

A National Empirical Attenuation Factor Study to Improve Vapor Intrusion Screening

34th Annual International Conference on Soils, Sediments, Water, and Energy March 17 – 20, 2025 San Diego, California

Matthew A. Lahvis Principal Consultant Shell Oil Products US Inc.

Robert A. Ettinger Senior Principal

Geosyntec Consultants

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

Definitions & Cautionary Note

Cautionary Note

The companies in which Shell plc directly and indirectly owns investments are separate legal entities. In this **[presentation]** "Shell", "Shell Group" and "Group" are sometimes used for convenience where references are made to Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this **[presentation]** refer to entities over which Shell plc either directly or indirectly has control. The term "joint venture", "joint operations", "joint arrangements", and "associates" may also be used to refer to a commercial arrangement in which Shell has a direct or indirect ownership interest with one or more parties. The term "Shell interest" is used for convenience to indicate the direct and/or indirect ownership interest.

Forward-Looking Statements

This **[presentation]** contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Shell. All statements of the U.S. Private Securities that care, or may be deemed to be, forward-looking statements. Forward-looking statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements concerning the financial exposure of Shell to market risks and statements expressing management's "could"; "target'; "will"; "would" and similar terms and phrases. There are a number of factors that could assumptions. These forward-looking statements included in this **(presentation)**, including (without limitation): (a) price fluctuations and phrases. There are a number of factors that could affect the future operations of Shell to market six; (b) reserves estimates; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotation and completion of such transactions; (i) periodical risks of expropriation on the energotation of the time of parteements includeing the risks of expropriation of the tares of pandemics, such as the COVID-19 (coronavirus) outbreak, regional conflicts, such as the Russia-Ukraine war, and a significant cybersecurity breach; and (n) changes in trading conditions. No assurance is provided that future evelocements included payments. All forward-looking statements include a presentation] are expressely qualified in their entirety by the cautionary statements included payments. All forward-looking statements

Shell's Net Carbon Intensity

Also, in this [presentation] we may refer to Shell's "Net Carbon Intensity" (NCI), which includes Shell's carbon emissions from the production of our energy products, our suppliers' carbon emissions in supplying energy for that production and our customers' carbon emissions associated with their use of the energy products we sell. Shell's NCI also includes the emissions are those of Shell Joc rits subsidiaries.

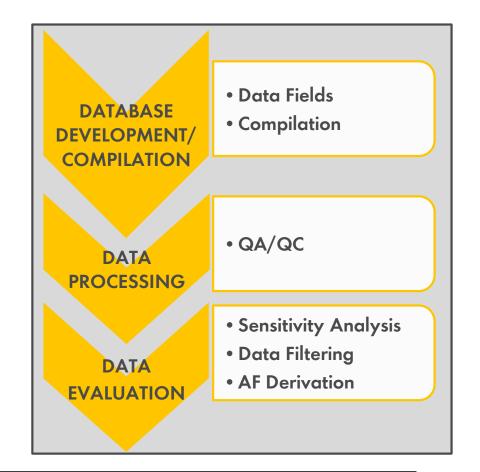
Shell's net-zero emissions target

Shell's operating plan, outlook and budgets are forecasted for a ten-year period and are updated every year. They reflect the current economic environment and what we can reasonably expect to see over the next ten years. Accordingly, they reflect our Scope 1, Scope 2 and NCI targets over the next ten years. However, Shell's operating plans cannot reflect our 2050 net-zero emissions target, as this target is currently outside our planning period. In the future, as society moves towards net-zero emissions, we expect Shell's operating plans to reflect this movement. However, if society is not net zero in 2050, as of today, there would be significant risk that Shell may not meet this target.

Forward-Looking non-GAAP measures

This **[presentation]** may contain certain forward-looking non-GAAP measures such as **[cash capital expenditure]** and **[divestments]**. We are unable to provide a reconciliation of these forward-looking non-GAAP measures to the most comparable GAAP financial measures is dependent on future events some of which are outside the control of Shell, such as oil and gas prices, interest rates and exchange rates. Moreover, estimating such GAAP measures with the required precision necessary to provide a meaningful reconciliation is extremely difficult and could not be accomplished without unreasonable effort. Non-GAAP measures in respect of future periods which cannot be reconciled to the most comparable GAAP financial measures with the accounting policies applied in Shell plc's consolidated financial statements.

The contents of websites referred to in this [presentation] do not form part of this [presentation].


We may have used certain terms, such as resources, in this [presentation] that the United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

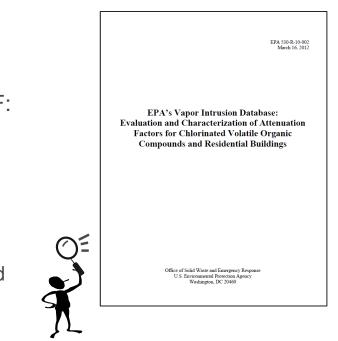
Outline

- Background
 - Motivation and context
 - Database
 - Methods for AF Derivation
- AF Sensitivity to Key Variables / Data Filtering
- AF Derivation 3 Different Methods
- Conclusions

<u>GOAL</u>: a comprehensive analysis of <u>building-specific</u> AFs to support development of technically defensible risk-based screening levels for VI

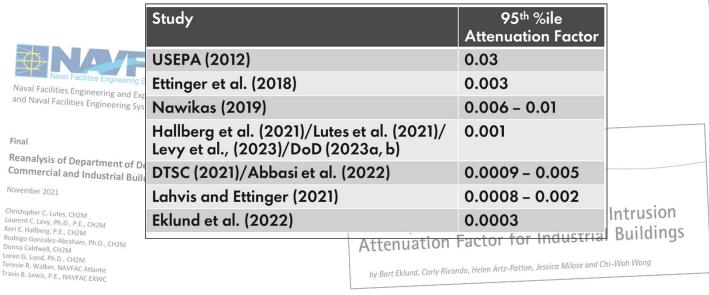
Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC


Motivation and Context (US EPA 2012 Study)

- most regulatory agencies base VI RBSLs in shallow soil-gas on USEPA's default (generic) AF = 0.03 derived from 2012 USEPA empirical study
- concerns exist over data that were ultimately used to derive the AF:
 - only single-family residences, primarily with basement construction (16 % unfinished)
 - no non-residential buildings
 - no soil-gas data
 - nearly 80 percent (342/431 indoor air (C_{IA})/subsurface vapor (C_{SOURCE}) data pairs) used came from <u>3 sites</u> subject to relatively cold winter-time temperatures
 - no rigorous evaluation of AF sensitivity to key variables
- potential biases from background (non-VI) sources were not fully resolved (Man et al., 2022)

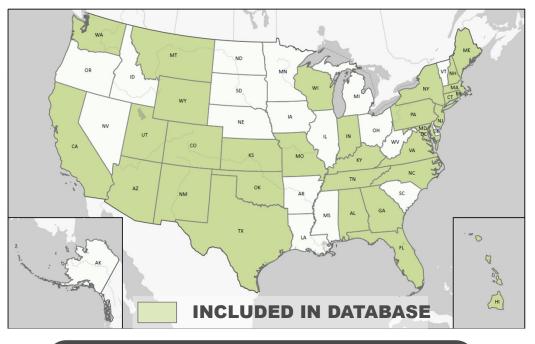
RBSLs = risk-based screening levels; AF = attenuation factor; IA = indoor air; C_{IA} = indoor air concentration; C_{SOURCE} = subsurface vapor (subslab or soil-gas) concentration


Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

Motivation and Context (Studies Post USEPA (2012))

- several "big data" empirical studies conducted since 2012 with significant differences in AFs compared to USEPA (2012) (different databases, some differences in methods)
- generally limited in geographical extent or subject to ambiguities from data pairing at buildings with multiple data pairs



