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MW-NERF: MULTI-WAVELENGTH NERF MODELS FOR
SPACECRAFT MODELING IN SHADOWED ENVIRONMENTS

Logan Selph* and John R. Martin'

The future of Neural Radiance Fields (NeRFs) within aerospace applications
relies heavily on their ability to cope with the hostile observing conditions that
permeate space-based operations. While existing NeRF models can handle many
real-world scenes with extremely fine detail, they still lack robustness to the ex-
treme lighting conditions present outside of Earth’s atmosphere. While optical
light may not contain all the information required to faithfully reconstruct a scene,
we propose that this problem can be tackled by creating a new NeRF architecture
that can process images taken at different wavelengths, where vital shape infor-
mation may be readily available. This work explores our new proposed model:
multi-wavelength NeRF (MW-NeRF), along with a large realistic dataset suite
containing simple to complex satellite geometries with multiple different lighting
conditions, taken over several different target ranges. Early analysis of our model
shows that dark regions in these datasets prove difficult for optical training alone to
overcome, and that better underlying shape models can be learned when provided
with multi-wavelength datasets.

INTRODUCTION

As global interest in exploring and operating in space continues to grow, the safety of future mis-
sions and the security of national interests must keep pace. Adequate Space Situational Awareness
(SSA) is paramount for ensuring the success of missions that operate in these poorly characterized
and dangerous environments. SSA relies on tools and infrastructure to track and understand ob-
jects operating in orbit. These objects include cooperative and non-cooperative spacecraft, debris,
celestial bodies, and others. In all cases, these objects need to be carefully monitored to avoid pur-
posefully or inadvertently jeopardizing current missions or their operations. Spacecraft operators
must contend with limited information about other cataloged satellites and debris.! While rough
state information about these objects is maintained through ground-based observation, other neces-
sary details, such as shape and size, are often unknown. This forces operators to make assumptions
which may impact mission resources and safety — e.g. unnecessarily maneuvering to avoid a poorly
characterized threat.'

While spacecraft operators have many tools at their disposal that can generate useful shape mod-
els from images taken by their vehicles, most methods carry serious drawbacks that can make their
use on most missions either burdensome or impossible. This mostly has to do with the computa-
tional burden and large footprints that typical shape modeling frameworks carry with them. Some
missions must be designed to have the time and capacity to send large amounts of data to ground
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stations, which then spend days to months generating the final model, for this very reason. Un-
fortunately, not every mission has such resources: small satellites with data downlink constraints
or missions that require quick model outputs demand lightweight and on-board solutions.? Our re-
search focuses on developing fast and lightweight machine learning models that can reconstruct 3D
scenes containing poorly characterized objects to enhance SSA.

Two methods are frequently used for 3D shape modeling: reconstruction® and template match-
ing.* The former relies on using a set of 2D images of the target to reconstruct either the entire
scene, including the target, or just the target itself, with implementations including analytic, numer-
ical, and machine learning methods.>® Reconstruction in space is particularly challenging because
imaging conditions are often far from ideal.® This means that reconstruction methods must be ro-
bust to extreme lighting conditions, reflections from non-Lambertian materials, motion blur, and
other prevalent issues within space-based observation. While reconstruction methods make no prior
assumptions about the target’s geometry, template matching relies on precise information regard-
ing the object’s shape and structure to apply feature mapping.”-® Alternatively, machine learning
implementations have proven to be powerful solutions that can quickly and accurately estimate the
3D shape models of these objects within their local environments. Among these tools, the recently
established Neural Radiance Field (NeRF) stands out.

NeRFs employ a multi-layer perceptron to represent a scene as a field of density and view-
dependent radiance values.® Specifically, NeRFs construct a mapping from position and viewing
direction in space to density and color values. To generate a novel viewpoint—that is, a new image
rendered from a perspective not available in the original dataset—each pixel value is estimated by
rendering the relevant points in the learned field. The result is a continuous, learned field of density
and color values that can be used to render images of the object from any arbitrary viewing geome-
try. Because this method learns the scene without requiring any prior knowledge or assumptions, it
has proven to be an exceptionally powerful tool used in a variety of applications.!®

This work aims to extend NeRF models to create a fast and accurate method for rendering scenes
with spacecraft in difficult lighting environments. Specifically, we investigate the issue of shadows
impeding a NeRF’s ability to render a scene effectively. As a solution, we propose MW-NeRF,
a framework that uses NeRFs trained on data obtained at multiple wavelengths to better inform
training in the visual band—an approach that, to our knowledge, has not yet been explored. Our
goal is to develop a reconstruction method that is robust to adverse lighting conditions and capable
of reliably learning scenes from images captured by spacecraft at realistic working distances.

