(Preprint) AAS 25-831

RISK-SENSITIVE REINFORCEMENT LEARNING FOR DESIGNING
ROBUST LOW-THRUST INTERPLANETARY TRAJECTORIES

Aarun Srinivas* and John R. Martin®

In recent years, small spacecraft have been increasingly proposed for interplane-
tary missions due to their cost-effectiveness, rapid development cycles, and ability
to perform complex tasks comparable to larger spacecraft. However, these benefits
come with trade-offs, as limited budgets often necessitate using components with
low technological readiness, increasing the risk of control execution errors occur-
ring from misaligned thrusters, actuator noise, and missed-thrust events. Recently,
Reinforcement learning (RL) has emerged as a promising approach for designing
robust trajectories that account for these errors. However, existing methods depend
on prior knowledge of these errors to construct training simulations, restricting
their ability to generalize to unforeseen anomalies. To overcome this limitation,
we propose using Risk-Sensitive Reinforcement Learning (RSRL) to train policies
that remain robust to control execution errors without requiring prior knowledge
of their exact nature, enhancing practicality for real-world missions. In particular,
we build our RSRL algorithm on top of the Proximal Policy Optimization (PPO)
RL algorithm by replacing its risk-neutral objective with the risk-sensitive expo-
nential criterion. We evaluate our RSRL algorithm, RS-PPO, by comparing its
performance against PPO in an interplanetary transfer from Earth to Mars, where
both are trained in an error-free environment but tested under various control exe-
cution errors.

INTRODUCTION

The use of small spacecraft (SmallSats) in interplanetary missions has gained significant trac-
tion in recent years, as evidenced by upcoming missions such as ESA’s M-ARGO' and NASA’s
INSPIRE.? This surge in adoption is largely driven by the success of previous missions like PRO-
CYON,? developed by the University of Tokyo and JAXA, and NASA’s Mars Cube One,* both
of which delivered valuable scientific results while being built at low cost and within short time-
frames. However, despite their successes, SmallSats frequently encounter unexpected control exe-
cution errors, as their limited budgets often necessitate the use of components with low technologi-
cal readiness levels (TRL). For example, PROCYON experienced a malfunction in its main thruster,
preventing it from executing its planned flyby of asteroid 2000 DP107. Similarly, NASA’s Lunar
Flashlight CubeSat® suffered underperformance in three of its four thrusters, while LunaH-Map®
was hindered by a stuck valve in its electric thruster. These issues significantly compromised both
missions’ ability to reach lunar orbit.

In this paper, we aim to address the shortfalls of SmallSats by employing Risk-Sensitive Re-
inforcement Learning (RSRL) algorithms to design robust low-thrust interplanetary trajectories.
We focus on the low-thrust setting, as low-thrust electric propulsion has been a key technology

*Graduate Research Assistant, Aerospace Engineering, University of Maryland - College Park.
¥ Assistant Professor, Aerospace Engineering, University of Maryland - College Park.

in enabling SmallSats to perform interplanetary missions with significantly lower specific propel-
lant consumption. As a result, potential control execution errors that could occur during low-thrust
interplanetary transfers with low-TRL components may arise from actuator noise, thruster misalign-
ments, and missed-thrust events (MTEs). Figure 1 illustrates the expected performance of our RSRL
approach compared to traditional RL methods in the presence of such control execution errors.

To explain our approach and findings, we have structured the paper as follows. We begin by pro-
viding an overview of state-of-the-art approaches in optimal control and RL that have been used to
design low-thrust interplanetary trajectories. We then describe how the interplanetary transfer prob-
lem is modeled as a Markov Decision Process (MDP), allowing us to solve it using RL algorithms
like Proximal Policy Optimization (PPO), which is introduced in the following section. Next, we
explore Risk-Sensitive RL at a high level, before focusing specifically on the exponential criterion,
which we aim to optimize for designing robust low-thrust interplanetary trajectories. We then out-
line the implementation details, including the construction of the training and testing environments,
the development of our RSRL algorithm, and the identification of the hyperparameters used to op-
timize both the PPO and RSRL algorithms. The effectiveness of our approach is then demonstrated
in our results section, which highlights the superior robustness of the RSRL method in handling
control execution errors compared to PPO. Finally, we conclude with a summary of key findings,
their broader implications, and suggestions for future work.

traditional: E, . [R(7)] risk-sensitive: E... [3e®R(7)]

nominal perturbed nominal perturbed

%. + + + 4@_
a o g

©0 ©©

Figure 1: Comparison of traditional and risk-sensitive reinforcement learning for performing an
interplanetary transfer to Mars, under both nominal conditions and in the presence of control exe-
cution errors caused by actuator noise, misaligned thrusters, and missed-thrust events.