Monitoring&Remediation
Improving Risk-Based Screening at Vapor Intrusion Sites in California
Arr & Weste Mina gement Aussedation
ISSNE (Print) (Online) Journal homepage: www.tandfonline.com/journals/uawm20
An alternative generic subslab soil gas-to- indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings
SettingS Keri E. Hallberg, Laurent C. Levy, Rodrigo Gonzalez-Abraham, Christopher C. Lutes, Loren G. Lund & Donna Caldwell
SUB-SLAB TO INDOOR AIR ATTENUATION FACTORS DETERMINED FROM RADON DATA
SUZIE NAWIKAS
H&P INC, CARLSBAD, CA
Monitoring&Remediation
Empirically Derived California Vapor Intrusion
Attenuation Factors
by Rafat Abbasi, William Bosan and Dan Gallagher
October 2024 5

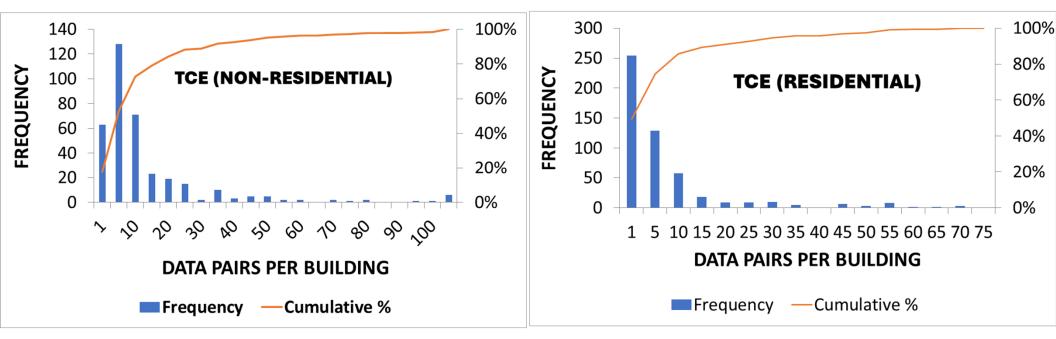
Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

National AF Study (General Database Statistics)

 AF database represents the most comprehensive and representative compilation of AFs to date

- over 26,000 vapor data pairs
- broad geographical coverage (26 states)
- database includes data on 37 chemicals from:
 - large empirical studies
 - USEPA (2012)
 - new data (11 consultancies, NCDEQ)
 - multiple variables (time lag and distance) between vapor sampling, HVAC operation, building age, etc)


Population	All Chemicals	TCE	PCE	Radon
Sites	330	143	139	157
Buildings	1,467	857	831	192
Data Pairs	26,051	8,144	6,668	277

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

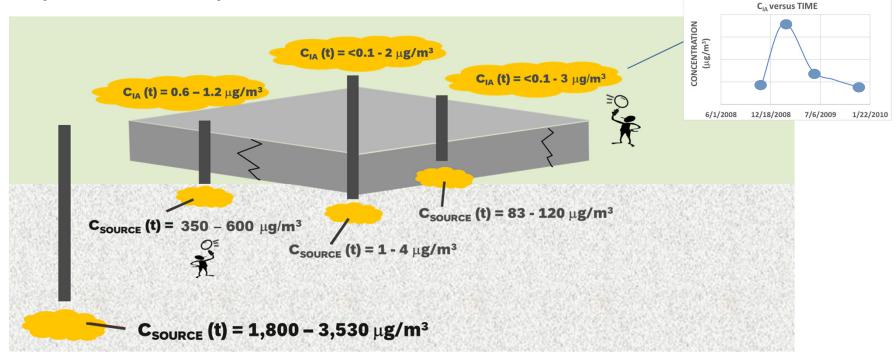
October 2024

Numerous Buildings With Multiple C_{IA} and C_{SOURCE} (Subslab and Soil Gas) Data Pairs (e.g., TCE data)

• multiple C_{IA} and C_{SOURCE} data pairs from certain buildings has the potential to:

- introduce ambiguity in AF determinations
- bias final AF determinations

Equilon Enterprises LLC

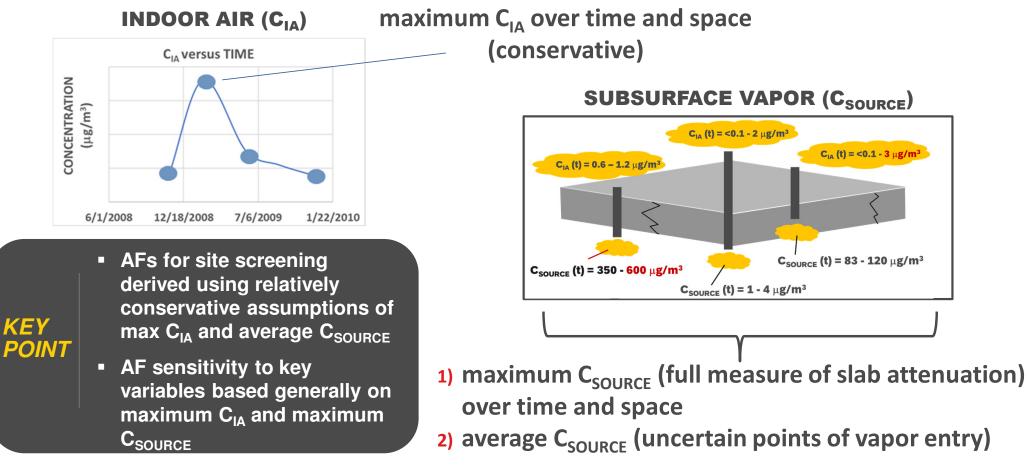

KEY

POINT

Copyrights of Equilon Enterprises LLC

October 2024

AFs Ambiguity at Buildings with Multiple Indoor air and Subsurface Data Pairs Can Be Significant (Fictional Data)


KEY
 AFs for specific buildings can vary by over an order of magnitude depending on C_{IA}
 (concentration in indoor air) and C_{SOURCE} (concentration in subsurface vapor data pairing)

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

October 2024

Development of Building-Specific AFs (C_{IA} and C_{SOURCE} Data Pairing)

Copyrights of Equilon Enterprises LLC

PCE and TCE AF Populations

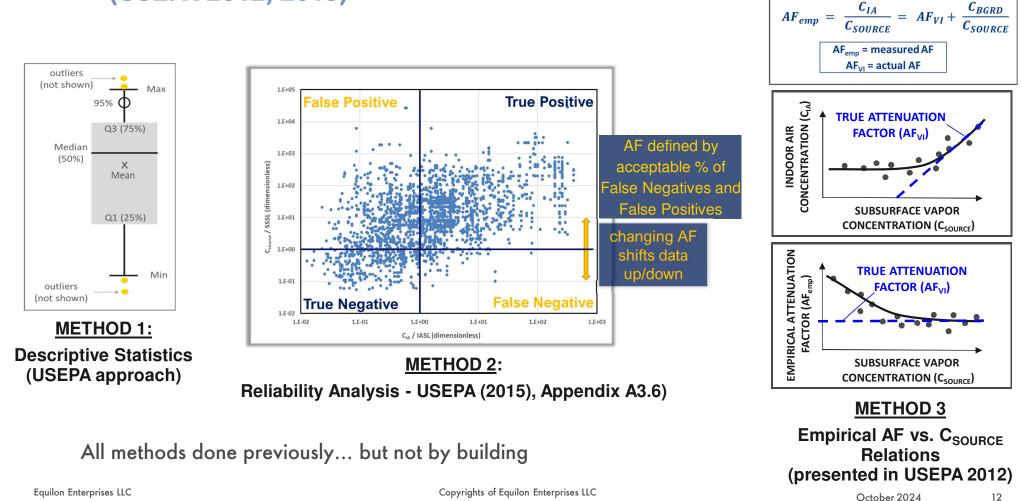
(Pre- and Post-Filtering)

