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THE MODIFIED GENERALIZED EQUINOCTIAL ORBITAL
ELEMENTS FOR HIGH-FIDELITY CISLUNAR PROPAGATION

Maaninee Gupta* and Kyle J. DeMars†

The complex cislunar dynamical environment poses challenges for spacecraft nav-
igation and Space Domain Awareness operations, where the knowledge of cur-
rent and future spacecraft states is essential. To accurately model the underlying
dynamics, this work explores the Modified Generalized Equinoctial Orbital Ele-
ments to enable high-fidelity propagation for cislunar applications. The accuracy
of the solutions is demonstrated via comparisons against Cartesian n-body solu-
tions across various cislunar orbits. The characterization of uncertainty in gener-
alized coordinates under high-fidelity propagation is compared against Cartesian
methods.

INTRODUCTION

With the recent interest in missions to the vicinity of the Moon, cislunar space is poised to become
the domain that sustains humanity’s presence beyond the Earth. With this renewed interest, Space
Domain Awareness (SDA), that has conventionally applied to the sub-geosynchronous orbit domain,
is necessary to support cooperative and safe operations in cislunar space as well. In contrast to SDA
near the vicinity of the Earth, SDA in the broad volume of cislunar space presents unique challenges
due to its vast size and significant distance from the Earth. In addition, the cislunar dynamical
environment is characterized by non-Keplerian motion resulting from the non-negligible impact of
lunar gravity perturbations. Thus, a dynamical model that captures the influence of both the Earth
and the Moon, in addition to other perturbing forces, is necessary to represent cislunar dynamics.

The Earth-Moon Circular Restricted Three-Body Problem (CR3BP) is one option for a medium-
fidelity dynamical model that accounts for the gravity of both the Earth and the Moon, a requisite for
cislunar dynamics modeling. However, the CR3BP fails to account for the pulsation of the Earth-
Moon distance, as well as other perturbations that are potentially significant for certain cislunar
orbits, including solar gravity, solar radiation pressure, and the spherical harmonics for the Earth
and the Moon. To accurately simulate the cislunar dynamical environment, it is necessary to be able
to capture these additional perturbations without losing accuracy or increasing the complexity of
the dynamical model.

The Generalized Equinoctial Orbital Elements (GEqOEs) provide an avenue for a low-complexity
methodology to incorporate both conservative and non-conservative perturbations that manifest in
cislunar space. The GEqOE set has been successfully leveraged for state and uncertainty propa-
gation of near-Earth orbits with third-body perturbations and oblateness effects.1, 2 More recently,
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Gupta and DeMars have applied the GEqOEs for capturing three-body dynamical motion in cislu-
nar space, with better preservation of Gaussian behavior for uncertainty propagated along various
cislunar orbits.3, 4 The goal of the current work is to extend the applicability of the generalized
coordinates for high-fidelity dynamical modeling in cislunar space. Cislunar orbits that are signif-
icantly impacted by the gravitational effects of the Earth, Moon, and Sun are propagated directly
in the generalized coordinates. The accuracy of this methodology is validated through comparison
against the n-body dynamical model based in Cartesian coordinates. In order to capture the varying
levels of perturbations that arise across the cislunar domain, various orbits that span the volume of
cislunar space are considered. In addition to high-fidelity state propagation, this work investigates
the characterization of uncertainty in the generalized coordinates. The Bhattacharyya coefficient
is employed to quantify the preservation of Gaussianity under high-fidelity dynamics, allowing a
direct comparison against Cartesian state representations.

HIGH-FIDELITY STATE PROPAGATION

In the current work, orbital motion is characterized in generalized coordinates, leveraging orbital
element representations that capture all the necessary forces in the dynamical regime. Specifically,
the Modified Generalized Equinoctial Orbital Elements (M-GEqOEs), an offshoot of the Gener-
alized Equinoctial Orbital Elements (GEqOEs), are utilized for state and uncertainty propagation.
While the GEqOE set demonstrates success in propagating various cislunar periodic orbits, its valid-
ity is restricted to trajectories characterized by a negative total energy.3 The M-GEqOE set supplies
the modifications necessary to overcome that limitation and improve the robustness of modeling
trajectories in the cislunar domain. Details regarding the element sets are provided by Bau et al.1

and Gupta et al.5 for the GEqOEs and M-GEqOEs, respectively. An overview of the M-GEqOEs
and their time derivatives, along with the methodology employed for modeling cislunar dynamics,
is provided below.