BACKGROUND AND RELATED WORK
Scene Modeling in Astrodynamics

Traditional shape reconstruction methods for objects in orbit include structure from motion (SfM)
and point cloud-based techniques.!! SfM algorithms detect and match features between 2D images
to accurately recover camera poses, then leverage the resulting parallax between viewpoints to tri-
angulate 3D points and produce precise depth reconstructions of the scene. In space-based envi-
ronments, SfM reconstructions commonly suffer from the presence of holes in the final renderings,
especially on low-feature or non-Lambertian surfaces where the feature mapping can struggle. As a
result, 3D modeling of objects in orbit has largely continued to rely on stereophotoclinometry (SPC)
based models.

SPC combines stereo parallax with photoclinometry to transform 2D images of a scene into a



3D digital terrain map (DTM).!? This method can generate multiple DTMs to effectively map an
entire object, and has been used to model dozens of celestial bodies in our solar system, including
the Moon, Ceres, Bennu, and Itokawa.!> SPC is excellent at reconstructing 3D models of celestial
bodies, but it does rely on very large datasets and takes weeks to months of computation time to
produce its best results.!?

Other approaches to retrieving 3D scene information for Earth-orbiting satellites include using
ground-based inverse synthetic aperture radar (ISAR) observations. This can also be combined
with bidirectional analytic ray tracing (BART) to further assist the extraction of 3D information
from radar images. Several studies have successfully applied ISAR and BART both to generate
3D scene information and to estimate satellite attitudes.*> These methods are capable of learning
sparse shape models from ground based observations, but cannot generate continuous representa-
tions of scenes with fine detail. More recently, pre-trained convolutional neural networks (CNNs)—
architectures originally developed for image classification and detection—have been adapted to
predict full 3D shapes from single optical images. The approach in reference 7 trains a CNN on
a library of spacecraft geometries and then infers complete 3D models given just one view. While
this delivers impressive generalization across different vehicle classes, its performance hinges on
the diversity and quality of the training dataset, and it may struggle when presented with unfamiliar
geometries.

Neural Radiance Fields

NeRFs are a class of machine learning models that learn a continuous 3D model of a scene
from a finite set of 2D images. Once the model is trained, it can synthesize new images from any
arbitrary viewpoint while accurately reproducing the scene’s lighting and preserving its geometric
structure. The models are trained by sampling points along rays spawned from each training image,
and integrating the corresponding density and radiance values at each field point along the specific
ray to generate a synthetic pixel value. The model is penalized for inaccurate rendering of the
original 2D images, and its weights are updated using stochastic gradient descent until the model
converges on a set of field values that can reliably reproduce the training images. Using the same
ray-marching strategies, users can then query the learned neural radiance field to generate new
images from novel poses not previously seen during training. The result amounts to a photorealistic,
continuous approximation of the entire scene.

Explicitly, this training process would involve numerically or analytically computing the integral
that produces the final color value for a ray via:

C(r) = /t " T()o(e(t))e(r(t), d)dt, where T(£) = exp (— /t o (x(5))ds). 0

In Equation (1) ¢,, and ¢y measure the starting and stopping points along the ray, r is the sampled
position in 3D space, d is the normalized viewing direction, o is the position dependent density,
and c is the position and view dependent color. 7' is the accumulated transmittance along a ray,
representing the probability that the ray travels some distance without hitting another particle.

Calculating this integral in its entirety would be computationally burdensome, so it is approxi-
mated by sampling points along a ray where light scatters. Instead of computing the full continuous
field, a simpler mapping is learned by approximating the integral through a finite number of samples
along the ray:
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In Equation (2), d represents the distance between the current sample and the next.

Optimization is achieved by comparing the model’s performance on a per-ray basis, rather than
per sample, since the ground truth of the entire radiance field is not known. To do this, the final
renderings from the above equation are compared to the ground truth pixel values, resulting in the
loss function:

L= "1|Cy(r) - C(r)[[5, (3)
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where Cy is the output ray value of the network, and C is the ground truth value.

Since the introduction of the original NeRF model in 2020, dozens of new methods have emerged
to address various drawbacks and expand its application to different fields. Of these advance-
ments, some of the most important have to do with training speed,'*!> accuracy in real-world
scenes, 18 estimating camera poses,'® very large scenes,?”?! unbounded scenes,?>?* and time-
varying scenes.”*2> 1In the context of this paper, the most important of these additions include
optimized CUDA kernels for speed, appearance embedding for real-world scenes, and proposal

sampling for unbounded scenes.