Categories		PRE-FILTER	RING		POST-FILTERING			
	# of Sites	# of Buildings	# of Data Pairs	# of Sites	# of Buildings	# of Data Pairs	% of total building population pre-/post-filtering	
TCE	167	1,025	8,144	75	179	1,146	51/60	
PCE	143	999	6,668	62	120	610	49/40	
Residential	53	1,112	5,059	22	77	531	55/26	
Non-Residential	291	912	9,753	104	222	1,225	45/ 74	
Subslab	144	1,395	8,761	74	189	975	69/63	
Soil Gas	232	629	6,051	49	110	781	31/37	
Slab-On-Grade	148	1,007	10,662	127	229	1,541	54/ <u>82</u>	
Basement	25	642	2,398	15	34	147	34/12	
Crawl Space/Earthen Floor	14	227	2,424	6	15	42	12/6	
Regions 1 – 3 (more temperate)	121	1,040	11,158	109	210	1,387	51/ <u>70</u>	
Regions 4 – 7 (less temperate)	48	984	3,654	46	89	369	49/30	
Pre-1950 Construction	29	612	3,146	21	69	336	60/38	
Post-1950 Construction	74	401	4,420	41	114	929	40/62	

KEY POINT post-filtered database (137 sites, 299 buildings, 1,756 data pairs) is over 4x larger than USEPA (2012) and more representative

the 70/30 building population from Regions 1 – 3 are largely from California

Equilon Enterprises LLC

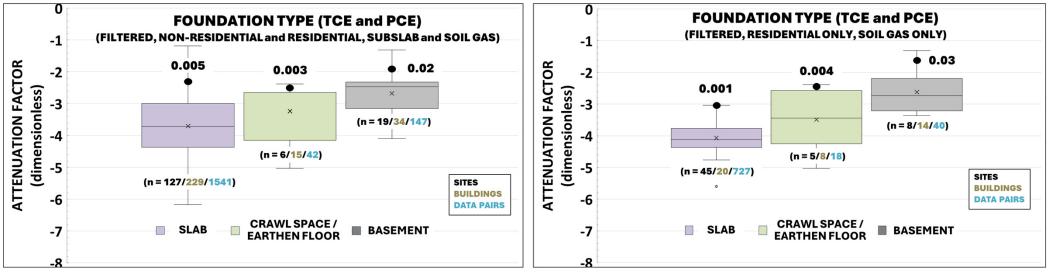

Copyrights of Equilon Enterprises LLC

National AF Database Provides Ability to More Thoroughly Evaluate AF Sensitivity to Key Variables (Opportunity to Adjust Default AF Depending on Site Conditions)

- Iand use (e.g., residential, commercial, industrial, school)
- climate (geographic) zone
- building age (pre- and post 1950)
- building size
- HVAC operation (on/off within multiple and individual buildings)
- predominant vadose zone soil type
- time between indoor air and subsurface vapor sampling (t)
- distance between subsurface and indoor air vapor sampling (x)
- soil-gas sample depth (z)
- relative source location (shallow soil, deep soil/groundwater)

	National Em	pirical VI Da	tabase_2025-8-10_Unfil	tered sta	ts () ·	Last Mod	ified: 11	n ago ∨	₽ s	earch							J.	-	0	
ile	Home	Insert P	age Layout Formul	las Da	ata Re	view V	iew A	Automate	Help	GWSE	DAT v3.20						P	Comments	s 🖻 S	Sha
Paste Clipb stoSave	_		->[11 -> A <u>U</u> -> <u>U</u> -> <u>A</u> -> Font → Undo -> (²⁴ Redo ->	<u>A</u> ~		ignment) ~ 15	General \$ ~ % 50 →00 Number x ² Superso	6 9	Forr	nditional For mat as Table Styles ¥ Styles eet Columns	~	Delete Forma Cells	• ↓ • • ♦ • Ed	liting	Sensitivity Sensitivity Cells	Add-ins	Analyze Data		
6	~	: X V	fx V SSSV Backgro	ound Scr	een									_						
	A	B	c		BI	BJ	BK	BL.	BM	BN	80	BP	BQ	BR	BS	BT	BU E	IV BW	B	×
te Inform		330 sites									QAVQC				Calculated Va					
	Site ID	* Lead Const.			Lateral offset (distanc from IA	SSSV Conc.	SSSV Analytic flag	SSSV Analytical reportin limit	SSSV Analytical detection limit	SSSV Concent on units	tracer leak	Sample QA/QC issues identified		ommervis	Alten. Fac	Sample Time Differer (Days)	Alypic Prefer QA Pathwa Iso Proser	ential 97 Short 17 Analyti	* Recept	pto
4-1 4-1		AECOM	Confidential site 1 Confidential site 1			1 85		0.22	0.5	l ugim3 1 ugim3	Yes Yes	None None	Unknown Unknown		0.001123	4 0	ND ND ND ND	PCE	CA CA	
4-1 4-1		AECOM	Confidential site 1 Confidential site 1			1 12000		77	4	3 ugim3	Yes	None	Unknown		0.00039166	7 0	ND ND ND	PCE	CN CN	
vi-1 vi-1		AECOM	Confidential site 1			1 8:		17		1 ugim3 1 ugim3	Yes	None	Unknown		0.0683544	3 0	NO NO	PCE	C/	
4-1		AECOM	Confidential site 1			1 50		0.17	0.	1 ugim3	Yes	None	Unknown		0.00		NO NO	PCE	000000000000000000000000000000000000000	
4-1 4-1		AECOM	Confidential site 1 Confidential site 1			1 0.45		0.11		0 ugim3 3 ugim3	Yes	None	Unknown Unknown		0.20408163		ND ND ND	PCE	01	
4-1		AECOM	Confidential site 1			1 5		16	0.9	9 ugim3	Yes	None	Unknown		0.00185274	5 0	NO NO	PCE	CX	
4-1 4-1		AECOM	Confidential site 1 Confidential site 1			1 0.93		0.22	0.1	5 ugim3 1 ugim3	Yes	None	Unknown		0.10752688		ND ND	TCE	CX	
4-1		AECOM	Confidential site 1			1 54000		77) ugim3	Yes	None	Unknown		7.96296E-0		NO NO	TCE	01	
4-1		AECOM	Confidential site 1			1 6.4		0.16	0.	1 ugim3	Yes	None	Unknown		0.032812	5 0	NO NO	TCE	CA	
4-1		AECOM	Confidential site 1			1 1		17		1 ugim3	Yes	None	Unknown		0.42727272		NO NO	TCE	CA	
4-1 4-1		AECOM	Confidential site 1 Confidential site 1			1 0.1		0.17		1 ugim3 2 ugim3	Yes Yes	None	Unknown Unknown		5.97222222		ND ND	TCE	CX	
4-1		AECOM	Confidential site 1			1 0.2		0.15	0.050	r ugim3	Yes	None	Unknown		0.53846753		NO NO	TCE	CA	
4-1		AECOM	Confidential site 1			1 700		16		1 ugim3	Yes	None	Unknown		0.00031429	5 0	NO NO	TCE	CA	
42		AECOM	Confidential site 2			1 34				ugim3	Yes	None	Unknown		0.04117647		NO NO	PCE	CA	
1-2 1-2		AECOM	Confidential site 2 Confidential site 2			1 670				ugim3 ugim3	Yes Yes	None	Unknown Unknown		0.00208955		ND ND ND	PCE	CA	
42		AECOM	Confidential site 2			1 50				ugim3	Yes	None	Unknown		0.00733333	1	NO NO	TCE	CA .	
42		AECOM	Confidential site 2			1 640				ugim3	Yes	None	Unknown		0.0023437	5 0	NO NO	TCE	CA	
1-2 1-2		AECOM	Confidential site 2			1 45				ugim3	Yes	None	Unknown		0.24444444		ND ND	TCE	CA	
4-2		AECOM	Confidential site 2 Confidential site 2			1 220				ugim3 ugim3	Yes	None	Unknown		0.00636363		NO NO	PCE TCE TCE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
43		AECOM	Confidential site 3		1	80 07		0.27	0.04	3 ugim3	Yes	None	None identified		0.38571429		NO NO	TCE	CA	
43		AECOM	Confidential site 3			80 20		0.34	0.08	3 ugim3	Yes	None	None identified		0.017	5 0.082638889	NO NO	PCE	CN	
43		AECOM	Confidential site 3 Confidential site 3			75 0.22 75 5.8	J	0.27		3 ug/m3 3 ug/m3	Yes	None	None identified None identified			7 0.082638889 2 0.082638889		TCE PCE	CA	
13 13		AECOM	Confidential site 3 Confidential site 3			75 5.8 65 190		0.34	0.08	3 ugim3 1 ugim3	Yes	None	None identified None identified			2 0.082638885 3 0.082638885		PCE	08	
1-3 1-3		AECOM	Confidential site 3			65 2000		17		ugim3	Yes	None	None identified			8 0.082638885		PCE	CA	
43		AECOM	Confidential site 3		1	80 790		13	0.2	Lugim3	Yes	None	None identified		0.00142105	3 0.082638885	NO NO	TCE	0 0 0 0 0	
43		AECOM	Confidential site 3		1	80 2000		17	4.	ugim3	Yes	None	None identified			8 0.082638889	NO NO	PCE	CX	
43		AECOM	Confidential site 3		1.1.1	50 0.06	1	0.27	0.048	3 ugim3	Yes	None	None identified		12	5 0.082638889	ND ND	TCE	CN	
			General Site Info		Data	Pivot T		Site-Bld										+ :		