Modified Generalized Equinoctial Orbital Elements

The set of Modified Generalized Equinoctial Orbital Elements (M-GEqOEs) is defined as

{p̃, p1, p2, q1, q2, L}. (1)

The first element in the M-GEqOE set is the generalized semi-latus rectum, p̃, determined as

p̃ =
h̃2

µC

. (2)

The variables h̃ and µC represent the generalized angular momentum and the gravitational parameter
associated with the central gravitational body. The former quantity is a function of the effective
potential energy that is embedded with any necessary conservative perturbations.3 The sixth element
in the M-GEqOE set is the classical true longitude, L, which represents the time-varying or “fast”
variable along the orbit. The true longitude is determined as

L = ω +Ω+ θ , (3)

where θ is the classical true anomaly, and ω and Ω denote the argument of periapsis and the right
ascension of ascending node, respectively. The second and third elements parameterize the eccen-

2



tricity vector and are defined as

p1 = ẽ sinΨ (4)

p2 = ẽ cosΨ . (5)

Here, the angle Ψ denotes the generalized longitude of periapsis and is determined as

Ψ = L− θ̃ , (6)

where θ̃ is the generalized true anomaly. Finally, the elements q1 and q2 orient the equinoctial
reference frame relative to the inertial reference frame. These elements are functions of the classical
inclination, i, and the classical right ascension of the ascending node, Ω, expressed as

q1 = tan
i

2
sinΩ (7)

q2 = tan
i

2
cosΩ . (8)

With the M-GEqOE set defined, the time derivatives for elements are detailed, providing a general
form that may accommodate any perturbing forces.

Consider an inertial reference frame, denoted Σ, centered on a celestial body and defined as

Σ = {O; ex, ey, ez} . (9)

Here, ex = [1, 0, 0]T , ey = [0, 1, 0]T , and ez = [0, 0, 1]T . The spacecraft’s orbital reference
frame, denoted Σor, is defined by the orthonormal basis,

Σor = {O; er, ef , eh} , (10)

where er points along the spacecraft position vector, eh is directed along the angular momentum
vector, and ef completes the dextral orthonormal triad

er =
r

r
, ef = eh × er , and eh =

r × ṙ

|r × ṙ|
=

h

h
. (11)

Let the total perturbing force acting on the spacecraft be represented as

F = P −∇U , (12)

where P represents the perturbing forces that are not modeled as a potential, and −∇U models the
contribution of forces derived from a potential energy, U . Projections of the total perturbing force
and the external perturbing force term, denoted P , into the orbital reference frame are given as

Fr = F · er , Ff = F · ef , and Fh = F · eh , (13)

Pr = P · er , Pf = P · ef , and Ph = P · eh . (14)

Additionally, the angular velocity of the equinoctial reference frame, Σeq, with respect to the inertial
frame, Σ, is projected onto the equinoctial axes as

wX = Fh
r

h
cosL (15)

wY = Fh
r

h
sinL (16)

wZ = −Fh
r

h
tan

i

2
sinω + θ . (17)
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Other quantities necessary to compute the time derivatives of the M-GEqOEs include the rate of
change of the total energy of the system, which is evaluated as

Ė =
∂U

∂t
+ ṙPr +

h

r
Pf . (18)

Then, the general form of the time derivatives of the M-GEqOEs is given as

˙̃p =
2h̃

µC

[
r2Ė
h̃

+
rṙ

h̃
(2U − rFr)

]

ṗ1 = p2

(
h− h̃

r2
− wh

)
+

1

h̃

(
X

ã
+ 2p2

)
(2U − rFr) +

1

h̃2

[
Y (r + p̃) + r2p1

]
Ė

ṗ2 = p1

(
wh −

h− h̃

r2

)
− 1

h̃

(
Y

ã
+ 2p1

)
(2U − rFr) +

1

h̃2

[
X(r + p̃) + r2p2

]
Ė

q̇1 =
1

2
wY

(
1 + q21 + q22

)
q̇2 =

1

2
wX

(
1 + q21 + q22

)
L̇ =

h

r2
+

r

h
Fh tan

(
i

2

)
sin (ω + θ) .

