(Preprint) AAS 25-867

CHARACTERIZATION OF NEURAL ORDINARY DIFFERENTIAL
EQUATIONS FOR ASTRODYNAMICS APPLICATIONS

Sarah Wielgosz; Huan Xu] and John R. Martin*

INTRODUCTION

Accurate dynamics models are critical for reliable mission design and analysis. While there exist
high-fidelity models for perturbing forces such as solar radiation pressure, atmospheric drag, and
non-uniform gravity fields, these models are seldom universally valid. There inevitably exists a
gap between these analytic models and the dynamics experienced in practice. These may come
from effects that are unknown a-priori or high-order forces simply beyond the reach of popular ana-
lytic models. While improvements to physics-based modeling and numerical methods can partially
address these gaps, such approaches often become computationally expensive or require detailed
knowledge of the system. Consequently, there is growing interest in augmenting existing models
with data-driven techniques capable of capturing unknown or partially known dynamics in a more
flexible and efficient manner. By improving our understanding of these forces and our consequent
dynamic modeling, we can reduce the frequency and magnitude of corrective maneuvers, ultimately
saving fuel, minimizing risk, and lowering cost.

Neural ordinary differential equations (neural ODEs) offer a powerful framework for learning
models of complex dynamical systems in a data-driven fashion. Neural ODEs use a neural net-
work to represent the dynamics of a system as a continuous-time differential equation, enabling the
model to learn how the system evolves over time directly from data. This approach is particularly
well-suited for representing highly nonlinear, time-dependent behaviors, making it a natural fit for
challenging dynamics problems. Their compatibility with standard numerical integration tools fur-
ther enhances their appeal. While neural ODEs have shown significant promise in broader machine
learning and physics domains, their potential in astrodynamics remains largely unexplored, offering
a valuable direction for research.

In this work, we aim to provide a preliminary overview of the utility and capabilities of neural
ODE:s applied to popular astrodynamics systems. In particular, our efforts focus on using Neural
ODEs to model two canonical problems——the planar two-body problem (2BP) and the planar Cir-
cular Restricted Three-Body Problem (CR3BP). These benchmark systems allow us to validate the
neural ODE’s ability to recover known dynamics under idealized conditions by constructing models

“NSF Graduate Research Fellow, Department of Aerospace Engineering, University of Maryland, College Park, Martin
Hall Bldg #088 College Park, MD 20742

T Associate Professor, Department of Aerospace Engineering, University of Maryland, College Park, Martin Hall Bldg
#088 College Park, MD 20742

* Assistant Professor, Department of Aerospace Engineering, University of Maryland, College Park, Martin Hall Bldg #088
College Park, MD 20742

of the form
dx

E :fe(xvt)a (D

where fy represents the dynamical model (e.g., 2BP or CR3BP) parameterized by a neural network
and trained using state data from families of sampled trajectories.

For this work, we prioritize the coarse characterization of neural ODEs ability to recover the
underlying dynamics of the training data and their generalization capabilities when tested beyond
the bounds of this data. In doing so, we identify important training considerations that enable neural
ODE:s to recover unknown dynamics with acceptable fidelity. This work highlights the strengths,
limitations, and potential of neural ODEs as tools for augmenting traditional models, particularly in
applications where effective control relies on accurate dynamical knowledge. By exploring model
sensitivity to data and design choices, our objective is to establish practical guidelines for applying
neural ODEs to real-world astrodynamics systems, ultimately paving the way for more accurate,
fuel-efficient and autonomous space missions.

BACKGROUND

Historically, the modeling of spacecraft dynamics has been rooted in physics-based models. Clas-
sical approaches use Newtonian mechanics, Lagrangian or Hamiltonian formulations, and gravita-
tional models to derive equations of motion. These models form the foundation of analytical orbit
propagators and enable deterministic trajectory design and control.

When physical modeling becomes challenging due to system complexity or incomplete knowl-
edge, engineers have turned to system identification techniques. Methods such as auto-regressive
models,! linear state-space identification,” and Kalman filtering’ enable estimation of dynamic be-
havior from observed data, particularly when system inputs and outputs are well-characterized.