3 Methods for AF Derivation (USEPA 2012, 2015)



AF SENSITIVITY TO KEY VARIABLES: VARIABLES WITH GREATEST EFFECT ON AF

Company name appears here

Foundation Type

RESIDENTIAL ONLY

* Crawl space AFs based on soil gas (not crawl space air)

- median AFs are nearly 10x higher for buildings with basement versus slab-on-grade foundations, potentially attributed to greater VI surface area POINT
 - similar differences in AFs are observed for residential-only buildings
 - 95th %ile AF for residential-only buildings with basements is consistent with USEPA (2012)

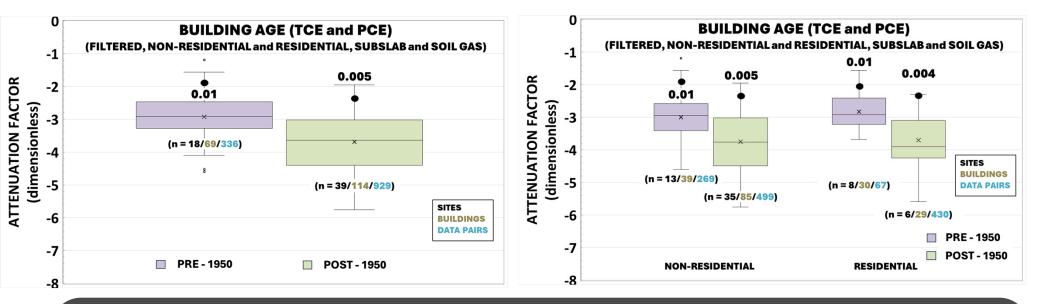
Equilon Enterprises LLC

KEY

Copyrights of Equilon Enterprises LLC

US Climate Zone

- median AFs for non-residential and residential buildings are roughly 10x higher in geographic regions of the US more prone to colder winter seasons and less temperate climates
- the effect is largely independent of building type and foundation type, given that only 5 of the 42 non-residential buildings in Regions 4 – 7 have basement foundations


Equilon Enterprises LLC

POINT

KEY

Copyrights of Equilon Enterprises LLC

Building Age

median AFs are 8 – 10x higher for buildings built prior to 1950 than after 1950

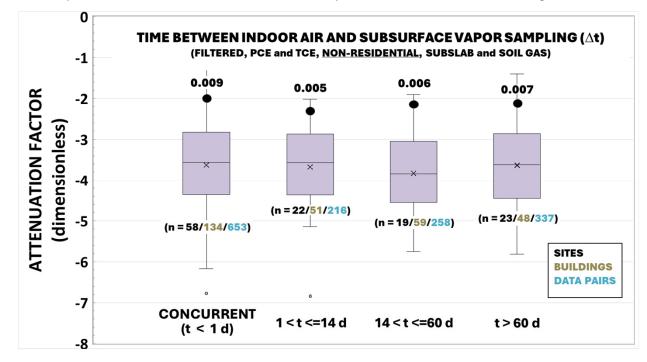
 similar relations are observed for both non-residential and residential buildings implying the effect is related to building construction and loss of slab integrity

 the median AF for buildings constructed in US Climate Region 3 constructed after 1950 is slightly less than those in other Regions implying that earthquakes have not had a significant effect on slab integrity for buildings in California (may be due to significant improvements to Uniform Building Code from 1959 through 1997)

Equilon Enterprises LLC

KEY POINT

Copyrights of Equilon Enterprises LLC


AF SENSITIVITY TO KEY VARIABLES: VARIABLES WITH LESSER EFFECT ON AF

Company name appears here

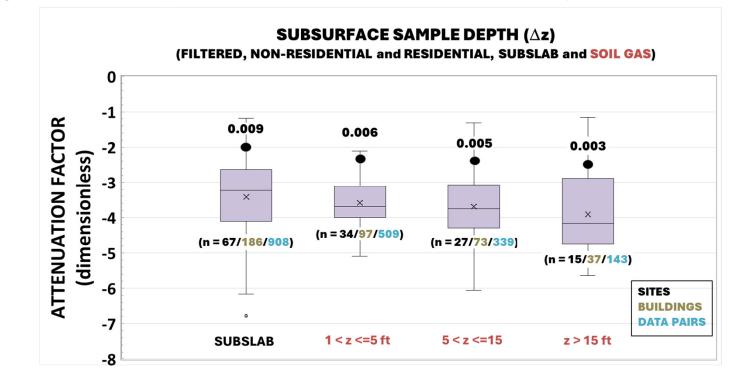
October 2024

Time Between Indoor Air and Subsurface Samples (Δt)

(TCE and PCE, Subslab and Soil Gas, Non-Residential)

 median AFs do not vary significantly with increasing time (t) between C_{IA} and C_{SOURCE} sampling, which implies that C_{IA} concentrations remain relatively constant over time in the absence of any source remediation or changes to HVAC

Equilon Enterprises LLC

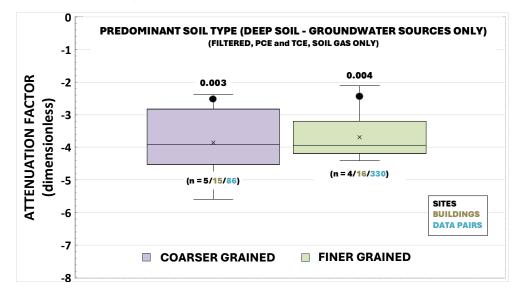

KEY

POINT

Copyrights of Equilon Enterprises LLC

Subsurface Sample Depth (Az)

(TCE and PCE, Non-Residential and Residential, Subslab and Soil Gas)


KEY POINT median AFs are 3x higher for subslab than soil-gas collected <15 ft bgs, which implies additional attenuation caused by vapor transport through the vadose zone