(19)

Any significant perturbations, modeled as a potential or otherwise, that are essential for modeling
spacecraft dynamics are, thus, directly incorporated into the generalized elements and their time
derivatives.

Modeling Cislunar Dynamics

As spacecraft and other objects traverse cislunar space, their complex dynamical motion is influ-
enced by the gravitational forces of the Earth and the Moon. Therefore, in addition to the dominant
gravitational influence of one body, the gravitational perturbations caused by the other must be ac-
counted for in trajectory design and prediction. In addition to that, solar gravity must be included
to accurately represent the true dynamical environment.6 Thus, for cislunar state propagation em-
ploying the M-GEqOEs, the gravitational influences of the Earth, Moon, and Sun are incorporated
into the element set. Third-body perturbations by either the Earth or the Moon are embedded as a
perturbing potential, where the potential energy associated with the perturbing force is given as7

UP = µP

(
1

rPsc

− r · rCP

r3
CP

)
, (20)

where r represents the position vector from the central body to the spacecraft, and the subscripts C
and P represent the central and perturbing bodies, respectively. Equation (20) may be rewritten as
a convergent series of Legendre polynomials

UP =
µP

rCP

[
1 +

k=∞∑
k=2

(
r

rCP

)k

Pk(cosα)

]
, (21)
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where α is the angle between the position vectors r and rCP , and Pk represent Legendre polynomi-
als.7 The perturbing acceleration takes the form

−∇UP =
µP

r2
CP

k=∞∑
k=1

(
r

rCP

)k [
P ′
k+1(cosα)erCP

− P ′
k(cosα)er

]
, (22)

where er
CP

and er are the unit vectors along rCP and r respectively. In addition to that, the
point mass gravity effects of the Sun are also considered in the current work. However, noting the
numerical instabilities resulting from the use of true solar ephemerides, the gravity of the Sun is
incorporated as an external perturbing force.1 Nevertheless, these effects do manifest directly in
the equations that evolve the M-GEqOEs, as indicated in Equation (19). In all cases, the locations
of the celestial bodies are retrieved from the DE440 planetary ephemerides supplied by NASA Jet
Propulsion Lab (JPL) Navigation and Ancillary Information Facility (NAIF).8

UNCERTAINTY PROPAGATION AND CHARACTERIZATION

Previous work has demonstrated success in using the GEqOEs and M-GEqOEs for uncertainty
propagation along various cislunar orbits. Measured improvements in the preservation of Gaussian
behavior are demonstrated for the case when Earth-Moon dynamics are considered.4, 9 In the current
work, the evolution of uncertainty under high-fidelity dynamics in the generalized coordinates via
the M-GEqOE set is explored.

Methodology

The current work employs two methods for propagating the uncertainty along each orbit. The
first is Monte Carlo analysis to obtain a representation of the true probability distribution along
the selected orbits in both Cartesian and generalized coordinates. The second methodology is the
Unscented Transform (UT), which is employed to obtain the initial uncertainty in generalized co-
ordinates.2, 10 In addition, the UT serves as a means of approximating the moments of the true
probability distribution at each time step.4

Monte Carlo Analysis In the current work, Monte Carlo analysis utilizes N = 10, 000 samples
for all simulations to facilitate analysis while maintaining computational feasibility. For uncertainty
propagated in Cartesian coordinates, each sample is propagated using the n-body ephemeris model
for one revolution.5 Similarly, the M-GEqOE equations of motion embedded with lunar gravity
perturbations, and with solar gravity modeled as an external perturbing force, are propagated for N
samples for the same time. At each time step, then, the mean and covariance for either scenario are
computed as

mx(t) =
1

N

N∑
i=1

xi(t) and P xx(t) =
1

N

N∑
i=1

(xi(t)−mx(t)) (xi(t)−mx(t))
T , (23)

where xi(t) is the state of the ith sample at time t. The mean and covariance computed via Monte
Carlo methods serve as a benchmark for comparing other approaches that aim to approximate these
statistical moments.