7
J

+

R
Bt

RELATED WORK
Optimal Control

Historically, optimal control methods—both indirect approaches based on Pontryagin’s principle’
and direct methods utilizing collocation techniques® >—have excelled at designing time-optimal or
minimum-propellant low-thrust trajectories. However, these methods rely on the assumption that the
spacecraft’s operational environment is completely known and static, a condition that is not always
met. To address this limitation, convex-optimization techniques have been introduced for low-
thrust trajectory design.'®!! These techniques, which follow the Model Predictive Control (MPC)
framework, are computationally efficient and therefore suitable for onboard spacecraft guidance.
MPC operates by iteratively solving an optimal control problem (OCP) over a finite horizon, where
at each time step the controller computes an optimal action sequence, applies the first action, and
updates the OCP’s initial conditions using the latest system measurements. This process repeats in
a receding-horizon fashion until the control objective is achieved. This iterative approach enables
the spacecraft to continuously adapt its trajectory at every step, making it an appealing method
for guidance.'> However, MPC requires that both the objective and the dynamics of the OCP be
convex, which is often not the case in low-thrust trajectory design problems. As a result, sequential
convex programming methods must be employed to render the OCP solvable, resulting in a slower
optimization process.!>!* This slow adaptation can hinder the algorithm’s ability to respond to
control execution errors in real time, making it less effective for low-thrust trajectory design in
SmallSat interplanetary missions.

Deep Learning

Over the past few years, deep learning techniques have gained popularity for trajectory design
due to their ability to overcome the limitations faced by traditional optimal control methods. One
such method is behavior cloning (BC), which involves utilizing a dataset of expert-generated tra-
jectories to train neural networks for optimal trajectory design, has demonstrated utility in design-
ing interplanetary transfers'> as well as optimal asteroid landing trajectories.!® Unfortunately, this
method’s performance decreases rapidly when it is tasked with designing trajectories that lie outside
the expert-generated dataset it was trained on. In other words, BC is unable to generalize. This issue
becomes particularly problematic when BC, often trained on trajectories derived in deterministic set-
tings, is deployed in stochastic environments, where randomness can quickly cause deviations from
the learned trajectories. Therefore, it is an inadequate approach for designing low-thrust trajectories
that can deal with unanticipated control execution errors.

Reinforcement Learning (RL), on the other hand, does not require expert-generated demonstra-
tions and can instead learn optimal policies through direct interactions with its environment, which
is modeled as a MDP. In particular, RL agents achieve this by balancing exploration, which allows
them to uncover new behaviors, with exploitation, where they capitalize on proven strategies to
enhance performance. To distinguish beneficial actions that drive progress from detrimental ones
that violate constraints, the agent receives scalar rewards from the MDP as feedback, which guides
its learning process. This approach of learning from experience has allowed RL to achieve suc-
cess in various spacecraft applications, including low-thrust trajectory design,'” landing guidance, '
cis-lunar trajectory optimization,'*-?! and rendezvous and docking maneuvers.?> Furthermore, RL-
based methods for robust trajectory design have demonstrated the ability to develop policies that
can accommodate control execution errors.”> However, existing work assumes that both the type

and magnitude of control execution errors are known beforehand and can therefore be simulated.
This is often not the case, as evidenced by various SmallSats like PROCYON, Lunar Flashlight, and
LunaH-Map experiencing unforeseen errors, highlighting the need for RL agents to generalize to
novel and unexpected scenarios. Unfortunately, the RL algorithms that have been successfully ap-
plied in aerospace are often limited in such situations, as they can be sensitive to initial conditions,
prone to instability, and lack the robustness needed to effectively handle unanticipated errors.