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

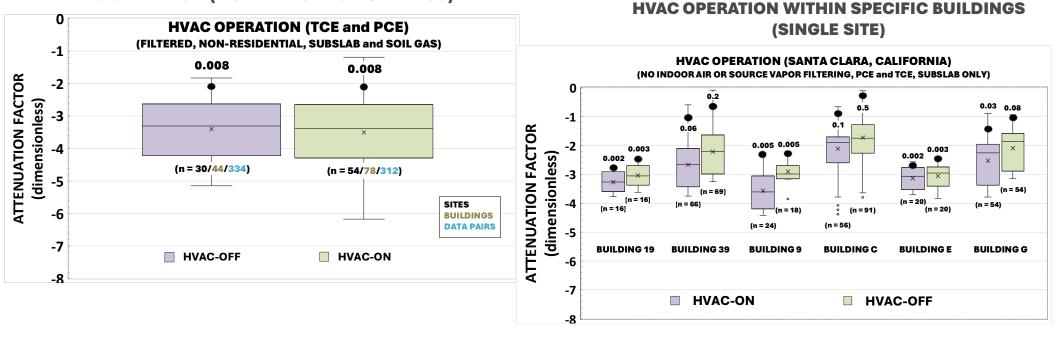
Predominant Soil Type

(Soil Gas Samples, Deep Soil/Groundwater Sources)

- median AFs are equivalent for vadose zones consisting of predominantly coarse- or fine-grained soil based on soil gas data from sites with deep soil / groundwater sources
 - Iack of AF sensitivity to soil-type likely results from a high number of sites with mixed soil types
 - the lesser variance in AFs observed at sites with finer-grained vadose zone systems may indicate less spatiotemporal variability in C_{SOURCE} concentrations

Equilon Enterprises LLC

KEY


POINT

Copyrights of Equilon Enterprises LLC

AF Sensitivity to HVAC Operation

(All sites vs. Individual Site)

HVAC OPERATION (MULTIPLE SITES/BUILDINGS)

 HVAC operation appears to have a negligible effect on the AF when evaluated across multiple sites/buildings, yet median AFs can vary up to 4x in individual buildings

Equilon Enterprises LLC

KEY

POINT

Copyrights of Equilon Enterprises LLC

AF Sensitivity to Key Variables

Greatest (5-10x) Impact	Moderate (3-4x) Impact	Lowest (1-2x) Impact
Foundation type	HVAC Operation (commercial buildings)	Lateral separation between C_{IA} and C_{source} sampling (Δx)
US Climate Zone	Sample Type (subslab vs. soil-gas)	Time difference between C_{IA} and C_{source} sampling (Δt)
Building age		Chemical type
		Predominant soil type
		C _{SOURCE} assumption (maximum vs. average)

Understanding the sensitivity to key variables helps 1) understand the need for different default AFs based on site conditions, 2) sites that are more prone to VI, and 3) establish best practice for data collection

Equilon Enterprises LLC

KEY

POINT

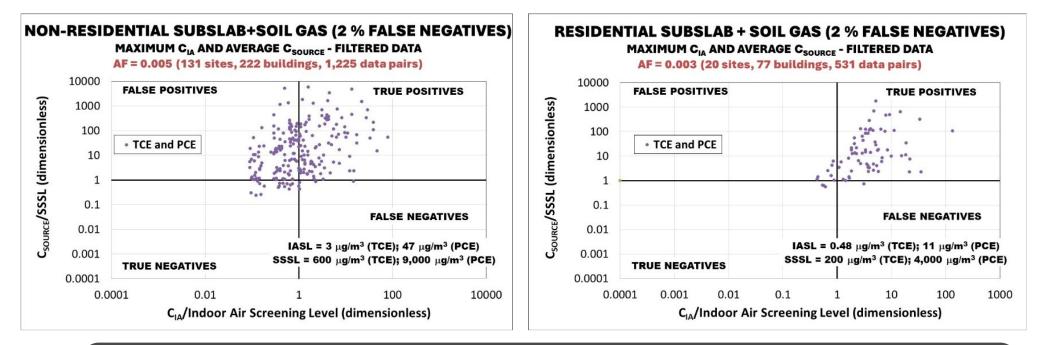
Copyrights of Equilon Enterprises LLC

AF DETERMINATIONS (Methods 1, 2 and 3)

Company name appears here

October 2024

Method 1: 95th Percentiles

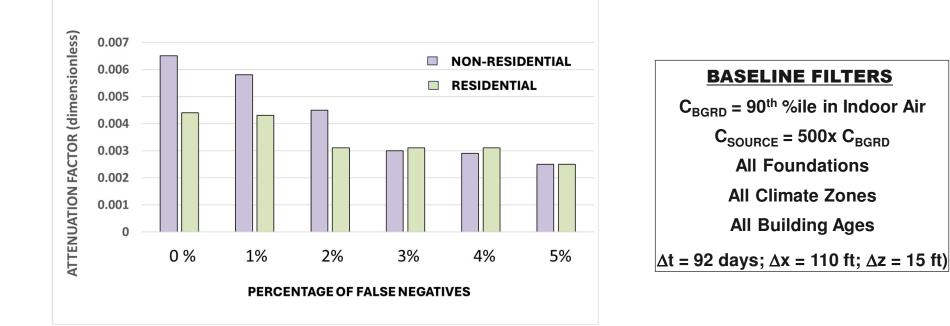

		Climate	Zone 1 – 3	Climate Zone 4 - 7			
Attenuation	Factor	95 th Percentile	Median	95 th Percentile	Median		
Residential	Subslab	Insuffici	ent Data	0.01 0.002			
Residentiat	Soil Gas	0.003	0.0001	Insuffici	ent Data		
Non-	Subslab	0.008	0.0002	0.01	0.002		
Residential	Soil Gas	0.005	0.0003	Insuffici	ent Data		

* Based on Average C_{SOURCE}

Figure 100 Sth % ile AFs are 3 – 10x less than USEPA AF = 0.03, depending on Climate Zone
 AFs with insufficient data could be adjusted based on AF ratios in other Climate Zones
 most sites will exhibit AFs similar to median values

Method 2: Reliability Analysis (EXAMPLE)

(Filtered TCE Database - Assuming 2% False Negatives)

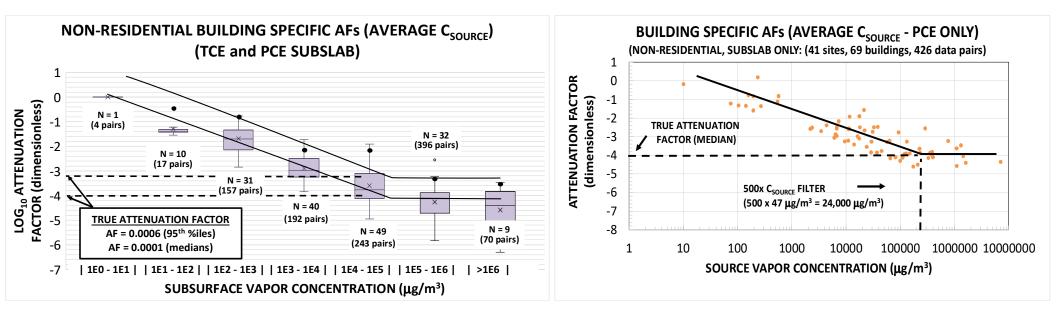


KEY POINT AFs derived from reliability analyses assuming 2% false negatives for non-residential (0.005) and residential (0.003) buildings are within the range of 95th percentile AFs for nonresidential (0.005 – 0.01) and residential (0.003 – 0.01) buildings based on subslab and soilgas samples

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

Method #2: Reliability Analysis (TCE and PCE) (Filtered Data)