For high-dimensional dynamical systems, modal decomposition methods offer a powerful means
of extracting essential features and reducing complexity. Techniques such as Dynamic Mode De-
composition* and its theoretical foundation in Koopman operator theory” enable a data-driven anal-
ysis of system behavior by decomposing complex spatiotemporal evolution into a set of modes,
each associated with a fixed oscillation frequency and growth/decay rate. These methods reveal
spatial patterns that evolve in time according to simple rules, which can be particularly valuable
for understanding and modeling complex phenomena. Unlike traditional model-based approaches,
these decompositions require no prior knowledge of the underlying governing equations. Instead,
they rely solely on observed data, enabling compact representations of system behavior even when
a full physical model is intractable or unknown. This ability to linearize nonlinear dynamics in a
higher-dimensional function space makes modal decomposition a cornerstone of modern system
identification and control strategies in high-dimensional settings.

More recently, advances in symbolic modeling, such as Sparse Identification of Nonlinear Dy-
namics (SINDy)® and symbolic regression, have aimed to recover interpretable governing equations
directly from data. In SINDy, one first assembles a library of candidate nonlinear functions of
the system’s state and then solves a sparse regression problem—often via sequential thresholded
least-squares or LASSO—to identify only the few active terms that best reproduce the observed
time derivatives. By enforcing sparsity, SINDy yields compact, interpretable models that capture
the dominant dynamics without overfitting to spurious correlations. However, these methods often
struggle in noisy or high-dimensional settings.

Modern developments in machine learning, particularly the advent of neural networks and deep
learning, have introduced new avenues for modeling. Neural ODEs, Physics-Informed Neural Net-
works (PINNSs), and latent dynamics models offer flexible frameworks for capturing nonlinear be-
havior, especially in partially known or data-rich regimes. These data-driven methods are now
being explored as complements or alternatives to traditional dynamics models in guidance, navi-
gation, and control (GNC) systems. A particularly promising alternative lies in the use of neural
ODEs, which adopt a data-driven approach to learning complex dynamical systems. By modeling
spacecraft dynamics through neural ODEs, more efficient and adaptive trajectory planning becomes
feasible, especially in regimes where physical models are incomplete or uncertain.

Originally introduced by Chen et al.,” neural ODEs have emerged as a powerful framework for
modeling continuous-time dynamics using neural networks. Unlike traditional feedforward archi-
tectures, they define the hidden state evolution as a differential equation parameterized by a neural
network, allowing for smooth interpolation over time and memory-efficient training. These models
have shown success across various scientific and engineering domains, including fluid dynamics,®
robotics,”,!? and spacecraft motion'! where complex, nonlinear behavior is difficult to capture using
classical parametric models. Their ability to learn governing equations directly from observational

data makes them particularly well-suited for systems with unknown or partially known dynamics.

Several recent efforts have explored neural ODEs and other scientific machine learning algo-
rithms to improve control performance. For example, Ueda and Owaga use neural ODEs to learn
multi-objective control laws in settings with known dynamics. Similarly, Origer et al.!> explore
the application of neural ODEs for optimizing guidance and control networks to achieve a time-
optimal interplaneteray transfer and mass-optimal landing on an asteroid under known dynamics.
Meanwhile, others have employed PINNs to embed physical constraints into the learning process
for spacecraft control laws.!>!* These studies, while promising, remain focused on augmenting
systems where at least partial models are known.

Another compelling use case for neural ODEs in astrodynamics is orbit propagation. In low Earth
orbit (LEO), the growing presence of satellites and debris heightens collision risk. Subramanian et
al.!> leverage physics-informed neural ODEs and historical spacecraft data to accurately predict
orbital trajectories and assess collision probability, enabling more timely and informed maneuver
decisions. These physics-informed approaches embed known physical laws directly into the training
process, enhancing model generalization and reliability.

Earlier attempts to infer unmodeled dynamics relied on symbolic regression methods, such as
those proposed by Manzi et al.'® However, symbolic regression tends to struggle in high-dimensional,
noisy environments due to its reliance on interpretable but simplified representations.

A notable contribution in learning unmodeled dynamics comes from Murphy and Scheeres,'!

who combine neural ODEs with symbolic regression to augment spacecraft dynamic models from
tracking data. In their framework, neural networks are first used to model discrepancies between
observed spacecraft motion and predictions from known physics-based models. Symbolic regres-
sion is then applied to extract interpretable mathematical expressions that describe these residual
dynamics, enabling both data-driven adaptation and physical insight. This hybrid approach not only
improves prediction accuracy in the presence of unmodeled forces—such as irregular gravity fields
or perturbations—but also facilitates integration with existing analytical models. Their work under-
scores the potential for neural differential equations to adaptively learn dynamic behaviors directly
from measurements while maintaining interpretability and physical consistency.