CUDA Kernels The original NeRF model was extremely slow to train and query for a few dif-
ferent reasons, the most notable being its lack of optimal GPU utilization. Instant-NGP introduced
optimized CUDA kernels in 2022, transforming train times that previously took up to a day into
mere minutes or seconds.!> This is achieved by squeezing the entire NeRF training process (in-
cluding MLP layers, grid interpolations, stored feature vectors, etc.) into a single CUDA kernel.
By storing everything on video memory and avoiding large GPU launch counts for repetitive tasks,
massive amounts of computation overhead are bypassed entirely. The final result allows us to train
NeRFs hundreds of times faster compared to the original models produced in 2020.

Appearance Embedding Real-world data rarely has ideal, static lighting conditions. Since the
original NeRF model was designed more as a proof-of-concept using datasets made in Blender,
it was naturally ill-equipped to tackle datasets with changing lighting, such as with images taken
during different parts of the day, or clouds intermittently casting shade in different areas. This is
because the fully-fused MLP in the original NeRF model learns entire scenes from explicit five-
dimensional inputs (a 3-D position and a 2-D pointing direction). The original color field optimizes
a view-dependent color representation for the final learned scene. While this is well-equipped to
learn features that vary solely in the direction that you observe them, such as reflective surfaces,
it struggles to handle unique lighting profiles that cannot be described by viewing direction alone.
Real-world datasets are likely to have such full scene lighting differences between images, making
it much more difficult for the original model to reconcile these conflicting viewpoints, and overall
damaging the final learned reconstruction. W-NeRF solved this problem by adding a learned appear-
ance embedding vector to each training image, giving the color field additional image-dependent
parameters to tune that allow it to represent continuous representations for inter-image lighting dif-
ferences.!® This results in a model that can accurately learn real-world reconstructions from datasets
that depict the same scene in many different contexts.



Proposal Sampling 'The process of approximating a ray requires many samples to be taken along
its path until the surface of the intersected object has been fully learned. Without any guidance
this process can take quite some time to converge on an accurate render, since random sampling
will mostly yield points in empty space or points inside the object. This is not only burdensome
for bounded scenes focusing on single objects, but this quickly becomes intractable for large, un-
bounded scenes with objects scattered across all scales. Mip-NeRF 360 introduced the proposal
sampler, which simultaneously optimizes a lighter version of the same NeRF, except it solely learns
the underlying density field.?> This light field takes in a uniform sample of points along a ray
and outputs the density weights associated with each of those points. These points then make up
a density histogram, where new candidate sample points can be chosen through inverse-transform
sampling. The new points, which are concentrated towards objects in the scene rather than empty
space, are then used in the forward pass for training the base NeRF model. This proposal network
is then optimized using the KL divergence between its density field outputs and those of the base
NeRF model, meaning that the proposal network is optimized based on where the NeRF network is
placing geometry in the scene. This drastically improves sample efficiency, which greatly speeds up
training by feeding the model more information that directly contributes to learning the underlying
geometry of the scene.

Since 2020, the state of the art for NeRFs has advanced dramatically—from requiring several
hours of training on simple, bounded datasets to training in seconds and rendering entire unbounded
scenes with exquisite detail. With these improvements in both speed and accuracy, NeRFs are
now being tested in various fields with great success. In astrodynamics, for example, recent work
has begun to explore the utility of NeRFs for guidance, navigation, and control, particularly in
applications focused on the 3D modeling of spacecraft and celestial bodies.
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Figure 1. The baseline procedure for collecting data for training and rendering novel
views from a NeRF model. Poses represent the position and normalized viewing di-
rection of the cameras for each observation or novel viewpoint.




NeRFs in Astrodynamics

Past efforts have explored the use of NeRFs and other neural network based architectures to gen-
erate 3D models of spacecraft and celestial bodies from sparse sets of images. These efforts include
using NeRFs to model asteroids—demonstrating that they can be faster, more accurate, and require
less data than current state-of-the-art techniques like SPC.2% Other studies have concentrated on
reconstructing spacecraft from images taken on-orbit, exploring limitations such as the quantity of
images, complex lighting conditions, and non-ideal imaging effects like motion blur.®27-28 These
investigations highlight the potential of NeRFs for generating detailed 3D models of various objects
found in-orbit. Still, challenges persist in maintaining NeRF quality under non-ideal observation
conditions. Many NeRF models suffer when trained on data captured in spacecraft environments,
where images are taken from long distances, lighting is highly variable, and targets are in rapid mo-
tion. Future work must address these challenges to fully exploit the potential of NeRFs in realistic
mission scenarios.

