

We would like to thank all our collaborators in the Granuloma Rubella Cutaneous Research Working Group!

- Northwestern:
 - Joan Guitart, Cuong Nguyen, Pedram Gerami, Jeffrey Zhao, Shantel Olivares, Nathaniel Lampley, Anastasiya Boutko
- Yale:
 - o William Damsky, Caroline Nelson, Brian Wei
- BWH:
 - o Sotonye Imadojemu, Megan Noe
- UW Madison:
 - o Bridget Shields, Beth Drolet
- UPenn
 - Jina Chung, Misha Rosenbach, Alexandra Coromilas, Katherine Lattanzio, Juliana Berk-Krauss

- University of Iowa:
 - o Brian Swick
- OHSU:
 - o Kevin White, Gina Calco, Claire Turina
- Mayo:
 - Olayemi Sokumbi, Aaron Mangold, Meera Patel, Caitlin Brumfiel, Kevin Severson, Puneet Bhullar, Blake Boudreaux, Jacob Kechter, Angelina Hwang
- · University of Florida:
 - Kiran Motaparthi, Macartney Welborn, Emma Albrecht

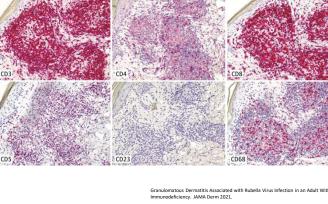
Background

- Rubella Virus (RuV) declared eradicated from the United States in 2004
- Vaccine-derived rubella virus related to the vaccine strain RA27/3: immunodeficiencyrelated vaccine-derived rubella viruses (iVDRV)
- Wild-type RuV has also been reported within granulomas
- RuV cutaneous granulomatous disease (RuV-CGD) occurs in patients with inborn errors of immunity (IEI) and immunocompetent adults

RuV Granulomatous Inflammation in Inborn Errors of Immunity

Inborn Errors of Immunity (Defective T-cell / NK-cell cytotoxic function)

Impaired clearance of RuV → Persistent viral antigen within macrophages & neutrophils


Chronic and activation of lymphocytes

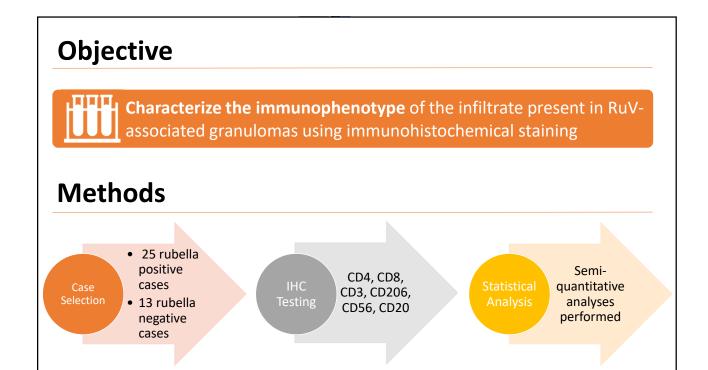
Granulomatous driven)

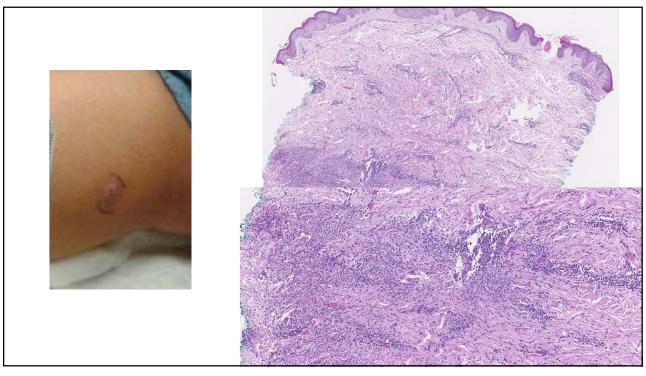
Rubella Virus Infected Macrophages and Neutrophils Define Patterns of Granulomatous Inflammation in Inborn and Acquired Errors of Immunity. Frontiers Immunology 2021.