In this paper, we aim to generalize these advances by providing a neural ODE framework which
can be utilized to learn coarse representations of the full-system dynamics in lieu of prespecified
base models. Our approach provides a preliminary characterization of neural ODE behavior across
a range of scenarios. These efforts illustrate the growing role of neural ODEs in modern machine
learning, offering improvements in orbit propagation with future implications on onboard autonomy.

Motivation Case Studies

@ 2BP

f(x)

Case Studies
@ CR3BP

?J

(] T = ftrue(m) — NODE — x= = f&(w)

Figure 1: Training neural ODE to learn known and unknown dynamics.

METHODOLOGY
Neural ODEs

Neural ODEs provide a continuous-time framework in which the derivative of a hidden state is
parameterized by a neural network. This structure replaces the layer-by-layer transformations in
traditional deep neural networks with the solution of an initial value problem:

MO — (e 1.0), @
where h(¢) is the hidden state at time ¢, f is a neural network with parameters 6, and the dynamics
are learned directly from data. Given an initial condition h(0), a black-box differential equation
solver is used to compute the output h(T') at any time 7.7 This formulation yields a continuous-
time model that is particularly well-suited for irregularly sampled time series, allowing predictions
at arbitrary time points and removing the need for fixed-step discretization.

Training with the Adjoint Method. A key innovation introduced in’ is the use of the adjoint sen-
sitivity method to enable efficient backpropagation through the ODE solver. Rather than storing
the entire forward trajectory during training, which can be memory-intensive, the adjoint method
solves a second differential equation backward in time to compute gradients with respect to the

Residual Network ODE Network
5 5

4

I

-5 0 5 -5 0 5
Input/Hidden/Output Input/Hidden/Output

Figure 2: Finite transformations defined by residual networks (left) versus continuous transforma-
tions defined by neural ODEs (right).’

hidden states:

da(t) of
= —a(t)T=—= 3
where a(t) = —8%3 is the adjoint state. The gradients with respect to the model parameters can now
be represented as an augmented ODE calculated as
dL o of(z(t),t,0)
— TN 0 T 0 4
= @

where the vector-Jacobian products are efficiently calcualted by automatic differentiation. This
yields constant memory cost during training, making Neural ODEs scalable to long time horizons
and deep continuous transformations. The solver is treated as a differentiable black-box, allowing
seamless integration with existing deep learning pipelines.

In summary, neural ODEs are advantageous for learning dynamics because they provide a data-
driven method of modeling continuous-time dynamics, they are memory efficient, These features
make Neural ODEs a powerful tool for modeling the evolution of complex dynamical systems,
including spacecraft trajectories under uncertain or perturbed conditions.

Comparison to Prior Dynamics Learning Methods. Neural ODEs distinguish themselves from
classical approaches to learning dynamical systems, such as Dynamic Mode Decomposition (DMD),*
which approximates the Koopman operator to model linear dynamics in a lifted feature space. While
DMD and its variants offer interpretability and closed-form solutions under specific assumptions,
they often require uniform sampling and may struggle with complex nonlinearities present in real-
world data. In contrast, Neural ODEs are fully nonlinear, data-driven models that can flexibly adapt
to arbitrary dynamics without restrictive assumptions on the system or measurement process.

Canonical Astrodynamic Systems

Two-body Problem We consider the relative form of the two-body problem (2BP) equation which
describes the motion of a satellite orbiting a primary gravitating body. We assume that the satellite’s
mass is insignificant relative to that of the primary gravitating body, and its motion is only affected
by gravity of the primary body. The two-body equations of motion are given as

N T

\\\\\ m,

12

Figure 3: CR3BP in the rotating reference frame.

&)

S 3y

Bl 1
r2

where 1 is the gravitational parameter of the primary body and 7’is the position vector of the satellite
in Cartesian coordinates.

To improve numerical performance, it is common to nondimensionalize the system by character-
istic quantities. A characteristic length, [*, is chosen to reflect the scale of the particular problem.
For example, for an interplanetary orbit, it is common to set [* = 1 AU. Characteristic time, t*, is
defined as

l*3

= — (6)
W

such that the non-dimensional gravitational parameter, ©*, is equal to 1.