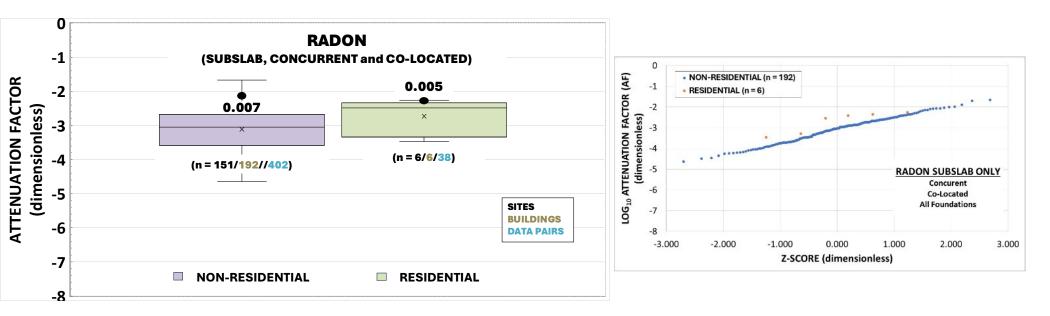

little change is observed in AFs based on percentage of FNs (incorrect outcome based **KEY** on soil-vapor results) POINT

- non-residential buildings exhibit higher AFs than residential buildings which is consistent with the 95th percentile AFs

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

Method 3: Theoretical AF vs. C_{SOURCE} Relations (Filtered TCE + PCE Data)


- median AFs for TCE and PCE tend to asymptote at higher source vapor concentrations; for PCE this equates to a 500x multiplier of background (validation of the C_{SOUBCE} filter) POINT
 - there is still lots of scatter in the data making it difficult to draw conclusions

Equilon Enterprises LLC

KEY

Copyrights of Equilon Enterprises LLC

Radon Data from California

- the 95th percentile AF for non-residential buildings (0.007) is consistent with the 95th percentile for non-residential buildings (0.008) for Climate Zone (1 – 3)
 - the radon exhibit a highly log-normal distribution helps support the goal of C_{IA} and C_{SOURCE} filtering

Equilon Enterprises LLC

KEY POINT

Copyrights of Equilon Enterprises LLC

Conclusions

- AFs derived from a more comprehensive evaluation of building-specific AFs range between 3 10x less than USEPA's recommended value of 0.03
 - 95th %ile: 0.006 (range from 0.003 to 0.01
 - median: 0.0006 (range from 0.0001 to 0.002)
- AFs derived from reliability analyses range between 0.005 (non-residential) 0.003 (residential)
- AFs derived from AF vs. C_{SOURCE} relations difficult to quantify but are approximately an order of magnitude less
- AF sensitivity analysis (e.g., climate, building type/age, sample type)
 - helps explain differences between previous studies
 - AFs can be adjusted based on site-specific conditions
- study provides more technically defensible default (generic) AFs that can account for variable site conditions; observed AFs will likely more closely align with median estimates

Copyrights of Equilon Enterprises LLC

Acknowledgements

Rafat Abbasi - Geosyntec Lila Beckley – GSI Julie Kabel – AECOM Steve Luis – Ramboll Chris Lutes – Jacobs Tom McHugh - GSI Billy Meyer – North Carolina Department of Environmental Quality Suzi Nawikas – H & P Inc. Genna Olson – Hart & Hickman Jane Parkin-Kullman – Woodard & Curran Gina Plantz – Haley and Aldrich Suzi Rosen – Partners Environmental Solutions Robert Traylor – Partners Environmental Solutions Laura Trozzolo – TRC Companies Nadine Weinberg – ERM

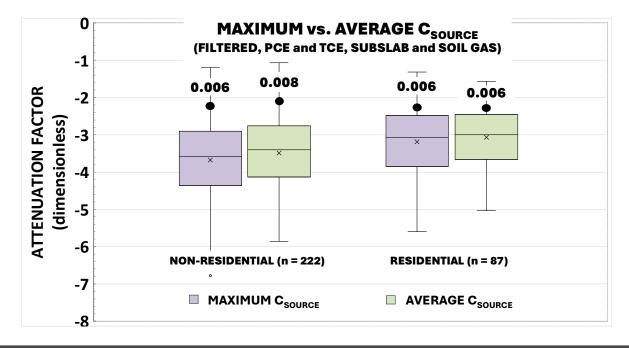
Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

References

- Abbasi, R., Bosan, W., and D. Gallagher. 2022. Empirically derived California vapor intrusion attenuation factors. Groundwater Monit. Remed., 43, 60-68. <u>https://doi.org/10.1111/gwmr.12559</u>.
- DoD (Department of Defense). 2023a. Development and Application of Groundwater-to-Indoor Air Attenuation Factors for Industrial/Commercial Buildings at DoD Facilities, DoD Vapor Intrusion Handbook, Fact Sheet Update No: 12, February.
- DoD (Department of Defense). 2023b. Development and Application of Subslab-to-Indoor Air Attenuation Factors for Industrial/Commercial Buildings at DoD Facilities, DoD Vapor Intrusion Handbook, Fact Sheet Update No: 009, February.
- Eklund, B., Ricondo, C., Artz-Patton, H., Milose, J., and C-W. Wong. 2022. Development of a default vapor intrusion attenuation factor for industrial buildings. Groundwater Monit. Remed. 43, 35-43. <u>https://doi.org/10.1111/gwmr.12534</u>.
- Ettinger, R.A., S. Luis, N. Weinberg, T. McAlary, G. Plantz, H.E. Dawson, and J. Sickenger. 2018. Empirical analysis of vapor intrusion attenuation factors for sub-slab and soil vapor—An updated assessment for California sites. Proceedings Paper #VI22, presented at the Vapor Intrusion, Remediation, and Site Closure Conference, American and Waste Management Association. Phoenix, Arizona, December 5–6.
- Hallberg, K.E., Levy, L.C., Gonzalez-Abraham, R., Lutes, C.C., Lund, L.G., and D. Caldwell. 2021. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings. J. Air Waste Manage. Assoc., 71, 1148-1158. <u>https://doi.org/10.1080/10962247.2021.1930286</u>.
- Lahvis, M.A., and R.A. Ettinger, 2021. Improving risk-based screening at vapor intrusion sites in California. Groundwater Monit. Remed., 41, 73-86. <u>https://doi.org/10.1111/gwmr.12450</u>.

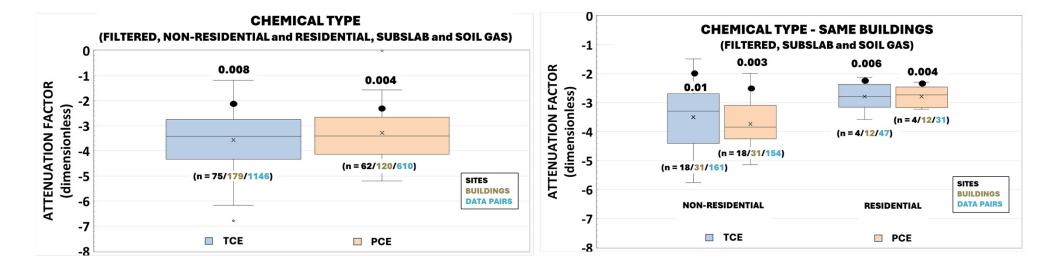
Copyrights of Equilon Enterprises LLC


References

- Lutes, C.C., Levy, L.C., Hallberg, K.E., Gonzalez-Abraham, R., Caldwell, D., Lund, L.G., Walker, T.R., and T.B. Lewis. 2021. Final Reanalysis of Department of Defense Vapor Intrusion Database of Commercial and Industrial Buildings. Prepared for NAVFAC EXWC and NAVFAC Atlantic by CH2M HILL, Inc., Virginia Beach, Virginia. November 2021. <u>Reanalysis of DOD VI Database of Comm Ind Buildings Final NOV21.pdf</u>.
- Man, J., Guo, Y., Zhou, Q., and Y. Yao. 2022. Database examination, multivariate analysis, and machine learning: Predictions of vapor intrusion attenuation factors. Ecotox. Env. Safety, 242, 113874. <u>https://doi.org/10.1016/j.ecoenv.2022.113874</u>.
- Nawikas, S. 2019. Sub-slab to indoor air attenuation factors determined from radon data. Southeastern States Vapor Intrusion Symposium, Kennesaw, Georgia. October 30, 2019.
- US EPA, 2012. EPA's Vapor Intrusion Database: Evaluation and characterization of attenuation factors for chlorinated volatile organic compounds and residential buildings. US Environmental Protection Agency Office of Solid Waste and Emergency Response, EPA 530-R-10-002, March 16, 2012. Washington, D.C. (<u>https://www.epa.gov/sites/production/files/2015-09/documents/oswer 2010 database report 03-16-2012 final witherratum 508.pdf</u>).
- US EPA, 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. US Environmental Protection Agency Office of Solid Waste and Emergency Response, OSWER Publication 9200.2-154, June 2015. Washington, D.C. <u>https://www.epa.gov/sites/production/files/2015-09/documents/oswer-vapor-intrusion-technical-guide-final.pdf</u>.