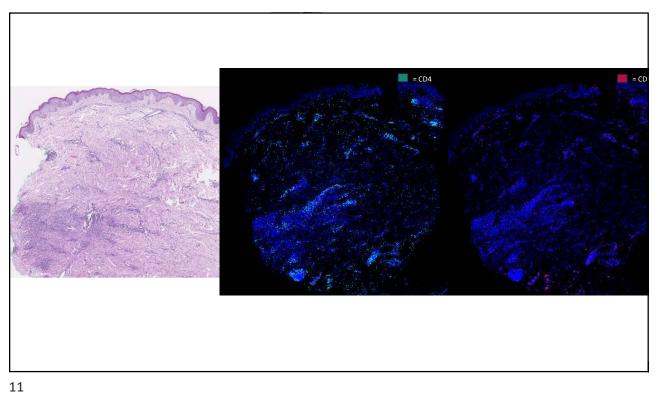
Histopathologic and Immunohistochemical Features of Granulomas in Inborn Errors of Immunity

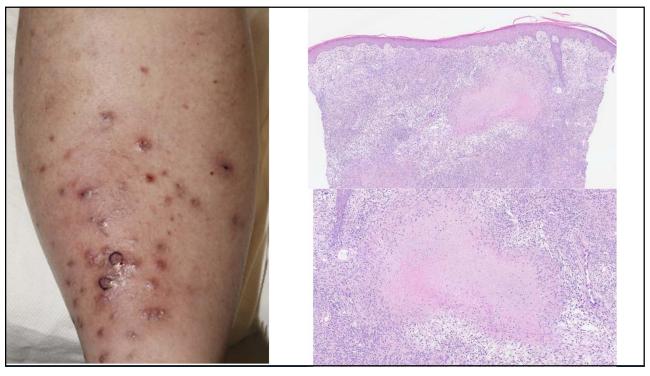
	Diagnosis	Histo- pathology	CD4+/ CD8+ ratio	CD4+ (cells/μl) in PB	+ ratio in PB
atient 1	CID	Necrotizing	1.14	160	1.33
atient 2	ALPS	Non- necrotizing	0.44	205	0.5
atient 3	AT	Necrotizing	0.28	440	1.91
atient 4	CVID	Necrotizing	0.12	_	_
atient 5	Sarcoidosis	Non- necrotizing	2.19	_	_
atient 6	Sarcoidosis	Non- necrotizing	2.71	_	_
atient 7	Sarcoidosis	Non- necrotizing	2.65	_	_
I					

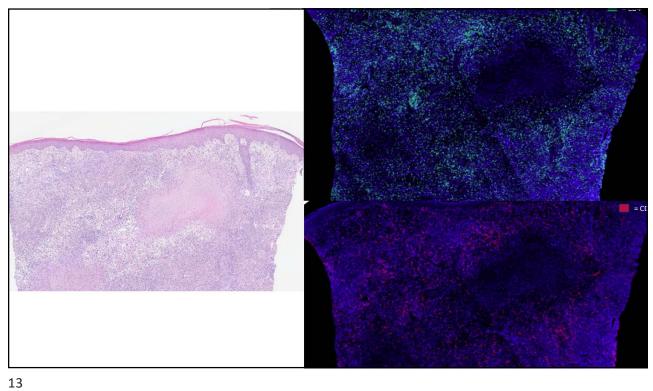
Rubella Vaccine Persistence Within Cutaneous Granulomas in Common Variable Immunodeficiency. Am J Dermatopathology 2020.

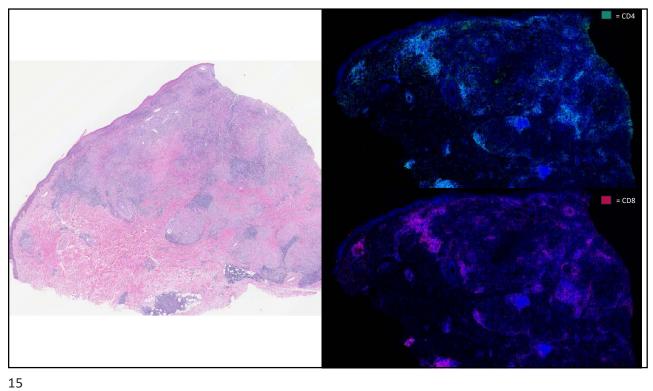

Immunohistochemical features of cutaneous granulomas in primary immunodeficiency disorders: a comparison with cutaneous sarcoidosis. JCP 2008

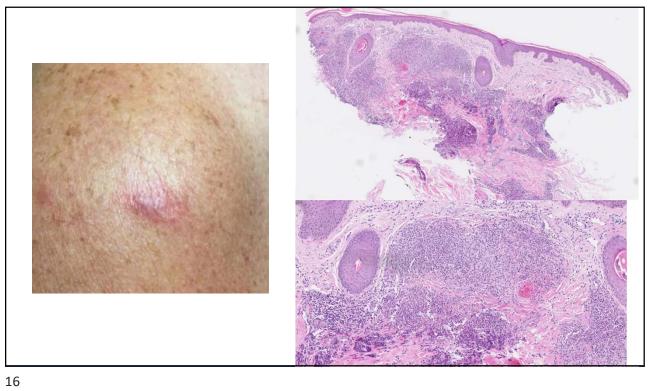

Rubella-virus cutaneous granulomas in patients with Common Variable Immune Deficiency