Circular Restricted Three-body Problem We consider the nondimensionalized form of the cir-
cular restricted three-body problem (CR3BP), which models the motion of a satellite of negligible
mass under the gravitational influence of two bodies orbiting their barycenter in circular orbits. The
primary body has mass m1, and the secondary body has mass my The dynamics are described in a
rotating reference frame where the primaries remain fixed on the x*-axis.

The nondimensional mass ratio is
ma

rT=——- (N

b
mi + ms

and the nondimensional coordinates in the rotating frame are

o=

12

* Y
y = 3)

12

=2

T12

The nondimensional distances from the satellite to the primary and secondary bodies are found
respectively as

U:\/($*+W)2+y*2+z*2

©)
P = \/(l‘* -1 —|-7T)2 +y*2 _{_2*27
and then finally the nondimensional equations of motion are given as
. - P e (P T, .
-2yt — ot =— g (x —|—7r)—$(x—1+7r)
. . 1—7m , T
g2t -yt =gy ~ Y (10)
- 1—7 , T
= i ﬁz .

PROBLEM STATEMENT

We conduct a series of case studies across increasingly complex dynamical regimes to evaluate
the neural ODE’s ability to model relevant spacecraft dynamics. The first study explores the re-
covery of planar 2BP dynamics around Earth, and the second explores the planar dynamics around
Lagrange points in the Earth-Moon three-body system. These studies train the neural ODEs on
datasets that cover increasingly large regions of the state space before then testing their generaliza-
tion capabilities to previously unseen dynamical regimes.

Datasets In training the 2BP, we define the simple and complex datasets which will be refer-
enced herein. The simple dataset refers to one whose bounds on orbital elements are close to a
circular, equatorial, low Earth orbit with limited orientation changes. Conversely, the complex
dataset spans a variety of regimes around Earth, from low Earth orbit to geostationary altitudes, cir-
cular to highly eccentric, and a full range of orbital orientations. The simple and complex training
datasets for the 2BP can be seen in Figures 4a and 4b, respectively. In both cases, initial conditions
are randomly chosen from a uniform distribution of specified orbital element ranges as detailed in
Table 1.

75000
10000 50000 -
5000 - 25000 -
— [g
—_5 0 = 01
S
>~ —25000 1
—5000 A
—-50000 A
—10000 1, .] ~75000
—-10000 0 10000
X [km]
(a) Simple training dataset (b) Complex training dataset

Figure 4: Two-body problem training data in the simple and complex case.

Table 1: Bounds of orbital elements for simple versus complex 2BP datasets.

Orbital Element Simple Complex
Semi-major axis [Rg + 1000, Rg + 3000) km [Rg + 500, Rg + 20000] km
Eccentricity [0, 0.1] [0, 1.0]

Argument of periapsis [0, 180]° [0, 180]°

Initial true anomaly [0, 360]° [0, 360]°
Inclination 0° 0°

To generate training data for the CR3BP, we again build out increasingly complex datasets. To
compute periodic planar orbits around all of the Lagrange points we utilize numerical shooting
methods developed by Jain.!” In order of increasing complexity, our training datasets include a
single Lyapunov orbit around Lagrange point 1, a family of Lyapunov orbits around Lagrange point
1 found via varying the Jacobi constant, families of Lyapunov orbits around the collinear Lagrange
points 1 through 3, and finally families of planar orbits around all Lagrange points (Lyapunov orbits
around collinear Lagrange points 1 through 3, short-period orbits around triangular Lagrange points
4 and 5). The training dataset for all planar families is shown in Figure 5. The datasets descriptions
and their associated names used herein are summarized in Table 3.

Table 2: Overview of planar CR3BP training datasets and their reference Lagrange points.

Dataset Name Reference Lagrange Point(s) Num Orbits per Lagrange Point
L1 Orbit L1 1

L1 Family L1 50

Co-Linear Families L1,L2, L3 50

All Families L1,L2,L3,L4,L5 50

3.15
1.0 1
3.10
@ 0.5- 3.05 =
g 8
e 4
& 3.00 3
2 §
£ 0.0
5 2.95 5
= o
o 3]
= 2.90 S
> _0.51 ’
2.85
1.0 2.80
-15 -1.0 =05 0.0 0.5 1.0

x (rotating frame)

Figure 5: Training dataset for planar orbits families at all Lagrange points.