In addition to pure scene reconstruction, recent studies have explored the use of NeRFs for prox-
imity operations and target pose estimation. Reference 29 employs two separate NeRF models: one
(W-NeRF) to build a model of the real-world scene using pre-processed images of a target body,
and another (iNeRF) to extract the spacecraft’s state by optimizing its pose in the learned scene. As
new images are captured, iNeRF “inverts” the process—optimizing the camera position within the
W-NeRF-generated scene to best reproduce the new image. Other research has focused on using
NeRFs to generate detailed 3D models of target spacecraft, which can then be integrated into exist-
ing pose estimation software.>* For instance, a study using a newer K-planes model demonstrated
promising results in estimating both the scene and the target spacecraft’s pose.>> Despite these
successes, challenges remain: hostile lighting conditions continue to negatively impact NeRF per-
formance, and the optimal dataset for reconstructing a target scene is typically one that is captured
at close range.

Thermal Imaging

Adverse imaging conditions, such as intense shadows produced by sunlight, present significant
challenges across many state estimation and model reconstruction techniques. Recent research has
explored using alternative wavelength bands—particularly the infrared band—for visual navigation
when the visual band is compromised. Although infrared images generally have lower resolution,
they consistently provide reliable and useful information that complements visual data.3! While
thermal imaging may struggle with fine edge detection, it is decidedly preferable to having no
information at all.

There has been some exploration into using NeRFs with inputs from different wavelength bands,
but no work to date has specifically coupled these bands to provide shape priors when the optical
wavelength is insufficient. The ThermalNeRF model was among the first to effectively combine
RGB and thermal imaging into a single NeRF scene.*?> This model expands upon the base Nerfacto
model provided by nerfstudio, allowing it to learn RGB and thermal fields simultaneously by opti-
mizing two separate models for each color and density field. To maintain consistency between the
two scenes, ThermalNeRF connects the separated fields through additional regularizers specified in
their loss function. This model learns accurate representations for both the underlying RGB and
thermal fields present in the training dataset, allowing it to represent objects that may have been en-
tirely obscured from view in either ground-truth dataset. While the ThermalNeRF publication does
not explore challenging lighting environments, they do demonstrate that RGB-T datasets can be



effectively combined to reveal information that would otherwise be inaccessible when using RGB
or thermal alone.

Another closely related work involves a single NeRF (MultiBARF) that combines inputs from two
separate wavelengths to produce a model yielding both visual and thermal outputs.’> MultiBARF
is built from the original Bundle-Adjusting Neural Radiance Field (BARF) model, which tackles
the issue of refining camera pose estimation in the same way as modern simultaneous localization
and mapping (SLAM) algorithms—using bundle adjustment.’* MultiBARF demonstrates that a
single NeRF model can simultaneously learn scene representations from two sensors operating at
separate wavelengths. This model employs a single density field, which keeps the underlying ge-
ometry of the scene consistent across color channels. MultiBARF’s results found that when trained
synchronously, depth estimates improved compared to thermal-only training. When trained asyn-
chronously, one sensor dataset after the other, there was degradation of the final field in each case.
Overall, MultiBARF implemented a NeRF framework capable of learning datasets containing im-
ages in different wavelengths, without the need for extra camera calibration or precise initial pose
estimates. No study has taken this work further to explore how thermal data can inform the ge-
ometry of what optical data fails to capture, and how this can be leveraged to enhance 3D model
reconstruction for objects observed in space. Further research is needed to optimize thermal scene
representations and to leverage them as shape priors that enhance the performance of visual band
NeRFs in challenging lighting environments.

METHODS

We seek to develop candidate mechanisms to assist in reliably training NeRF models under chal-
lenging lighting conditions, such as those found in orbit. Figure 1 illustrates the traditional end-
to-end procedure for training a NeRF model. In this baseline method, a set of images capturing
different parts of a scene is used to learn a continuous volumetric representation. However, in
space-based observation, significant portions of the scene can be missing or poorly illuminated due
to the presence of shadows. With the sun often serving as the primary (or sole) light source, many
regions of the target object may remain entirely unlit. In such cases, a NeRF model is challenged
in two key ways: incomplete learning and model divergence. In the case of shadows, the learned
geometry in these areas suffers greatly as the NeRF has no information to refine its estimate. This
lack of data results in poor performance in shadowed areas, having the potential to impact training
in visible areas as well, causing the entire model to diverge in the worst cases. In order to be robust
to these challenging viewing conditions, the original NeRF framework must be expanded to accept
additional information that reinforces its learning of a scene.

To overcome these limitations, we propose MW-NeRF, an approach that leverages multi-wavelength
imaging to improve the reconstruction of spacecraft under adverse lighting conditions. The core
idea is to train a single NeRF model that approximates color in two separate wavelengths, similar
to MultiBARF and ThermalNeRF, but based on a K-Planes model architecture. This model will
lean on visible spectrum data for well-lit portions of the scene, switching to data from a separate
wavelength when it would serve to improve the final reconstruction accuracy. This provides the best
of both worlds for celestial body and spacecraft modeling—describing the visible portion in high
detail and constraining the remaining shadowed areas using data from a different wavelength.
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Figure 2. The proposed modified procedure for MW-NeRF. This approach involves
training a single NeRF model using data from different wavelength bands. The part
of the model optimized on an alternative wavelength, where desired features are more
visible, provides a learned shape prior that informs the visual band in shadowed or
low-information areas.