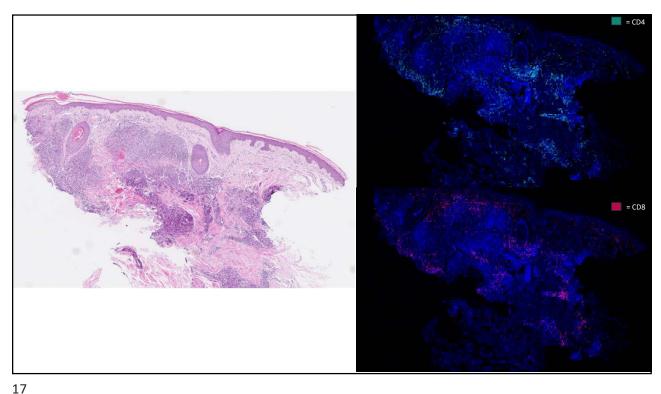

Location of granulomas	Superficial	8
Location of grandiomas	Deep	5
	Palisaded	5
Characteristics of annual areas	Sarcoidal	3
Characteristics of granulomas	Interstitial	3
	Necrobiotic	2
	Multinucleated giant cells	6
Characteristics of giant cells	Foreign body type	4
	Angulated and osteoclast-like	1
	Perigranulomatous	8
Location of associated inflammation	Perivascular	2
	Interstitial (dermal)	1
	Lymphocytes	8
Inflammatory cell	Eosinophils	2
	Plasma cells	1
Dermal fibrosis	Present	3
Deliliai librosis	Absent	5
Immunohistochomistru stoinine	Present	1
Immunohistochemistry staining	Absent	6

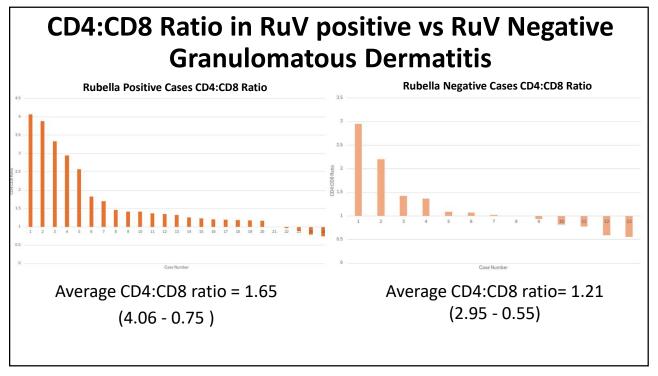

The Spectrum of Cutaneous Granulomatous Inflammation and Detection of Rubella Virus in Skin Biopsies of Patients With Common Variable Immune Deficiency, JCP 2024.

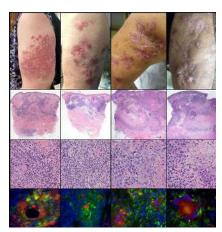

Ruv-Associated Dermatitis in Adults Without Known immunodeficiency: Prior Findings							
	Characteristic	Rubella Positive	Rubella Negative				
Primary	Tuberculoid	19 (86%)	3 (30%)				
Granulomatous	Interstitial	6 (27%)	8 (80%)				
Patterns	Palisading	8 (36%)	3 (30%)				
	Sarcoidal	0 (0%)	2 (20%)				
-	Lymphocytes, non-brisk	5% (1/22)	50% (5/10)				
	Lymphocytes, brisk	95% (21/22)	40% (4/10)				
Histopathologic	Neutrophils	91% (20/22)	0% (0/10)				
Features	Eosinophils	41% (9/22)	20% (2/10)				
-	Plasma cells	82% (18/22)	50% (5/10)				
-	Necrosis	50% (11/22)	0% (0/10)				
Consensus Study on the Histopathological Features of Rubella Virus Associated Cutaneous Granulomas. ASDP 2024	Fibroplasia	86% (19/22)	30% (3/10)				