Table 3: Overview of planar CR3BP training datasets and their reference Lagrange points.

Dataset Name Reference Lagrange Point(s) Num Orbits per Lagrange Point
L1 (LO1) L1 1

L1 Family (LF1) L1 50

Co-Linear Families (CLF) L1,L2,L3 50

All Families (ALF) L1,L2,1L3,14,L5 50

Training Details

A neural network is randomly initialized. This network parameterizes the continuous-time dy-
namics of the hidden states, making the neural ODE framework well-suited for scientific machine
learning problems involving systems governed by physical laws. Given a set of initial orbital con-
ditions, the network is used to propagate the state forward in time via integration of the learned
dynamics. A scalar loss defined as the percent error between the predicted and true states is com-
puted. Gradients of this loss with respect to the network parameters are then calculated using the
adjoint method” and used to update the model. Notably, the default training process for neural ODEs
is not naturally stable, particularly when integrated over long time intervals. Strategies to encourage
model convergence are discussed below.

Activation Function The activation function used for training both the 2BP and CR3BP mod-
els is the hyperbolic tangent activation function, tanh. It is well suited for neural ODE models
since it is smooth, bounded, and infinitely differentiable. Infinite differentiability is critical in train-
ing neural ODEs because in the adjoint sensitivity method, gradients are computed by integrating
the augmented ODE backward in time. Since tanh is smooth and infinitely differentiable, adjoint
dynamics are consequently smooth and continuous resulting in a numerically stable backward inte-
gration.

Feature Layers Feature layers for the 2BP and CR3BP are chosen to provide the network with
strategic features which improve learning efficiency and generalization. In our neural ODE model
for the 2BP, the feature layer is composed of the reciprocal distance 1/7, the unit direction vector
[s,t,u], and the Cartesian velocity vector [v, vy, v.] based on the dynamics of the 2BP described in
Equation 5. Notably the true vector field for the 2BP does not rely on the velocity vector; however,
we find the the inclusion of these states in the feature layer afford the network greater stability
during training.

For the CR3BP, we adopt a feature layer similar to the 2BP case, but adapted to the rotating frame.
The feature layer is composed again of the reciprocal distance, unit direction, and velocity vector (all
with respect to the rotating frame), and we additionally include 1/r; and 1/r9, the inverse distances
to the primary and secondary bodies, and the Jacobi constant, JC' which encodes the conserved
energy level of each periodic orbit of interest.

Output Layers In a similar manner, neural ODE outputs can be suffixed with a final transforma-
tion layer that can be used to transform numerically favorable outputs into the physically meaningful
dynamics. This is accomplished by designing a neural ODE with four outputs that correspond to
(ar, as, at, a,), where a, is the acceleration magnitude, and a;Vi € {s,t,u} are the unit magnitudes
in the z, y, and z directions respectively. These values are converted to a, a,, a. via multiplication
with a,, and then appended with the velocity vector of the initial state to form the final dynamics

output — i.e.
X = fo(t) =2 — g(2,X) = X (11)

where z = [a,, as, at, ay,] and g(z, X) = [vg, Uy, Uz, Qr - Gg, Qp - G, Gy - Qyy).

Training Curriculum When training neural ODE:s, a length strategy is often implemented. This
curriculum learning approach involves training the model on only a subset of the full time series
for each training example. In doing so, model efficiency is improved by training on a limited data
subset before increasing longer sequences of training data.

However, we directly observed through model development and training that if length strategies
become too long, the model may suffer from vanishing gradients. As integration time increases,
the augmented ODE described in Equation 4 is dominated by a decaying integrand, resulting in
vanishing gradients. Consequently, the model cannot make useful updates and it fails to train suffi-
ciently. To mitigate this behavior, we segmented each trajectory to decrease the time horizon of the
subdivided trajectories. In doing so, integration time was limited such that the gradients were not
dominated by decaying terms and the gradient remained stable.

Evaluation Metrics Model success is evaluated based on its accuracy in reproducing instanta-
neous dynamics. Therefore we assess the performance of the neural ODE framework via the mean
percent error of the acceleration residual L2 norm. This reflects the fidelity of the learned dynamical
model and ultimately indicates its utility for accurate state propagation over time.