Unscented Transform The Unscented Transform (UT) is a methodology for deterministically
sampling a fixed number of points, termed sigma points, to approximate the mean and covariance
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of some given distribution.11 Consider some nonlinear transformation represented as

y = g(x) , (24)

where x is Gaussian. The mean and covariance of x are known and denoted as mx and P xx,
respectively. The pdf of x is, thus, expressed as p(x) = pg (x;mx,P xx). Assuming x ∈ Rn,
2n+ 1 sigma points are drawn and given as

X (0) = mx, X (i) = mx +
√
n+ λ [Sxx]i , and X (i+n) = mx −

√
n+ λ [Sxx]i , (25)

where i = 1, ..., n.12 The quantity [Sxx]i is the ith column of the matrix Sxx, determined such that
P xx = SxxS

T
xx. The nonlinear transformation in Equation (24) is then applied to each sigma point,

yielding the transformed sigma points

Y(i) = g
(
X (i)

)
, (26)

where i = 0, ..., 2n. Next, the scaling parameter λ is computed as

λ = α2 (n+ κ)− n , (27)

where α and κ dictate the spread of the sigma points around the mean.13 For this investigation,
n = 6, and α = 1 and κ = −3 are selected as the user-defined parameters. Next, the mean and
covariance weights associated with each point are computed

w(0)
m =

λ

n+ λ
and w(i)

m =
1

2 (n+ λ)
(28)

w(0)
c =

λ

n+ λ
+
(
1− α2 + β

)
and w(i)

c =
1

2 (n+ λ)
(29)

∀ i = 1, ..., 2n. The subscripts m and c denote the mean and covariance weights, respectively.
The parameter β is used to incorporate prior information and is set equal to two in the current
work.11 Together with the mean and covariance weights, the transformed sigma points are used to
approximate the mean and covariance as

my ≊
2n∑
i=0

w(i)
m Y(i) and P yy ≊

2n∑
i=0

w(i)
c

(
Y(i) −my

)(
Y(i) −my

)T
. (30)

For each point along the orbit, the mean and covariance computed via the UT method approximate
the true pdf as a Gaussian distribution.

Bhattacharyya Coefficient

The Bhattacharyya coefficient is a measure of the statistical similarity between two distribu-
tions.14 While other options for assessing statistical similarity, such as the Mahalanobis distance2

and the Kullback-Leibler divergence4, 9 have been explored, the Bhattacharyya coefficient offers a
bounded measure that can be leveraged for comparison across different coordinates and measure-
ment scales.15 The Bhattacharyya coefficient between two distributions p(x) and q(x) is determined
as

BC(p, q) =

∫ √
p(x)q(x)dx . (31)
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For two identical distributions, the value of the coefficient is unity; a value of zero indicates total
dissimilarity between the distributions. While the coefficient admits a closed form for the case of
two Gaussian distributions, the general form in Equation (31) is valid for all distribution types.16 In
the current work, Equation (31) is rewritten to evaluate the Bhattacharyya coefficient as an expecta-
tion taken with respect to p(x). To that end, multiply and divide the integrand in Equation (31) by√
p(x) as

BC(p, q) =

∫ √
p(x)

p(x)

√
p(x)q(x)dx (32)

=

∫
p(x)

√
q(x)

p(x)
dx (33)

= Ep(x)

{√
q(x)

p(x)

}
. (34)

The expectation integral is then determined via Monte Carlo integration as

BC(p, q) ≈ 1

N

N∑
i=1

(√
q(xi)

p(xi)

)
. (35)

It is noted that Equation (35) requires the pdfs of the two distributions. In the current work, q(x)
is known and assumed to be Gaussian, i.e., q(x) = pg(x;m,P ), where m and P are obtained via
the UT. The pdf p(x) represents the true distribution, the exact form of which is not known. One
methodology for obtaining a reasonable approximation of p(x) is by fitting a Gaussian Mixture
Model (GMM) to the particle set that represents the truth. The pdf representing the true distribution
is then expressed as

p(x) =

L∑
ℓ=1

w(ℓ)pg

(
x;m(ℓ)

x ,P (ℓ)
xx

)
, (36)

where L is the number of GMM components, and w(ℓ),m
(ℓ)
x , and P

(ℓ)
xx represent the weight, mean,

and covariance of the ℓth component.17 While the number of components is variable, unless other-
wise noted, the current work assumes L = 20 components for modeling the true distributions. Thus,
at each time step for a given orbit, the Bhattacharyya coefficient between the GMM and Gaussian
distributions that represent the true and approximate pdfs, respectively, is determined. Insight into
the error introduced by approximating the true distribution as a Gaussian distribution is obtained,
where lower values of the Bhattacharyya coefficient indicate greater deviation from Gaussian be-
havior.

