Differentiating CVOCs in Bedrock and Alternate Remediation Criteria - Rationale and Regulatory Concurrence

AEHS 39th Annual International Conference on Soils, Sediments, Water, and Energy
Amherst, MA

October 17, 2023

David C. Hutnick
Environmental Scientist
Exton, PA

Nathan A. Stevens, P.G.
Principal Professional
Boston, MA
• **Challenge:** Comingled CVOC plumes in industrial areas difficult to differentiate, and complex in bedrock.

• **Goals:**
 • Differentiate sources of CVOCs in groundwater
 • Apportion responsibility and remediation targets

• **Approach:**
 • Develop and refine a robust Conceptual Site Model
 • Apply a logical and iterative process
 • Validate with empirical data
 • Engage and collaborate with regulators
 • Proactively accept actual responsibility
Site: Petrochemical research and development facility

Setting: Mixed use area in New Jersey

Geology: Limited connectivity between overburden and bedrock; fracture controlled and supply well-influenced groundwater flow

Chemicals: Petroleum Hydrocarbons & CVOCs (multiple sources)
SITE HISTORY
SITE GEOLOGY

Overburden Soil
- Fill material, silt, and clay
- ~ 3 to 18 feet thick
- Overburden thickness increases from North to South
- Average GW depth ~ 8 to 10 feet
- Limited hydraulic connectivity with bedrock

Bedrock – Passaic (Brunswick) Formation
- Red / gray shale and sandstones
- Weathered zone up to 40 feet thick
- Dips NW ~ 5 to 12 degrees
- Extensional fractures dip SE ~ 70 to 80 degrees
- Groundwater flow along strike
- Hydraulic connectivity of wells along strike
Environmental investigation began in the early 1990s at the site.

Multiple areas of concern identified:
- ASTs (current/former)
- USTs (current/former)
- Hazardous materials storage / handling areas
- Process piping

Multiple phases of investigation

CVOCs identified in bedrock during sampling of the onsite supply well
- Initially assumed to be from onsite source(s)
POTENTIAL ONSITE SOURCES OF CVOCS

- **Soil**: Max TCE = 0.1 mg/kg
- **Overburden GW**: Max TCE = 9 µg/L
- **Bedrock GW**: Max TCE = 2,700 µg/L

N - SUPPLY WELL

- UST Location

SUPPLY WELL

1,000 ft

SE

SW

NE

NW
BR-25D
- Installed to delineate CVOCs in bedrock at the NE site boundary
- Highest concentrations of CVOCs onsite
- Triggered evaluation of offsite sources

Basis for suspected source(s) of CVOCs in bedrock:
- Release history
- CVOCs in soil and/or groundwater
- Location relative to the site (along strike)

Potential offsite sources identified:
1. Manufacturer of insulating materials
2. Plastics extrusion facility
3. Commercial drycleaning service
CVOCs in bedrock originated at the drycleaning facility

- Documented releases of PCE at the drycleaning facility
 - Concentrations in soil and groundwater were up to 2 orders of magnitude higher than those onsite
- Apparent transport of CVOCs from drycleaning facility toward the SW
 - Facilitated by operation of the onsite supply well
 - Operations at the drycleaning facility coincided with operation of the site supply well

<table>
<thead>
<tr>
<th>Year</th>
<th>DRYCLEANING FACILITY</th>
<th>DRYCLEANING FACILITY (New Ownership)</th>
<th>PLASTICS EXTRUSION</th>
<th>SITE SUPPLY WELL OPERATION</th>
<th>INSULATION MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concentration gradient and weathering gradient from the drycleaning facility toward the southwest

Regulator Touch Point: Agency asserted potential onsite contribution; In-person technical review meeting held
Conceptual Site Model refined based on meeting with regulatory agency:

- Agreed upon a comingled plume condition
- Comparison of CVOCs inside and outside of the comingled plume to determine contributions from each potential source
 - Within the comingled plume – Attributed to migration from the drycleaning facility
 - Outside of the comingled plume – Attributed to onsite source(s)
- Impacts from offsite may extend farther to the SW
 - Comingled plume was terminated just south of the supply well as a conservative approach.
- *TCFM / DCFM release as ‘tracer compounds’?