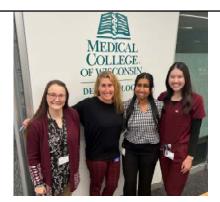






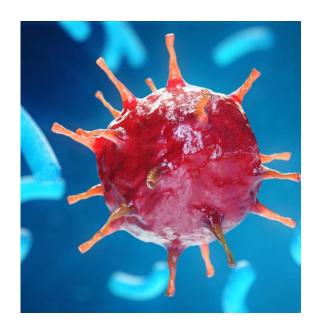
Conclusions and Next Steps

- Rubella associated granulomas can have variable immunophenotype (average CD4:CD8 ratio = 1.65; range 0.75 - 4.06)
- These findings are different compared to those previously seen in patients with inborn errors of immunity, although similar in the one CVID case
- Highlights potential pathophysiology in adults without known immunodeficiency
- Evaluation of rubella associated granulomatous dermatitis should be considered in granulomas with brisk lymphocytic infiltrate, independent of immunophenotype
- Further investigation into drivers of this association are important


19

Please reach out to us at grucrew@mcw.edu if interested in:

- Now CLIA approved test through MCW
- Additional research testing can be done with RuV positive patients



Thank You!

- Brigham & Women's Hospital
 - Megan Noe, Sotonye Imadojemu, Travis Hughes, Marjorie Archla
 - Mayo Clinic
 - Yemi Sokumbi, Aaron Mangold, Puneet Bhullar, Meera Patel, Caitlin Brumfiel, Kevin Severson, Blake Boudreaux, Jacob Kechter, Angelina Hwang
- Northwestern Medicine
 - •Joan Guitart, Cuong Nguyen, Pedram Gerami, Jeffrey W Zhao, Shantel Olivares, Nathaniel Lampley, Anastasiya Boutko, Yae Lee Kye
- Oregon Health and Science University
 - Jina Chung, Kevin White, Gina Calco, Claire Turina
- University of Pennsylvania
 - Jina Chung, Paul Haun, Alexandra Coromilas, Katherine Lattanzio, Juliana Berk-Krauss, Misha Rosenbach
- · University of Florida
 - Kiran Motaparthi, Emma Albrecht, Mary Bohannon
- University of Iowa
 - Brian Swick, John Selby, Amanda Steahr
- University of Wisconsin-Madison
- Bridget Shields, Collin Evenson, Donglin Zhang, Beth Drolet
- Yale
 - William Damsky, Caroline Nelson, Brian Wei
- CDC
- Ludmila Perelygina, Raeesa Faisthalab , Laura Yorke, Min-hsin Chen, LiJuan Hao
- MCW
 - Rachel Tao, Nathan Duncan, Alexa Ries, Jesa Landis, Karolyn Wanat

21

Questions?

References

- 2.
- 3.
- Bodemer C, Sauvage V, Mahlaoui N, et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. *Clin Microbiol Infect.* Oct 2014;20(10):0656-663. Dhossche J, Johnson L, White K, et al. Cutaneous Granulomatous Disease With Presence of Rubella Virus in Lesions. *JAMA Dermatol.* Vol 155. United States2019:859-861.

 Neven B, Pérot P, Bruneau J, et al. Cutaneous and Visceral Chronic Granulomatous Disease Triggered by a Rubella Virus Vaccine Strain in Children With Primary Immunodeficiencies. *Clin Infect Dis.* Jan 1 2017;64(1):83-86. Shields BE, Perelygina L, Samimi S, et al. Granulomatous Dermatitis Associated With Rubella Virus Infection in an Adult With Immunodeficiency. *JAMA Dermatol.* Jul 1 2021;157(7):842-847.

 Perelygina L, Plotkin S, Russo P, et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. *J Allergy Clin Immunol.* Nov 2016;138(5):1436-1439 e1411 5. 1439.e1411.
- 6.
- Leclerc-Mercier S, Moshous D, Neven B, et al. Cutaneous granulomas with primary immunodeficiency in children: a report of 17 new patients and a review of the literature. *J Eur Acad Dermatol Venereol*. Jul 2019;33(7):1412-1420. Buchbinder D, Hauck F, Albert MH, et al. Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. *J Clin Immunol*. Jan 2019;39(1):81-
- 8.
- Perelygina L, Faisthalab R, Abernathy E, et al. Rubella virus infected macrophages and neutrophils define patterns of granulomatous inflammation in inborn and acquired errors of immunity. Front Immunol. 2021;12:796065.

 Zhang D, Wanat KA, Perelygina L, et al. Cutaneous granulomas associated with rubella virus: A clinical review. *J Am Acad Dermatol*. 2024;90(1):111-121. doi:10.1016/j.jaad.2023.05.058

 Pronier C, Roger S, Besombes J, et al. Granuloma and persistent detection of wild-type rubella virus in an immunocompromised patient. *Microbiol Spectr*. 2025;13(7):e0234824. doi:10.1128/spectrum.02348-24