K-Planes

The K-Planes NeRF model architecture is fast, compact, and can handle changing lighting con-
ditions. This model is also capable of reconstructing both static and dynamic scenes, meaning it
can render objects moving in a scene over time. K-Planes achieves this by its clever choice of
feature encoding, opting to utilize ”d-choose-2” planes to represent d-dimensional scenes. In the
static case, this results in a ’tri-plane” representation with the scene being represented using the
Xy, yz, and zx coordinate planes. Each of these planes is broken down into a pre-defined spatial
resolution where learned feature vectors can be stored and interpolated when querying any point
on these grids. Additional features from W-NeRF and Mip-NeRF-360 were also included in this
architecture, including appearance embedding and proposal network sampling. K-Planes does boast
the ability to use linear decoders rather than MLPs to learn accurate scene representations, but its
best results use MLPs, which also benefit from the CUDA kernels introduced in Instant-NGP. The
loss function for this is computed from the same color rendering algorithm as the original NeRF,
and promotes feature smoothness in planes and spatial dimensions through a spatial total variation
regularization term Ly :

1 y o hy o
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where P, are the c different planes, C' is the set of all 2D feature planes, n is the resolution width
of the planes, and 7, j are the indices of the different grid points given by the resolution of the plane.



MW-NeRF

MW-NeREF is built on the original K-Planes model, tailored to reconstruct space-based scenes
using single-channel 32-bit float datasets. Our NeRF models are all built using nerfstudio, an open-
source, developer-friendly, and highly collaborative repository. The current build of MW-NeRF
has a few changes that allow it to work well with space-based datasets besides being able to use
single-channel, high-range images — they are as follows.

Pixel Sampling While NeRFs do require objects to be resolved to learn a scene from scratch, it is
still important to recognize that observations may not always occur at favorable distances. Although
objects can still be resolved at long distances, they may take up a tiny portion of the final image,
causing the randomly sampled rays the NeRF attempts to learn the scene from to be dominated by
background pixels rather than the object of interest. In our formulation, we assume that there is some
rough estimate available to satellite operators indicating their distance to the object being observed.
These distances allow us to implement a well-informed axis-aligned bounding box, or scene box,
which encases the area of interest being reconstructed. We have added a new pixel sampling method
that uses the width of our scene box to mask out regions of images with unnecessary background
information. Fine-tuning these scene box parameters allows the MW-NeRF model to concentrate
its pixel samples on the object of interest, while still sampling some background pixels, which we
have empirically found to greatly benefit reconstruction stability.

Ray Sampling After sampling rays that intersect the scene box, we also have to guide where
along those rays we are interested in pulling initial samples. This comes in the form of calculating
near and far planes, which specify the closest and furthest points along the ray that the model is
allowed to sample from. We have implemented a minimal ray-tracing algorithm, known as the Slab
method, to calculate where each ray enters and exits the defined scene box. First, let the box be
defined by its lower and upper corners

1= <107l1712)7 h = (h07h17h2)7 (5)
and a ray be parameterized by
p(t)=o+tr, (6)
where o = (0, 01, 02) is the origin and r = (rg, 71, 72) is its pointing direction.
For each axis, the ray intersects the two planes orthogonal to that axis at
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We then form the “near” and “far” extents within that slab as
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The overall entry and exit parameters for the box are then
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that bounds our initial uniform samples that are fed into the first pass of



Multi-Wavelength Channels Currently, MW-NeRF supports datasets that have up to two differ-
ent channels. To accommodate the additional channel, we have added an additional color network
dedicated to learning the color output for that channel. The underlying density field is shared be-
tween the two networks, promoting them to learn a shape model that conforms to the data captured
in both channels, without the output color values interfering with each other. The latest version of
MW-NeRF allows users to tweak how much each channel is weighted in the loss function, should
one channel express desired features more than the other.

The key innovation of MW-NeRF lies in the integration of these two channel modalities. The
multi-wavelength portion, which benefits from enhanced feature visibility, is used to generate a
shape prior that informs and guides the visible band NeRF during training. This dual-mode strategy
offers several advantages, the largest being increased robustness to the challenging lighting condi-
tions present in space environments. By incorporating observations from multiple sources, the risk
of becoming limited by data sparsity diminishes greatly, increasing the consistency and reliability of
the model as a whole. Informing these previously problematic areas also significantly decreases the
likelihood of model divergence, even in extremely dark scenes. A comprehensive, multi-wavelength
model can also serve as a foundation for advanced future applications such as dynamic relighting,
where understanding the complete shape and structure of the spacecraft is crucial.