RESULTS & DISCUSSION
Two-Body Problem

Dynamics of the 2BP are learned from training on a single simple orbit, the simple dataset, and the
complex dataset. Every orbit trajectory was segmented into 20 intervals equal in eccentric anomaly.
Each segment then represented a unique trajectory passed to the neural ODE model. The model
parameters are summarized in Table 4.

Table 4: Neural ODE parameters for learning 2BP dynamics.

Parameter Value

Input Features [1/r, s, t, u, vz, vy, V]
Network Width 64

Network Depth 2

Batch Size 256

Loss Function State percent error

Activation Function tanh

ODE Solver Tsitouras 5/4 Runge—Kutta

ODE Solver Absolute Error 1x10°8

ODE Solver Relative Error 1x1076

Optimizer ADAM

Learning Rate Strategy 0.001

Steps Strategy [500, 500, 500, 500, 500, 500, 500, 500, 500, 5000]
Length Strategy [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0]

10

Test . .
m Single Simple Complex

Single 5.9173293 5.748998 11.683002
Simple 2.6530995 2.393616 9.857474
Complex 0.50465333 0.48402855 0.61609894

Table 5: Mean Acceleration Error for Different Datasets

To test the generalization ability of each of the trained model, we observe the cross-domain accel-
eration error in Table 5. A limited number of the associated propagated trajectories are visualized
in Figure 6. As the complexity of the training dataset increases, the cross-domain error decreases.
Conversely, the model trained on a single orbit or a simple dataset has difficulty generalizing to
more complex domains. Both of these results are intuitive — as the model is exposed to increased
phase space, its ability to generalize improves. We additionally observe that as complexity of the
dataset increases and the model is exposed to increased phase space, the ability of the model to learn
the dynamics of its own training dataset improves as exemplified by the errors on the diagonal in
Table 5.

The results in Table 5 and Figure 6 can be intuitively interpreted by examining the difference
in the acceleration residual vectors of the simple and complex models applied to the same testing
dataset. In Figure 7, we apply the simple and complex models to a highly eccentric orbit with an
eccentricity of 0.8326 and a semi-major axis of 38,268.78 km and observe the absolute acceleration
residuals (scaled for visibility). We observed larger acceleration residuals when applying the simple
model compared to the complex model because the simple model is being applied to unseen phase
space. The simple model underpredicts accelerations as it reaches apoapsis and the absolute error
increases as it approaches phase spaces further from its training domain. The complex model,
however, estimates the dynamics very closely with only a slight overprediction of the accelerations.

The success of the neural ODE model in learning two-body dynamics exemplifies the potential
of neural ODE models to be used in astrodynamic applications. While the dynamics in this case
are simple, training the model provided valuable insight into improving neural ODE efficacy. Most
importantly, without orbit segmentation we observed vanishing gradients due to long integration
times and the model could not learn two-body dynamics to any acceptable accuracy. By segmenting
datasets, we decreased the time horizon and achieved successful model training.

Circular Restricted Three-Body Problem

Dynamics of the planar orbits about the Lagrange points in the CR3BP are learned from training
on increasingly complex datasets as described in Table 3. Compared to the 2BP, CR3BP dynamics
pose a significantly greater challenge for neural ODE models due to their increased complexity. The
results presented here are preliminary and represent a lower bound on model performance; efforts to
improve learning complex dynamics are ongoing. Nonetheless, these initial results provide valuable
insight into the training process. They highlight key considerations for developing more effective
neural ODE models, while demonstrating promising results for future model improvement.

When training the CR3BP, each trajectory containing 1000 evenly spaced timesteps was seg-
mented into trajectories of length 18 timesteps. Like in the 2BP model, each segment was treated
as a unique trajectory when passed to the neural ODE model. The CR3BP model parameters are

11

Test Single Simple Complex
Train

Single

Simple

Complex

Figure 6: Integrated Orbits for Different Datasets

12

3 Il Error Simple
Il Error Complex

Y [nd]

X [nd]

Figure 7: Resultant acceleration error vectors from training on simple dataset (blue) vs complex
dataset (red). The test orbit has an eccentricity of 0.8326 and a semi-major axis of 38,258.78 km.
Residual errors are shown in non-dimensionalized frame.

summarized in Table 6.

Table 6: Neural ODE parameters for learning 3BP dynamics.