Copyrights of Equilon Enterprises LLC

C_{SOURCE} **Strength Assumption** (Maximum vs. Average)

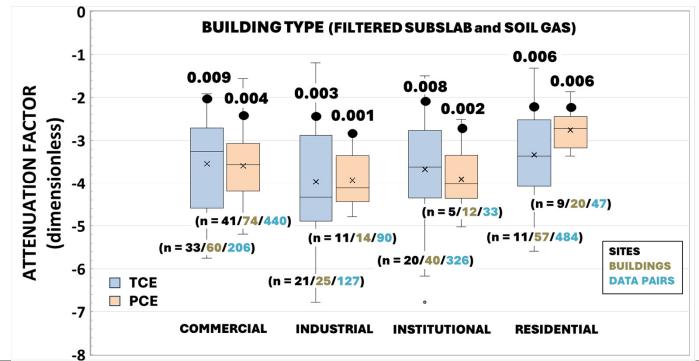

median AFs are 1.5x higher for non-residential buildings and essentially equivalent for residential buildings which is consistent with a) limited differences in maximum versus average C_{SOURCE} concentrations for relatively small C_{SOURCE} sample populations and b) lesser variability in C_{SOURCE} concentrations at residential versus non-residential buildings

Equilon Enterprises LLC

Copyrights of Equilon Enterprises LLC

Chemical Type

(Non-Residential vs. Residential, Same Buildings)


KEY • median AFs are generally unaffected by chemical type allowing the variable to be grouped for AF determinations

Equilon Enterprises LLC

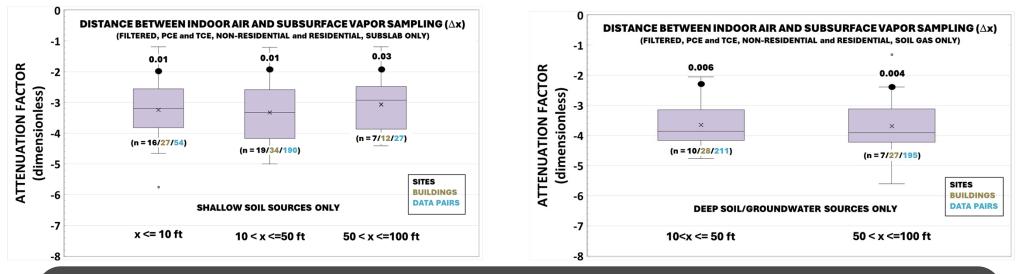
Copyrights of Equilon Enterprises LLC

Building Type

(Non-Residential vs. Residential)

- Median AFs are lowest for industrial buildings which may exhibit thickest slabs and greatest ventilation in indoor air
 - median AFs are highest in residential buildings which may exhibit the thinnest slabs and least ventilation in indoor air

Equilon Enterprises LLC


Copyrights of Equilon Enterprises LLC

Distance Between Indoor Air and Subsurface (Δx)

(TCE and PCE, Non-Residential and Residential)

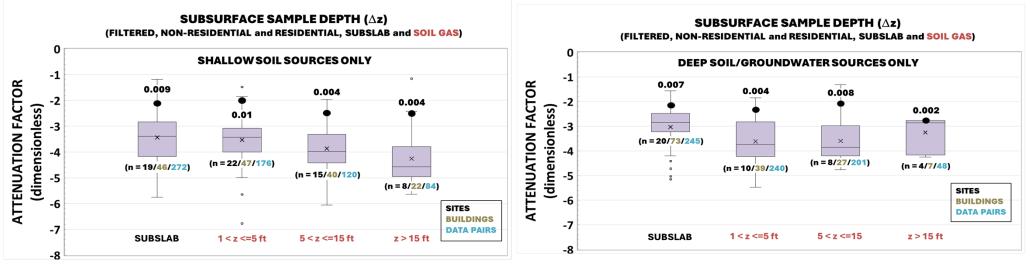
SHALLOW SOIL SOURCES (SUBSLAB ONLY)

DEEP SOIL/GROUNDWATER SOURCES (SOIL-GAS ONLY)

- median AFs do not vary significantly with increasing distance (∆x) between C_{IA} and C_{SOURCE} sample locations for relatively shallow soil sources
- POINT
 median AFs also do not vary significantly for deep soil/groundwater sources and soil-gas samples, implying that C_{IA} and C_{SOURCE} samples do not have to be co-located to be representative for VI screening

Equilon Enterprises LLC

KEY

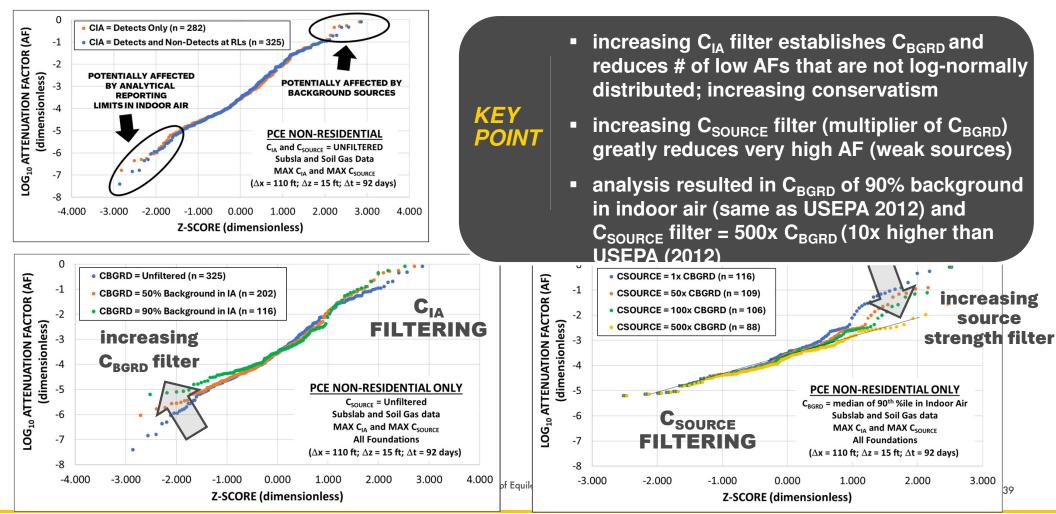

Copyrights of Equilon Enterprises LLC

Subsurface Sample Depth (Az)

(TCE and PCE, Non-Residential and Residential, Subslab and Soil Gas)

SHALLOW SOIL SOURCES

DEEP SOIL/GROUNDWATER SOURCES



Median AFs are generally lower for soil-gas vs. subslab samples, which is consistent with additional attenuation caused by vapor transport through the vadose zone