Figure 2 summarizes the modified procedure for training MW-NeRF. The diagram shows how
the multi-wavelength and visible bands are trained in parallel, with the learned shape information
from the MW branch being used to refine the visible branch. Overall, the proposed MW-NeRF
framework is designed to leverage complementary spectral information to overcome the inherent
limitations of single-band imaging in space. By doing so, it promises to deliver a more robust and
accurate reconstruction of spacecraft, even under the challenging illumination conditions found in
orbit.

MW-NeRF Dataset

While MW-NeRF will be designed to accept images across many wavelengths, our first explo-
ration involves the complementary pairing of the visible and infrared wavelengths. We will use
synthetic datasets of two canonical spacecraft geometries—a custom CubeSat (“Boxsat”) and a
Hubble telescope model—running a photorealistic rendering engine to simulate both visible and
infrared imagery under controlled, physically accurate conditions. For each model, the render-
ing engine will compute scene radiance by tracing solar illumination and thermal emission across
user-defined lighting geometries (varying solar incidence and phase angles), platform-target dis-
tances (from kilometers to meters away from the target), and spectral channels spanning visible and
infrared wavelengths. These multi-wavelength image pairs will then train our MW-NeRF: the IR
branch provides a robust shape prior in deep shadows, while the visible branch captures high-fidelity
surface textures in well-lit regions. By systematically varying angle, range, and wavelength, we will
assess MW-NeRF’s ability to fuse disparate spectral data, quantify reconstruction accuracy in both
bands, and demonstrate enhanced robustness in the extreme lighting environments typical of celes-
tial body and spacecraft imaging. The following section, covering our current results, will quantify
the performance of the MW-NeRF model architecture first when training on datasets taken in only
the visible spectrum, followed by dual-channel training.

In our initial experiments, we focus exclusively on optical data for the two canonical spacecraft
geometries. For each geometry, we generate images using a uniform 614-point spherical sampling
grid under identical solar illumination. Five separate datasets are produced per geometry, each
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corresponding to one of five discrete viewing distances. Because the appropriate distance depends
on target size, the Boxsat model ranges from 20m to 300m and the Hubble model from 50m to 1km.
Figure 3 shows a single example for each of these spacecraft across their range of viewing distances.
Our exploration of these datasets will focus on a single trained model per spacecraft geometry, each
trained on the full dataset of 3070 images.

..

Figure 3. A single viewing direction from the two canonical spacecraft geometries,
spread across their five different viewing distances.

PRELIMINARY RESULTS

Our current results first focus on exploring the baseline performance of the MW-NeRF architec-
ture when training on just a single channel. In this exploration, we will show the view and distance-
dependent performance for each of the canonical spacecraft geometries defined previously. More
specifically, we will point out shared points of difficulty across all spacecraft geometries and places
where single-channel models fall short. We will then move on to the current results being produced
by the two-channel MW-NeRF model, outlining its current state, what changes need to be made,
and what we expect to improve once it reaches its final version.

Performance Metrics and Figures

Since NeRFs reconstruct a continuous 3D scene and render novel 2D views, their quality is
commonly assessed with image—comparison metrics from computer graphics. We use the two most
popular: the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM).

PSNR is a log-scaled transform of the mean squared error (MSE) between a reference image [
and a reconstruction [:

L
PSNR = 201 — ], 10
0g10< MSE> (10)
where
1 N
£ \2
MSE = NPEI(IP — Ip) , (11)

N is the number of valid pixels, and L is the peak possible pixel value. For 8-bit imagery this peak
pixel value is capped at L = 255. In the case of MW-NeRF, which uses a 32-bit floating point
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format, we define this value using the range of pixel values present in the training dataset, choosing
L to be the 99.5™ quantile of illuminated pixel values in the training set. This choice spans nearly
all valid signal without artificially inflating PSNR. Good PSNR values vary based on the type and
range of data being represented, with larger values indicating smaller errors between comparison
images.

While PSNR is excellent at quantifying overall error magnitude, it is not necessarily indicative of
perceptual or structural similarity. SSIM was designed to better correlate with human perception by

comparing local luminance, contrast, and structure. For a (typically Gaussian-weighted) window,
SSIM is defined as

(2pzpy + C1) (202 + C2)
(13 + py + C1) (0% + 0 + Ca)’

SSIM(z, y) = (12)

where 1., 11, are local means, ag, 05 local variances, o, is the local covariance, and C'; = (k1 L)Q,
Co = (koL)? are small stabilization constants (commonly k1 = 0.01, ks = 0.03). As with PSNR,
we use the same L (our quantile-based dynamic range). SSIM ranges from 0-1, with 1 indicating
perfect similarity. Because it normalizes by local statistics, SSIM better captures structural fidelity
than PSNR; however, it still assumes pixel-wise alignment, can be affected by large global lumi-
nance shifts, and depends on the chosen window size.