Parameter Value

Input Features [1/r, s, t, u, vg, vy, vz, 1/r1,1/12,JC]
Network Width 64

Network Depth 4

Batch Size 64

Loss Function State percent error

Activation Function tanh

ODE Solver Tsitouras 5/4 Runge—Kutta

ODE Solver Absolute Error 1x1078

ODE Solver Relative Error 1x10°6

Optimizer ADAM

Learning Rate Strategy 0.005

Steps Strategy [500, 500, 500, 500, 500, 500, 500, 500, 500, 5000]
Length Strategy [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0]

We observe the cross-domain acceleration error across increasing complex training and testing
datasets. The errors are quantified in Table 7, and a selection of propagated orbits are visualized in
Figure 8. Due to the increased complexity of the problem, we see decreased accuracy as compared to
the two-body model, as expected. However, current errors from the coarse model are encouraging
and exemplify sensible trends — training on increasingly complex datasets improves the model’s
ability to estimate the dynamics, while models trained on limited datasets suffer in their ability
to generalize. When observing the error of models tested on datasets laying within training data
bounds, acceleration errors are sufficiently low enough that we are confident that further model
optimization will yield improved and reliable results.

13

Test L1 Orbit L1 Family Co-Linear All Families
Train Families

L1 Orbit o |
L1 Family @ (}D
, <
Co-Linear @ he C
Families g
All Families @ D 4y

Figure 8: Integrated Orbits for Different Datasets

N L1 Orbit L1 Family Co-Linear Families All Families

L1 Orbit 3.4156537 43.83782 65.76061 277.37698
L1 Family 7.428957 8.860915 62.909714 351.03394
Co-Linear Families 6.4854164 7.704996 6.9688735 431.7849
All Families 7.5511627 7.855743 8.237325 14.695192

Table 7: Mean Acceleration Error for Different Datasets

14

To further observe the predicted dynamics of the neural ODE, we examine the acceleration resid-
uals for the model trained on one orbit around Lagrange point 1, referred to as model LO1, versus
the model trained on families of orbits around all Lagrange points, referred to as model ALF. These
residuals are shown in Figure 9. Model LOI1 has higher errors than the model ALF as expected
due to limited exposure to the relevant phase space. Additionally, acceleration errors appear unbi-
ased for model ALF while they are radially biased for model LO1. This is a result of the larger
phase space exposure for model ALF. The lack of bias in error residuals indicates that model ALF
is generalizing well to other datasets, which is supported by the errors presented in Table 7.

0.20
Il Error LO1

015 w;\ \ B Error ALF

0.05
0.00

-0.05

Y (rotating frame)

-0.10

-0.15

-0.20
0.70 0.75 0.80 0.85 0.90 0.95 1.00

X (rotating frame)

Figure 9: Resultant acceleration error vectors from training on a single orbit around Lagrange point
1 (blue) vs training on families of orbits at all Lagrange points (red). The model trained on a more
complex dataset has higher success at predicting model dynamics.

Overall, the results demonstrate that neural ODEs are capable of learning meaningful represen-
tations of complex astrodynamical systems when trained with care. While performance on the
CR3BP remains less accurate than in the 2BP case, the observed trends are encouraging. Models
trained on more diverse data generalize more effectively, and acceleration errors remain moderate
when testing models on orbits within their phase space. These findings affirm that neural ODEs can
capture complex nonlinear gravitational dynamics and highlight the importance of training strat-
egy, segmentation, and feature design. As model development continues, we anticipate that more
systematic tuning and curriculum design will further enhance generalization and fidelity.

CONCLUSION

This work demonstrates the potential of neural ODEs as a flexible, data-driven framework for
modeling complex astrodynamical systems. We exmplify this by successfully modeling the planar
2BP dynamics and coarsely modeling the planar CR3BP dynamics. Our results show that neural
ODEs are capable of learning meaningful representations of underlying dynamics over long trajec-

15

tories and in large phase spaces, particularly when trained on sufficiently diverse datasets and with
careful attention to model design and training strategy.

For the 2BP, neural ODEs achieve high accuracy and generalize well when exposed to a broad
range of orbital regimes. In the more challenging CR3BP case, neural ODEs are able to capture key
features of the dynamics, but performance is currently less accurate than in the 2BP scenario. These
results are preliminary and should be interpreted as a lower bound on the achievable performance;
further improvements are expected with continued development.