RESULTS

State and uncertainty propagation under high-fidelity dynamics are assessed for a variety of cis-
lunar orbits that traverse various regions within this domain. For each orbit, the states are evolved
in generalized coordinates and, via transformation into Cartesian coordinates, compared against the
solution obtained via Cowell’s method. For either propagation methodology, the Earth-Moon-Sun
point mass gravitational forces are modeled. In addition to state propagation, the evolution of uncer-
tainty along each trajectory is assessed. To maintain the scope of this work as the characterization
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of downstream probability distributions, a single revolution of each cislunar trajectory is considered
for uncertainty propagation.

9:2 Near Rectilinear Halo Orbit

As one example, the 9:2 Near Rectilinear Halo Orbit (NRHO), which is the baseline orbit for
NASA’s upcoming Gateway lunar outpost,18 is considered. The dynamics that govern the motion of
a spacecraft in this orbit are highly nonlinear, and unmodeled perturbations may induce significant
deviation from the baseline trajectory over time. The NRHO is propagated using the M-GEqOE
equations, along with the conventional Cartesian methodology, for one revolution of the orbit or
approximately 6.5 days. The results are plotted in Figure 1, where the M-GEqOE solution appears
in blue, while the Cartesian propagation appears in orange, in both the Earth-Moon rotating and
Moon-centered inertial frames. While the Cartesian representations of the two solutions indicate
visual consistency between the results, the error in position and velocity confirms the accuracy of
the M-GEqOE solution, plotted in Figure 1(c). There is a noticeable spike in the error at perilune,
after which the error in both quantities returns to a nominal value. It is also noted that the magnitudes
of error between the two methodologies observed in Figure 1(c) are similar to the values seen under
Earth-Moon CR3BP dynamics for this orbit.3 Thus, even though the pulsation of the Earth-Moon
distance and solar gravity significantly perturb the orbit relative to the CR3BP solution, the M-
GEqOEs are able to capture those perturbations without loss of accuracy.

Next, the evolution of uncertainty along the NRHO is assessed for the M-GEqOEs and com-
pared against propagation in Cartesian coordinates. At the initial time, which occurs at apolune,
1σ values of uncertainty of 10 km and 0.1 m/s are assumed along the position and velocity chan-
nels, respectively. Uncertainty is then evaluated at each point along the orbit for approximately
6.5 days. Figure 2(a) illustrates the Bhattacharyya coefficient between the true and approximating
distributions for the generalized coordinates (blue) and Cartesian coordinates (orange). Evidently,
despite the high-fidelity dynamical modeling, a Gaussian approximation of the true distribution is
reasonably accurate for both representations at most locations along the orbit. Distinct deviation
from Gaussian behavior is observed at around 3.25 days, corresponding to passage along perilune.
While both representations exhibit departure from the nominal, the degree of non-Gaussianity seen
in the Cartesian case is significantly greater than the M-GEqOE methodology. Thus, a Gaussian
approximation of the truth induces a smaller error in uncertainty characterization in generalized co-
ordinates. This result is further validated by visualizing the uncertainty clouds at perilune for both
coordinates. Figure 2(b) illustrates pairs plots for the M-GEqOE (blue, upper triangle) and Carte-
sian (orange, lower triangle) methodologies. In each subplot, the ellipses indicate the 1, 2, and 3σ
uncertainty intervals associated with the Gaussian approximation of the true distributions. Clearly, a
majority of the Monte Carlo samples are captured for the M-GEqOE case, whereas in the Cartesian
case, the curvature of the true distribution is not captured by a Gaussian approximation.

Earth-Centered Sidereal Resonant Orbit

Another cislunar orbit that is considered in this investigation is an Earth-centered sidereal res-
onant orbit. Despite being centered on the Earth, this orbit possesses a relatively high apogee
radius and, thus, perturbations from lunar gravity are non-negligible. The selected orbit is iden-
tified from the family of 4:1 Earth-Moon sidereal resonant orbits and possesses a period of ap-
proximately 27.30 days in the rotating frame, rendering it to be in approximate sidereal resonance
with the Moon.5 Thus, four revolutions of the orbit as viewed in the inertial frame represent one
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(a) Earth-Moon rotating frame (b) Moon-centered inertial frame