Equilon Enterprises LLC

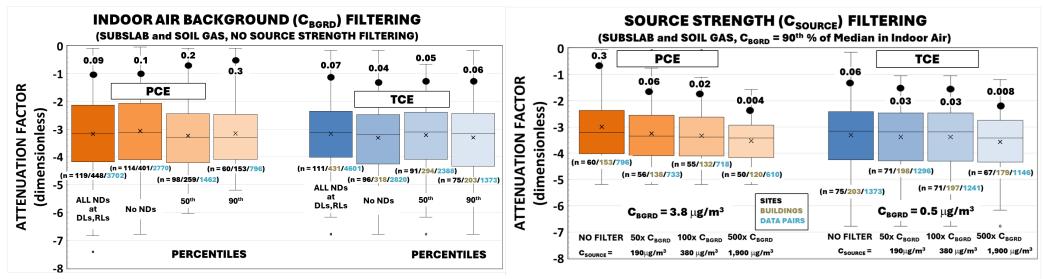
Copyrights of Equilon Enterprises LLC

AFs Can Be Affected by Analytical Reporting Limits, Background Sources in Indoor Air

Background: 3 Methods for AF Derivation - Differences

Method	Pros	Cons				
Method 1: Descriptive Statistics (e.g. 95 th %ile)	Approach ultimately used by USEPA (greater acceptance by wide range of stakeholders) AF sensitivity to specific variables is more easily visualized and assessed	95 th %ile AFs can be strongly affected by small #s of data points (e.g., outliers), especially for small data populations AF can be sensitive to data filtering				
Method 2: Reliability Analysis	More risk-based (AF defined by its ability to consistently, dependably identify sites where $C_{IA} > RBSLs$) AF dependence on C_{SOURCE} and C_{BGRD} filtering is reduced	Draws attention to an "acceptable" % of false negatives – requires agency decision/consensus Requires a relatively large population of data (i.e., cannot be used to assess AF sensitivity to certain variables)				
Method 3: Theoretical Relations	Helps show impact of C _{SOURCE} on AF (i.e., AFs affected by background sources)	Difficult to define the AF asymptote if AF data are highly variable				
 KEY POINT AFs derived using all 3 methods provides a multiple lines of evidence to support a technically defensible AF value 						

Equilon Enterprises LLC


Copyrights of Equilon Enterprises LLC

October 2024

Effects of C_{IA} and C_{SOURCE} Filtering on AFs

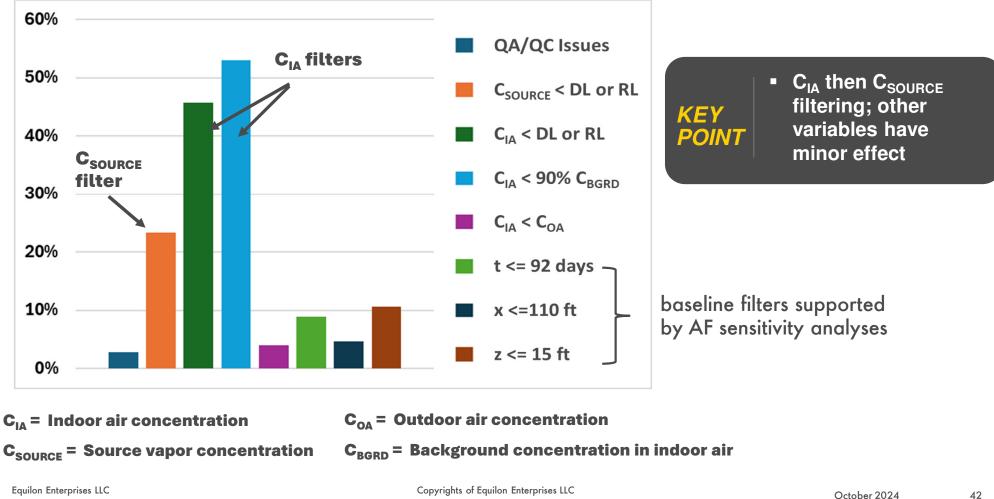
INDOOR AIR (ESTABLISHING C_{BGRD})

SUBSURFACE VAPOR

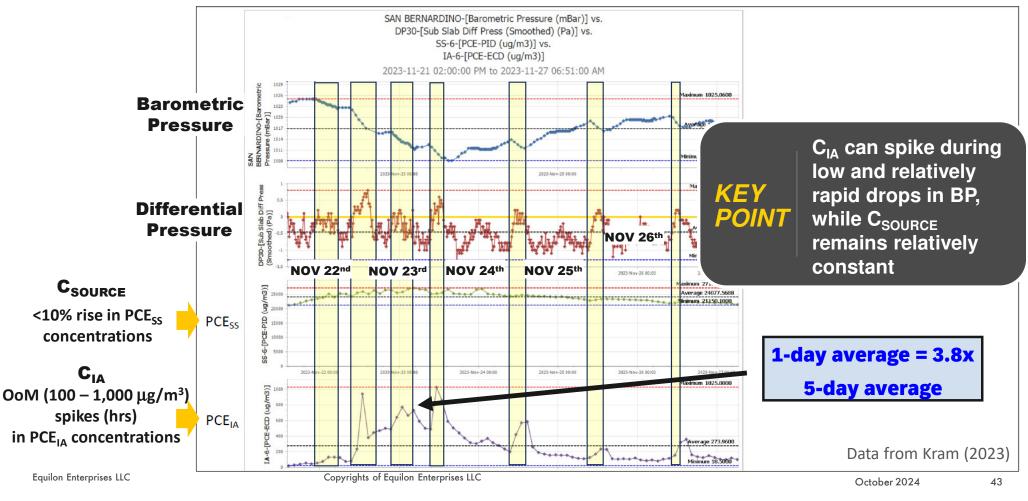
the most representative AF population were defined by:

the median of 90th %ile C_{BGRD} in indoor air greatly reduces the total PCE and TCE AF data population (2 – 3x); little effect on median and 95th % AFs (consistent with USEPA, 2012)

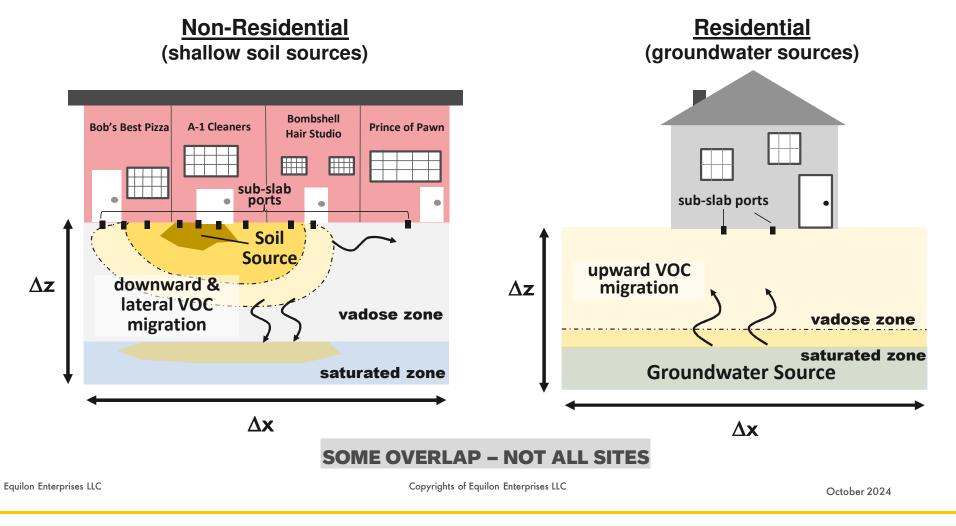
 a C_{SOURCE} filter of 500x which provided the most log-normal AF distribution, eliminates high AFs (10x higher than USEPA, 2012)


Equilon Enterprises LLC

ΚΕΥ


POINT

Copyrights of Equilon Enterprises LLC


Reduction in AF Data Population Caused by Data Filtering

AF Sensitivity to Meteorological Events CONTINUOUS MONITORING @ NON-RESIDENTIAL BUILDING (SAN BERNADINO, CALIFORNIA)

Differences in Relative Source Depth Could Affect AF Determinations (Shallow Soil vs. Groundwater Source)