It is critical to note that training neural ODEs on highly diverse systems requires segmentation
of trajectories even when underlying dynamics are simple, like in the case of the highly eccentric
2BP. Issues such as vanishing gradients, sensitivity to data scaling, training curriculum, model ar-
chitecture, and input and output features are active areas of continued investigation. Nonetheless,
the trends observed in this study are encouraging: as training data complexity increases, so does the
model’s ability to generalize and accurately reproduce the underlying dynamics.

Neural ODEs represent a promising tool for augmenting traditional astrodynamics models, par-
ticularly in regimes where unknown or partially known forces play a significant role. While the
results presented here are a work in progress, they lay the groundwork for future research aimed at
improving model fidelity, robustness, and applicability to real-world mission scenarios. With con-
tinued advances in training strategies and model architectures, neural ODEs have the potential to
become a valuable component of next-generation space mission design and analysis.

REFERENCES

[1] G.E.Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

[2] P. Van Overschee and B. De Moor, Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

[3] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[4] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of fluid
mechanics, Vol. 656, 2010, pp. 5-28.

[5] S. E. Otto and C. W. Rowley, “Koopman operators for estimation and control of dynamical systems,”
Annual Review of Control, Robotics, and Autonomous Systems, Vol. 4, No. 1, 2021, pp. 59-87.

[6] S.L.Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse iden-
tification of nonlinear dynamical systems,” Proceedings of the national academy of sciences, Vol. 113,
No. 15, 2016, pp. 3932-3937.
[7] R.T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,”
Advances in neural information processing systems, Vol. 31, 2018.
[8] C.J. Rojas, A. Dengel, and M. D. Ribeiro, “Reduced-order model for fluid flows via neural ordinary
differential equations,” arXiv preprint arXiv:2102.02248, 2021.
[9] Z. Meleshkova, S. E. Ivanov, and L. Ivanova, “Application of Neural ODE with embedded hybrid
method for robotic manipulator control,” Procedia Computer Science, Vol. 193, 2021, pp. 314-324.
[10] M. Kasaei, K. K. Babarahmati, Z. Li, and M. Khadem, “A data-efficient neural ODE framework for
optimal control of soft manipulators,” The Conference on Robot Learning 2023, PMLR, 2023, pp. 2700-
2713.
[11] J. Murphy and D. J. Scheeres, “SALAMANDER: Simulating and Leveraging Autonomous Model Aug-
mentation Using Neural Differential Equations and (Symbolic) Regression,” AIAA SCITECH 2022 Fo-
rum, 2022, p. 1763.

[12] S. Origer and D. Izzo, “Closing the gap: Optimizing guidance and control networks through neural
odes,” arXiv preprint arXiv:2404.16908, 2024.

[13] J. Varey, J. D. Ruprecht, M. Tierney, and R. Sullenberger, ‘“Physics-Informed Neural Networks for
Satellite State Estimation,” 2024 IEEE Aerospace Conference, IEEE, 2024, pp. 1-8.

16

[14] T. Goldman and K. Cowan, “An unsupervised physics-informed neural network for finding optimal low-
thrust transfer trajectories with the direct method,” Association for Asian Studies Annual Conference
2024, 2024, pp. AAS-24.

[15] S. Subramanian, R. Ramnani, S. Sengupta, and S. Yadav, “Orbit propagation from historical data using
physics-informed neural odes,” 2023 International Conference on Machine Learning and Applications
(ICMLA), IEEE, 2023, pp. 1643-1648.

[16] M. Manzi and M. Vasile, “Discovering unmodeled components in astrodynamics with symbolic regres-
sion,” 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2020, pp. 1-7.

[17] D. Jain, “Astrodynamics_Research,” https://github.com/DhruvJ22/Astrodynamics_
Research, 2024. Accessed: 2025-08-01.

17

https://github.com/DhruvJ22/Astrodynamics_Research
https://github.com/DhruvJ22/Astrodynamics_Research

	Introduction
	Background
	Methodology
	Neural ODEs
	Training with the Adjoint Method.
	Comparison to Prior Dynamics Learning Methods.

	Canonical Astrodynamic Systems
	Two-body Problem
	Circular Restricted Three-body Problem

	Problem Statement
	Datasets
	Training Details
	Activation Function
	Feature Layers
	Output Layers
	Training Curriculum
	Evaluation Metrics

	Results & Discussion
	Two-Body Problem
	Circular Restricted Three-Body Problem

	Conclusion

