the
denominator, so they all cancel.

EXERCISE 1-3 Find log3 10 and log3 1.2 in terms of x = log3 4 and y = log5 3.

EXERCISE 1-4 I want to use my calculator to evaluate log2 3, but my calculator only does logarithms
in base 10. Should I go find a better calculator, or should I be able to find a way to make my calculator
tell me log2 3?

EXERCISE 1-5 Show that xlogx y = y.

Problems to Solve for Chapter 1

1. Evaluate the product (log2 3)(log3 4)(log4 5)(log5 6)(log6 7)(log7 8).

2. If log 36 = a and log 125 = b, express log(1/12) in terms of a and b. (MA⇥ 1992)

3. In how many points do the graphs of y = 2 log x and y = log 2x intersect? (AHSME 1961)

4. Find all the solutions of

xlog x =
x3

100
.

(AHSME 1962)

5. If a > 1, b > 1, and p =
logb(logb a)

logb a
, then find ap in simplest form. (AHSME 1982)

6. If one uses only the information 103 = 1000, 104 = 10000, 210 = 1024, 211 = 2048, 212 = 4096,
213 = 8192, what are the largest a and smallest b such that one can prove a < log10 2 < b? (AHSME 1967)

7. For all positive numbers x , 1, simplify

1
log3 x

+
1

log4 x
+

1
log5 x

.

(AHSME 1978)

8. Given that log10 2 ⇡ 0.3010, how many digits are in 544? (MA⇥ 1991)

9. If log8 3 = P and log3 5 = Q, express log10 5 in terms of P and Q. (MA⇥ 1990)

10. Suppose that p and q are positive numbers for which

log9 p = log12 q = log16(p + q).

What is the value of q/p? (AHSME 1988)

Excerpt from "Art of Problem Solving Volume 2: and Beyond" ©2013 AoPS Inc. 
www.artofproblemsolving.com

Copyrighted Material



8 . CHAPTER 1. LOGARITHMS

11. Given that log4n 40
p

3 = log3n 45, find n3. (MA⇥ 1991)

12. Suppose a and b are positive numbers for which

log9 a = log15 b = log25(a + 2b).

What is the value of b/a? (MA⇥ 1992)

13. If 60a = 3 and 60b = 5, then find 12[(1�a�b)/2(1�b)]. (AHSME 1983)
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the BIG PICTURE

One area in which logarithms play a surprisingly large role is music. Musical sound is
created by something vibrating—a string on a violin, a column of air in a flute. The rate of
vibration translates to a pitch; the faster the vibration, the higher the pitch. For instance, top
C on a flute is 2048 Hz (Hz, or Hertz, means “cycles per second,” so this is 2048 vibrations per
second), a violin’s low G is 192 Hz, and bottom A on a piano is 27.5 Hz.

Notes played together either “sound good” or they don’t. This sounding good corresponds
to the frequency of one tone being a nice multiple of another. Two tones an octave apart have
frequencies di↵ering by a factor of two, like middle C (256 Hz) and the next C up (512 Hz); two
tones a major fifth apart have frequencies in the ratio 3/2, as C (256) and the next G up (384).
On the other hand, tones with nasty frequency ratios (say 31/17) sound displeasing, in part
because the ear hears not only the two frequencies, but an artificial beat frequency resulting
from the times when the two vibrations are in sync.

Scales were originally formed on the basis of frequency ratios described, but such scales
were found to be lacking. A scale in which every note was the right frequency multiple of C
would no longer work when A]was the central note. The resolution of this problem came with
the discovery of even tempering in the early 1700’s, in which the octave was divided up into
12 pieces such that each frequency was the right multiple of the last. To see how this works,
let the octave go from frequency F to 2F. For some multiplier m, the scale would be F, Fm, Fm2,
Fm3, · · · , Fm12 = 2F. Solving this last equation, we find that the multiplier is 21/12. Why is this
scale special? Suppose we wanted to start four notes up, at Fm3; the scale would then be Fm3,
Fm4, Fm5, . . . , all notes in the original scale. The scale works in any key.

We can find out about what note a tone at 1.5F is by solving 1.5F = 2k/12F for k as k =
12 log2 1.5 ⇡ 7. Thus our note is seven notes up, so it’s a G.

Even with an even-tempered scale, we’d still like to get, as closely as possible, nice frequency
ratios; otherwise our mathematically perfect scale will contain no worthwhile harmonies. But
it does. For example, we found above that the tone 1.5F = 3F/2 is almost exactly seven notes
up the scale. Check for yourself where other notes which harmonize well with F, like 4F/3 or
5F/4, end up in the new scale; it turns out the new scale does very well musically as well as
mathematically. J. S. Bach proved this explicitly in his Well-Tempered Clavier, which contained
pieces in every major and minor key.
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