

HT TODAY – TECHNOLOGY PROVIDER

Based in Brussels (Belgium) 55 peoples

Worldwide Operations

Own Smart Burners™ manufacturing facility

25+ Years in Business

Site location and history

- US-Vietnam War (1955-1975) Operation Ranch Hand: Rainbow agents sprayed to defoliate jungle, crops and forests
- Agent Orange contains dioxins that cause severe health issues and are highly toxic for the environment
- Because of its stability, dioxins still affect the inhabitant nowadays
- Contaminated soils are stored on military bases, including Biên Hòa Airbase, where HT estabished its pilot project

11

Scope and purpose

- Demonstrate the **effectiveness of the Smart Burners**TM treatment technology and design in order to meet the site-specific dioxins and furans target levels (Agent Orange residues)
- Reach highest circularity levels possible
- Thermal treatment pilot plant composed of two main units:
 - The **soil pile** to be heated (ESTD Ex Situ Thermal Desorption);
 - The Vapor Treatment Unit (VTU) where dioxins are destroyed.

Circularity - Level 1

Primary Use Excavate Haul Treatment Facility

Level 1

Circularity - Level 3

Primary Use

In Situ
Treatment

Treatment

Origin of the contaminated materials

- Contaminated soils : Pacer Ivy-2A
- Contaminated sludges : Pacer Ivy-20
- Washing cake : 2019-2020 Shimizu soil washing installation

17

Origin of the contaminated materials

Vapor Treatment Unit (VTU)

- Thermal Oxidizer:
 - T° > 1100 °C;
 - t > 1 s;
 - High turbulence (Re>>2500)
 - O₂ content > 6 %
- Quench Tower
 - Rapid cooling (to T° < 180°C)
 - Avoid reformation
- Back-up Activated Carbon

VTU Objectives

- Demonstrate Vapor treatment process
 - Emissions at stack compliant with VN, EU and US standards
 <0.1ng TEQ/Nm³
 - No increase in dioxins in ambient air
- Zero waste concept

aemers*

25

Activities in 2019-2020

- Arrived on site end of November 2019
- Installation complete in February 2020
- Testing the Installation
- Start of the treatment: 17 march 2020
- Interruption of the project due to COVID-19

Resuming activities in 2022

- Resume activities on 28th of December 2021
- Restoration of the site and installation testing
- Treatment start: 2nd of February 2022
- Treatment phase end: 14th of March 2022 40 days of treatment

27

Treatment Performance Report

- The effectiveness of the thermal treatment is evaluated by various parameters:
 - ➤ Soil temperature;
 - ➤ Pressure monitoring;
 - ➤ Temperatures in the VTU;
 - **≻**Emission control;
 - **≻**Ambient air monitoring;
 - ➤ Treated Soil analysis;
 - **➤** Concrete analysis;

29

Ambient Air monitoring

During excavation works (2020) → Compliant

During treatment (2022) → Compliant

During demobilization (2022) → Compliant

Ambient Air Quality Monitoring: Dioxins (pg-TEQ/m²)

Ambient Air Quality Monitoring: Dioxins (pg-TEQ/m²)

Ambient Air Quality Monitoring: Dioxins (pg-TEQ/m²)

Dioxin min (pg-TEQ/m²)

Treated Soil Analysis

Material	Unit	Initial concentration	Treatment goal	Treated soil Results	Destruction Rate Efficiency
Soil	ppt WHO- TEQ ₂₀₀₅	11.400	300 (Urban residential) 1.200 (Industrial)	4,84 96,29	99,96%
Sludges	ppt WHO- TEQ ₂₀₀₅	5.410	150	ND	> 99,99%
Washing cake	ppt WHO- TEQ ₂₀₀₅	17.200	300	6,7	99,96 %

The Destruction Rate Efficiency is **over 99%** for all samples

37

Concrete analysis

Sample	Unit	Concentration
Concrete 1 (top of the pile)	pg WHO-TEQ ₂₀₀₅ /g	6,31
Concrete 2 (side of the pile)	pg WHO-TEQ ₂₀₀₅ /g	14,11

No cross contamination of the concrete

Conclusions

This project demonstrates an <u>improved</u> and <u>effective</u> thermal treatment technology for the remediation of dioxin contaminated soils where all toxic components are destroyed, and soil is recycled.

Technology is ready for full scale

- Cost effective
- No material environmental impact
- Sustainable (zero waste full destruction)