(c) Position and Velocity Errors

(d) Evolution of M-GEqOEs

Figure 1. Cartesian and M-GEqOE representations of the 9:2 NRHO over one revo-
lution. Blue and orange curves represent solutions propagated in the M-GEqOE and
Cartesian coordinates, respectively.
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(a) Bhattacharyya coefficient

y

z

ẋ

ẏ

ż

x y z ẋ ẏ ż

p̃ p1 p2 q1 q2 L

p̃

p1

p2

q1

q2

(b) Pairs plot

Figure 2. Bhattacharyya coefficient evaluated over one revolution, and pairs plot at
t = 3.25 days for the 9:2 NRHO with uncertainty propagated in Cartesian (lower
triangular) and M-GEqOE (upper triangular) coordinates.

“closed” orbit in the rotating frame. For this analysis, the initial states for the orbit are evolved
under Earth-Moon-Sun dynamics using the M-GEqOE and Cartesian equations of motion. The
solution obtained via the M-GEqOE methodology is transformed into Cartesian coordinates and
appears in Figures 3(a) and 3(b) as viewed in the Earth-Moon rotating and Earth-centered inertial
frames. The resulting blue solution curve closely matches the trajectory obtained via direct prop-
agation in Cartesian coordinates. Figure 3(c) illustrates the error in position and velocity from the
two methods of propagation and confirms the accuracy of the high-fidelity M-GEqOE propagator.
Finally, the Cartesian solution is transformed into the generalized coordinates, as demonstrated in
Figure 3(d). The consistency between the values of each orbital element over time is noted.

The evolution of uncertainty along the 4:1 resonant orbit is assessed over one revolution in both
coordinates. For this orbit as well, the initial 1σ values of uncertainty are 10 km and 0.1m/s along
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(a) Earth-Moon rotating frame (b) Earth-centered inertial frame

(c) Position and Velocity Errors

(d) Evolution of M-GEqOEs

Figure 3. Cartesian and M-GEqOE representations of the 4:1 resonance over one
revolution. Blue and orange curves represent solutions propagated in the M-GEqOE
and Cartesian coordinates, respectively.
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the position and velocity components. In both the M-GEqOE and Cartesian coordinates, for each
point in time, the true pdf is determined via Monte Carlo sampling and propagation. A Gaussian ap-
proximation of the true pdf, supplied by the UT, is employed to assess the Gaussianity of the truth.
Figure 4(a) illustrates the Bhattacharyya coefficient between the true and approximating pdfs at
each point, where the blue curve represents uncertainty evolved in M-GEqOE coordinates, and the
orange curve represents the Cartesian methodology. Distinct dips in the value of the Bhattacharyya
coefficient are seen for both scenarios. The locations of these dips, that indicate departure from
Gaussian behavior, correspond to perigee and occur approximately every 6.8 days. Uncertainty
evolved in M-GEqOE coordinates represents a smaller deviation from the nominal Gaussian repre-
sentation, while uncertainty in Cartesian coordinates devolves rapidly. However, it is also noted that
the performance of the M-GEqOE methodology degrades with each perigee pass. Nonetheless, the
degree to which those nonlinearities manifest is significantly less than in Cartesian coordinates. To
further intuit these observations, Figure 4(b) illustrates the uncertainty clouds in both coordinates at
the first perigee pass, 6.8 days into the propagation. The projections in the M-GEqOE coordinates
(blue) exhibit the onset of non-Gaussian behavior along some projections. In contrast, the Cartesian
coordinates (orange) exhibit pronounced curvature along all projections of the particle cloud.

Elliptic Lunar Frozen Orbit

As a third example for high-fidelity state and uncertainty propagation in the cislunar domain,
consider an Elliptic Lunar Frozen Orbit (ELFO) for operations in the lunar vicinity, including po-
tentially hosting data relay constellations.19 These orbits are characterized by high values of in-
clination, eccentricity, and altitude, allowing long-term coverage of the lunar south pole. More
recently, extensive research has been done to refine these orbits for rapid constellation design in a
higher-fidelity dynamical environment.20, 21 In the current work, the initial conditions of a represen-
tative ELFO, as provided by Park et al.,21 are used for analysis. The initial state is transformed into
the generalized coordinates for high-fidelity propagation over 30 days using the M-GEqOE equa-
tions. The resulting solution, along with the trajectory obtained via direct Cartesian propagation,
appears in Figures 5(a) and 5(b) as viewed in the Earth-Moon rotating and Moon-centered inertial
frames. The accuracy of the M-GEqOE solution is confirmed via Figure 5(c), which illustrates the
error in position and velocity over 30 days. Figure 5(d) illustrates the M-GEqOEs that characterize
the ELFO, where the orange curves represent the Cartesian-propagated states transformed into the
generalized coordinates. As expected, periodic and secular drift in the elements is observed under
high-fidelity propagation.