*Regulator Touch Point: Considered, evaluated, and ruled out TCFM / DCFM as tracers – consensus achieved
• Seven classes of CVOCs (27 compounds) analyzed in groundwater:

 - **Chlorinated ethanes**: 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane and ethane

 - **Chlorinated ethylenes**: Tetrachloroethylene, trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride and ethylene

 - **Carbon tetrachloride**: Carbon tetrachloride, chloroform, methylene chloride and chloromethane

 - **Chlorofluorocarbons**: 1,1,2-Trichloro-1,2,2-trifluoroethane, trichlorofluoromethane and dichlorodifluoromethane

 - **Chlorobenzenes**: 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene and chlorobenzene

 - **Chloropropanes**: 1,2-Dichloropropane

 - **Chlorination byproduct**: Bromodichloromethane
Seven classes of CVOCs (27 compounds) analyzed in groundwater:

- **Chlorinated ethanes**: 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane and ethane

- **Chlorinated ethylenes**: Tetrachloroethylene, trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride and ethylene

- **Carbon tetrachloride**: Carbon tetrachloride, chloroform, methylene chloride and chloromethane

- **Chlorofluorocarbons**: 1,1,2-Trichloro-1,2,2-trifluoroethane, trichlorofluoromethane and dichlorodifluoromethane

- **Chlorobenzenes**: 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene and chlorobenzene

- **Chloropropanes**: 1,2-Dichloropropane

- **Chlorination byproduct**: Bromodichloromethane

17 CVOCs: ND, <GWQS, or no GWQS = No remediation required
Seven classes of CVOCs (27 compounds) analyzed in groundwater:

- **Chlorinated ethanes**: 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, chloroethane and ethane

- **Chlorinated ethylenes**: Tetrachloroethylene, trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride and ethylene

- **Carbon tetrachloride**: Carbon tetrachloride, chloroform, methylene chloride and chloromethane

- **Chlorofluorocarbons**: 1,1,2-Trichloro-1,2,2-trifluoroethane, trichlorofluoromethane and dichlorodifluoromethane

- **Chlorobenzenes**: 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene and chlorobenzene

- **Chloropropanes**: 1,2-Dichloropropane

- **Chlorination byproduct**: Bromodichloromethane

4 CVOCs: ND or <GWQS outside of comingled plume = No remediation required (no onsite source)
DETERMINATION OF ONSITE CONTRIBUTION OF CV OCS TO BEDROCK

<table>
<thead>
<tr>
<th>Class of CV OCS</th>
<th>Compound</th>
<th>GWQS (µg/L)</th>
<th>Maximum Onsite Concentration (µg/L)</th>
<th>Maximum Overburden Concentration (µg/L)</th>
<th>Maximum Bedrock Concentration (µg/L)</th>
<th>Onsite Contribution to Bedrock Groundwater (µg/L)</th>
<th>Offsite Contribution to Bedrock Groundwater (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorinated Ethanes</td>
<td>1,2-DCA</td>
<td>2</td>
<td>1,560</td>
<td>176</td>
<td>1,560</td>
<td>24</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>PCE</td>
<td>1</td>
<td>157</td>
<td>1</td>
<td>157</td>
<td>8</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>TCE</td>
<td>1</td>
<td>2,710</td>
<td>25</td>
<td>2,710</td>
<td>147</td>
<td>95</td>
</tr>
<tr>
<td>Chlorinated Ethylenes</td>
<td>1,1-DCE</td>
<td>1</td>
<td>26</td>
<td>5</td>
<td>26</td>
<td>26</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Cis-1,2-DCE</td>
<td>70</td>
<td>1,780</td>
<td>36</td>
<td>1,780</td>
<td>171</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Vinyl Chloride</td>
<td>1</td>
<td>1,070</td>
<td>4</td>
<td>1,070</td>
<td>162</td>
<td>87</td>
</tr>
</tbody>
</table>

ONSITE CONTRIBUTION (%) | **OFFSITE CONTRIBUTION (%)**
ALTERNATIVE REMEDIATION CRITERIA

- 1,2-DCA
- TCE
- Cis-1,2-DCE
- VC
- PCE
- 1,1-DCE

Concentration (µg/L)

- GWQS
- Max Concentration
- Alternative Remedial Goal
• Comingled CVOC plumes exist at the site
• Onsite supply well likely entrained contamination from offsite sources
• CVOCs in bedrock within the comingled plume mostly attributed to migration from offsite sources
 • Contribution from onsite and offsite sources has been quantified
• TCFM / DCFM may not be reliable ‘tracer compounds’ in this case
• *Continuing engagement with regulatory agency

*Regulator Touch Point: Technical consultation meeting – reconcile Remedial Action Permit with CSM, approach and agreements
Logical reasoning is just as important as empirical data in cases of comingled plume conditions.

Face-to-face dialogue between clients, consultants and regulators is a highly effective means of resolving complex technical issue.

Engagement with the regulatory agency throughout the project is key. Not just a one-time event, or at the time of report submittal.
QUESTIONS