PSNR and SSIM satisfy our needs for overall error magnitude and structural similarity, but they
can be unintuitive to readers unfamiliar with these metrics. To provide a more directly interpretable
heuristic, we introduce a third metric: the total intensity percent error (TIPE) between two images.
Let

(1) =) 1, (13)
p

be the total intensity of image I over the set of all pixels in that image. The percent error between a
reconstruction I and the reference I is

I(I) - I(1)|

_ |
TIPE = 100 x 0 %. (14)

This scalar value provides a plain percentage describing how much total radiance/energy the recon-
struction gained or lost relative to the ground truth. While it ignores the spatial distribution of the
error, it complements PSNR and SSIM by offering an easily understood summary of photometric
fidelity.

Each metric was computed by comparing the MW-NeRF reconstruction to the ground-truth im-
age at every node of the spherical grid. Figure 4 visualizes these results as polar maps for the
northern and southern hemispheres, and outlines the conventions which will be followed by the
simplified versions of these figures in the remainder of this paper. Concentric circles indicate el-
evation, while radial spokes denote azimuth. After evaluating the metric at each grid point, we
produced a smooth field using cubic interpolation. Viewpoints from models trained on all available
data are highlighted with markers; the specific rendered examples included in the paper are also
indicated for reference. All polar plots will follow the same conventions as Figure 4, using the same
layouts, color schemes, and color value scales per metric—maintaining consistency for comparisons
between different models.
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Figure 4. Interpolated PSNR, SSIM, and TIPE sweeps comparing the ground-truth
Boxsat to the visible band MW-NeRF outputs at a distance of 20m.
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Full Range Training

To begin the exploration of models trained on all 3070 images per spacecraft geometry, we will
cover the Boxsat geometry illuminated from a single sun angle at a range of 20m. Figure 4 intro-
duces the polar plots used for each model analyzed in this paper, starting with the close-range results
from our fully trained Boxsat model. While SSIM and PSNR show overall high similarity and low
error for most parts of the learned radiance field, the TIPE shows how this model struggles in
shadowed regions. Because this training dataset contains many shadowed faces, our single-channel

MW-NeRF model cannot capture the satellite’s full shape.

Table 1. Boxsat 20m Hemisphere Summary Statistics

Metric | Hemisphere | Median Min Max
TIPE North 10.9227 | 0.0081 | 792.503
South 1.1978 | 0.0075 | 20.340
PSNR North 547526 | 1.9329 | 94.4114
South 45.0270 | 5.2017 | 49.9770
SSIM North 0.999319 | 0.9968 | 0.999997
South 0.996956 | 0.9936 | 0.998749
Ground Truth NeRF Render Depth

Case 1: Fully Lit

Case 2: Half-Lit

Case 3: Unlit

conditions labeled in the polar metric plots.

Figure 5 demonstrates that the visible-band renderings generated from this model are capable
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of maintaining a very high degree of similarity compared to their ground truth counterparts, while
the depth maps reveal significant portions of the spacecraft that are either poorly learned or not
learned at all. This includes some of the smaller illuminated facets jutting out from the sides of the
spacecraft, and the very poor reconstruction for one of the solar panels (with the other solar panel
being absent entirely). Table 1 outlines the statistics for each of the metrics outlined in the polar
plots. Overall, we see that each metric performs well, except for TIPE in the heavily shadowed
northern hemisphere. These large max percent error values reach into the hundreds, demonstrating
just how poorly we capture extremely shadowed regions. The shadowed solar panels and facets
sticking out from dimly lit portions of the spacecraft stand to gain the most from two-channel
training, as optical observations reveal too little information about these characteristics for the final
NeRF model to learn them.

The Hubble model is undoubtedly the most complex of the two geometries explored in this paper,
but its visual performance was among the best observed. Figure 6 evaluates the full range trained
model at its closest and furthest distances of 50m and 1km, respectively.

(a) Evaluation at 50m (b) Evaluation at 1km
Figure 6. Interpolated PSNR, SSIM, and TIPE at 50m and 1km for the full-range Hubble model.