To assess the evolution of uncertainty along the selected ELFO, initial 1σ uncertainty values of
1 km and 0.01 m/s are assumed along the position and velocity components. Additionally, while
initial analysis assumed a 20-component GMM to model the true distribution in both sets of coor-
dinates to maintain consistency with the other orbits, the number of components is increased to 50
to better fit the particle sets. The Bhattacharyya coefficient is computed to compare the resulting
true pdf against its Gaussian approximation in both generalized and Cartesian coordinates, repre-
sented in Figure 6(a). The M-GEqOE methodology is able to retain a Gaussian approximation for
approximately 1 day, whereas the Cartesian approach diverges rapidly early on. Beyond that point,
Gaussian approximations no longer accurately represent the true pdf in either coordinate set, though
the discrepancy is less severe in the generalized coordinates compared to the Cartesian case. Note
that the focus of uncertainty analysis for this orbit is limited to 3 days due to rapid loss of structure
in the pdfs for both sets of coordinates over time given the initial levels of uncertainty. Finally,
Figure 6(b) illustrates the uncertainty clouds for uncertainty propagated in the M-GEqOE (blue)
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(a) Bhattacharyya coefficient
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(b) Pairs plot

Figure 4. Bhattacharyya coefficient evaluated over one revolution, and pairs plot at
t = 6.8 days for the 4:1 sidereal resonance with uncertainty propagated in Carte-
sian (lower triangular) and M-GEqOE (upper triangular) coordinates.

and Cartesian (orange) coordinates at 1.5 days downstream. Evidently, deviation from Gaussian
behavior is expected in both representations based on the value of the Bhattacharyya coefficient at
this time. In the M-GEqOE coordinates, the Gaussian approximations reasonably capture the true
distribution shape in most projections. On the other hand, the Cartesian coordinates exhibit sig-
nificantly increased curvature and elongation for all pairs of components. These deviations from
Gaussianity are consistent with the decline in the Bhattacharyya coefficient for the Cartesian case
around this time.
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(a) Earth-Moon rotating frame (b) Moon-centered inertial frame

(c) Position and Velocity Errors

(d) Evolution of M-GEqOEs

Figure 5. Cartesian and M-GEqOE representations of the ELFO over 30 days. Blue
and orange curves represent solutions propagated in the M-GEqOE and Cartesian
coordinates, respectively.
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(a) Bhattacharyya coefficient
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ẏ

ż

x y z ẋ ẏ ż
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(b) Pairs plot

Figure 6. Bhattacharyya coefficient evaluated over 3 days and pairs plot at
t = 1.5 days for the ELFO with uncertainty propagated in Cartesian (lower trian-
gular) and M-GEqOE (upper triangular) coordinates.

CONCLUDING REMARKS

Cislunar space poses a challenging dynamical environment that requires high-fidelity dynamical
modeling to accurately predict spacecraft trajectories and associated uncertainties. In the current
work, the Modified Generalized Equinoctial Orbital Elements (M-GEqOEs) are explored as an op-
tion for cislunar propagation under the presence of the necessary gravitational perturbations. The
M-GEqOE set allows the direct inclusion of conservative perturbations, offering a low-complexity
methodology for modeling dynamics in this complex regime. Various cislunar orbits are constructed
to demonstrate the applicability of this element set for high-fidelity propagation under the gravita-
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tional influence of the Earth, Moon, and Sun. In addition to state propagation, uncertainty charac-
terization via the M-GEqOE set is explored for various cislunar orbits. For the orbits considered
in this work, improved preservation of Gaussianity is observed via the M-GEqOE methodology,
compared to conventional Cartesian propagation. In addition to exhibiting Gaussian behavior for
longer propagation times, improved uncertainty characterization is observed at sensitive and highly
nonlinear regions in the generalized coordinates.
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