Overall performance on the full range Hubble dataset was smooth throughout Figures 6 and 7—
illuminated portions of the spacecraft performed very well, while the dim side showed the poorest
performance. The final model outputs for three distinct lighting conditions are displayed in Figure 7.
Across all lighting scenarios, MW-NeRF maintained excellent visible-band performance, although
it did fail to capture a complete underlying shape model of the spacecraft in the shadowed region. In
this case, the visible side is learned almost perfectly, while the shadowed side is completely absent
(including the dark-side solar panel, apart from the portion that still reflects a bit of visible light).
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Figure 7. Side-by-side comparisons of the learned Hubble model across the three
lighting conditions labeled in the polar metric plots.

Initial IR Results

The current two-channel training with MW-NeRF has demonstrated great success in reconstruct-
ing accurate shape models while retaining good visible-band performance. This is best demon-
strated in Figures 9 and 8.

Figure 9 shows our current visible-band accuracy while simultaneously learning an accurate un-
derlying shape model. Comparing directly to Figure 6, we can see that supplementing IR data in
the training process helps enhances model performance in some areas, while getting slightly worse
in others in this case. While visible-only training fails to learn a large portion of Hubble, ultimately
damaging the model’s performance in that region, MW-NeRF can learn an accurate shape model
fully, but currently still struggles with scene reconstruction in heavily shadowed zones. Figure 8
shows MW-NeRF’s success in capturing the full Hubble shape model, especially when compared to
case 2 in Figure 7. A full direct comparison between these two models when evaluated at a target
range of 50m is shown in Table 2. As in the polar plots, we see extremely similar results across
all metrics, with the MW-NeRF performance being slightly worse on average. The same inflated
TIPE values in shadowed regions are shared between these two models, and while median PSNR
and SSIM values remain within 2% of each other regardless of the hemisphere, we see median TIPE
values differing by about 25-50%. Our current difficulties in the shadowed regions can be seen in
case 3, where outlines of the spacecraft are learned to be slightly visible where they should not be.
Overall, PSNR and SSIM results remained largely the same, while TIPE improved in some areas,
and grew worse in the worst shadowed zones.

The model used to generate these results was trained on the same Hubble images as in Figure 6—
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[ |

Figure 8. Side-by-side comparisons of the learned Hubble model, using both vis and
IR data, across three lighting conditions. Each NeRF render is accompanied by its
corresponding depth map, showing the underlying learned structure of the scene.

Table 2. Hubble 50m Hemisphere Statistics for Vis-Only NeRF and MW-NeRF

Model Metric | Hemisphere | Median Min Max Recovered Shape
TIPE North 4.4723 0.0091 713.489
South 1.5091 0.0025 25.8616
. North 49.1113 | 26.0777 | 79.9753
Vis-Only NeRF | PSNR 1 ¢ 477291 | 22.9058 | 54.1801 X
SSIM North 0.995997 | 0.9875 0.99996
South 0.992505 | 0.9706 0.9969
TIPE North 6.0988 0.0117 | 761.8221
South 2.5976 0.0252 | 479.8126
North 48.8114 | 25.6463 | 66.6987
MW-NeRF PSNR South 472212 | 22.9883 | 53.5735
SSIM North 0.994056 | 0.9830 | 0.99933
South 0.990034 | 0.9676 0.9960

using the same sun angle with target ranges from 50m to 1km. These 3070 visible-band images were
accompanied by 614 IR images taken at the same grid points on the bounding sphere at a range of
50m. The loss associated with both visible and IR image renderings were weighted the same for this
model’s training, but further investigation is required to uncover what weights are appropriate based
on the object geometry and lighting complexity. By exploring this, we expect to find weighting
conditions which will maximize both shape model accuracy and visible-band performance, without
compromising one or the other.
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(a) Evaluation at 50m (b) Evaluation at 1km

Figure 9. Interpolated PSNR, SSIM, and TIPE at 50m and 1km for the full-range
Hubble model trained on visible and IR data.

CONCLUSION

In this work, we have outlined our new realistic datasets, which focus on two canonical geome-
tries: a CubeSat model and a Hubble model. We also outlined and demonstrated the single-channel
capabilities of our newly proposed NeRF model architecture: MW-NeRF. Our single-channel per-
formance has demonstrated excellent capability in complex scenes with complex lighting, while
still highlighting the fact that the harsh lighting conditions present in space-based observations are
tremendously difficult to overcome using optical light alone. Early exploration of our two-channel
capabilities has demonstrated that employing multi-wavelength data in NeRF training can signifi-
cantly improve the learned shape model, but more work is needed to ensure this does not negatively
affect visual performance. Future work will fine tune MW-NeRF when training on two channels
to faithfully reconstruct accurate underlying shape models, while simultaneously producing more
stable models that are globally accurate. Finally, producing accurate and reliable shape models for
spacecraft paves the way for future work, which may require complete shape models, such as with
dynamic relighting of scenes, or fully capturing time-varying scenes.
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