PROBLEM STATEMENT

The primary objective of this paper is to investigate how RSRL algorithms can be leveraged to
design low-thrust interplanetary trajectories that are robust to control execution errors. To assess
the effectiveness of our approach and facilitate comparisons with existing research, we focus on a
three-dimensional, time-fixed, minimum-fuel Earth-Mars rendezvous mission. In this scenario, the
spacecraft departs from Earth and executes a series of maneuvers with the goal of matching Mars’
position and velocity while minimizing fuel consumption. Initially, we consider a simplified model
where the spacecraft is influenced solely by the gravitational forces of the Earth, Mars, and the Sun.
To assess the robustness of the trained RSRL policies compared to RL baselines, however, we sim-
ulate control execution errors caused by factors such as actuator noise, thruster misalignments, and
MTE:s. Table 1 summarizes key experimental parameters, including the total number of simulation
steps IV, transfer time ¢, initial spacecraft mass my, and engine characteristics (maximum thrust
Tinaz and exhaust velocity ue,). It also provides the initial position rg and velocity v, of Earth,
the final position r, and velocity v, of Mars, and the gravitational parameters pig, (44, and e for
Earth, Mars, and the Sun, respectively. In all of our simulations, the spacecraft’s position, veloc-
ity, and mass are non-dimensionalized by normalizing with respect to the Earth—Sun mean distance
7 = 1.496 x 10! m, the corresponding orbital velocity ¥ = /i /7, and the initial spacecraft mass
m = my.

Table 1: Problem Data

Variable Value
N 40
ty, days 358.79
Trnazs N 0.5
Ueq, M/ 19,613.3
mo, kg 1000
e, m3/s? 1.327 x 1020
fas, m3/s? 3.986 x 104
fhg > M3/s? 4.282 x 1013
re, m [—1.407 x 101, —5.161 x 10'°,9.8 x 10°]7
Ve, M/s [9.775 x 103, —2.808 x 10*,0.434]7
ro,m [—1.727 x 101, 1.770 x 10'*,7.949 x 10°]7
Vg, m/s [~1.643 x 10%, —1.486 x 10%,0.921]7

Markov Decision Process

In this section, we will briefly introduce the concept of a MDP, which is a mathematical frame-
work used to model decision-making problems where an agent learns to accomplish a specific goal

by interacting with its environment.?* It is defined by a tuple (S, A, P, 7, po) where S is a set of
states, A is a set of actions, P : S x A x § — R is the transition function, r : S — R is the reward
function, pp : S — R is the distribution of the initial state s, and v € (0, 1) is the discount factor.
The agent’s objective, when solving an MDP, is to find the optimal policy 7* that maximizes the
expected return R or discounted sum of rewards:

J(m) = Ernn [R(7)] = Ernr

N-1
Z fykr(sk)] , where 7 = (sp,ag,s1,a,...) (1)
k=0

so~ po(so), ar ~ m(aksk), Sk41 ~ Plskyilsk, ax)
Formulating the Earth-to-Mars Transfer Problem as a Markov Decision Process

We will now outline how the problem of finding an optimal Earth-to-Mars transfer is formulated
as an MDP. The first step of this formulation is defining the MDP’s state space, which encompasses
all possible positions and velocities in Cartesian coordinates as well as masses that the spacecraft
can assume at time tj, = k:tﬁf, k € [0, N].

S = [rf V% mk]T eR’ 2)

We then adopt the Sims-Flanagan model to approximate a low-thrust trajectory as a sequence of
ballistic arcs connected by impulsive AV's. With this model, we can determine the maximum AV
the agent can take at time ¢ using the spacecraft engine’s maximum thrust 7},,45:

Tmax tl

AV;naac,k: = mE N (3)
This allows us to bound the MDP’s action space within a ball of radius equal to AV, 1:
ar € {AVpax k- V|V E IB%S} 4)

Since we operate in a three-body environment, our MDP’s transition function is deterministic but
lacks an analytic form. Therefore, we define our transition function f using the n-body equations
of motion, where the velocity vy, is first updated instantaneously by AV, before numerical integra-
tion. Additionally, we apply the Tsiolkovsky equation to update the spacecraft’s mass, ensuring an
accurate transition from ¢ to t51:

v+ [vy dt

Tr+1) R trg1 r—reo r—rg r-ra dt
Vier1 | = f(tr, Vi, mp, AVE) = [Vie+ [THORTGR T RO T K e, F)]
Me+1

—|AVk|
mi exXp Ueq

where Vi = v + AVy

When computing the AV at time ¢y, we force the spacecraft to execute a maneuver that matches its
velocity to that of Mars:

VO7|—VN

AVN = min (‘Voz —VN’,AVmaX,N) (6)
Vg — vl

This allows us to express the final state of the spacecraft as:
ry=ry ™)
Vi =VN+ AVy (8)

—|AV
My = my exp <N'> ©)

Ueg

To evaluate the robustness of the designed low-thrust trajectories, we introduce control execution
errors into the Earth-to-Mars MDP by transforming the agent’s selection action aj, into &y, prior to
feeding it into our transition function, resulting in a new transition function f:

~

ey, Vi, my, ag) = f(ry, Vi, my, ag) (10)

In our experiment, we consider control execution errors arising from actuator noise, thruster mis-
alignments, or MTEs. For modeling actuator noise, we add Gaussian noise to the agent’s selected
action:

a, = ay, + day (11)
where day ~ N (0,U,) € R3, U,r =043

To model thruster misalignment, we sample a unit vector e uniformly from the unit sphere at the
start of each episode. This vector, combined with a predefined rotation angle ¢, defines the Euler
parameter vector 3(¢, e). The corresponding direction cosine matrix R(/3) is then used to rotate
the agent’s action at each timestep.

ap = [R(B(¢,e)]ax (12)
where e ~ U(S?)

Finally, MTEs are modeled as a complete loss of thrust, nullifying any action selected by the agent
when they occur. To simulate MTEs, we begin each episode by sampling a trigger time ¢; uniformly
from the interval [0, V), at which point the MTE is initiated, setting a;, = 0. After activation, the
MTE persists at each subsequent timestep with probability p;,:, and can last for at most N,
consecutive steps. Once the system recovers, however, the MTE does not occur for the remainder
of the episode. The specific parameters used to model all control execution errors are summarized
in Table 2.

Table 2: Uncertainty Model Parameters

Oq, M/s ¢, deg DPmte Mimnte
25 5 0.1 3

To promote fuel efficiency and ensure satisfaction of terminal constraints during the Earth-to-
Mars transfer, the reward function penalizes the agent at each timestep for propellant usage and
applies a large terminal penalty based on position and velocity constraint violations, weighted by
penalty factors A\; = 10, Ay = 100, and A3 = 100.

13)

{—)\1 - (mp—1 — my) ifk < N,
Te = [rp—rg| [vf—va| . o
- (my = mi) = Do I (A (el el)) i =
We use the natural logarithm in the terminal penalty to structure the reward such that large violations
lead to significant negative rewards, while smaller violations yield progressively larger positive
rewards. This transition from negative to positive rewards near the target incentivizes the agent to
quickly match Mars’s position and velocity, accelerating convergence during training.

REINFORCEMENT LEARNING

To establish a RL benchmark for solving the Earth-to-Mars transfer problem, we utilize the Prox-
imal Policy Optimization (PPO) RL algorithm. PPO is a model-free, policy-gradient actor-critic
algorithm known for its outstanding performance in continuous and high-dimensional control tasks,
making it a preferred choice for RL applications in the astrodynamics community.”> As a model-
free algorithm, PPO does not rely on a predefined model of the environment’s dynamics, instead
learning a policy 7 directly from real-world samples. This policy is parameterized by a deep neu-
ral network (DNN) with parameters #, denoted as 7y to highlight its dependence on the network’s
parameters. To manage complex environments with large and continuous state and action spaces,
the DNN is often composed of multiple layers, with each layer consisting of neurons that compute
a weighted sum of inputs from the previous layer and apply a nonlinear activation function. In the
case of a deterministic policy, the final layer of the DNN directly outputs the action. For stochastic
policies, such as those learned by PPO, the final layer produces either a categorical distribution for
discrete action spaces or the mean and variance of a Gaussian distribution for continuous action
spaces, from which actions are sampled accordingly.

As a policy-gradient method, PPO aims to learn a stochastic policy by performing the following
search for 6*:

N-1
* _ — k
0* = arg max J(0) = arg max E;rm, LZ_O vy r(sk)] (14)

This search is conducted using stochastic gradient ascent of the form 6 < 6 + aVy.J(mg) to update
the policy in the direction that maximizes the objective. Here, « is the learning rate and the policy
gradient, Vy.J(6), is computed using the policy gradient theorem:

N-1
VoJ(0) =Ernr, [Z Vo logmg(ay | sk)Q”(sk,ak)] (15)
k=0

where Q7 (s, a) represents the expected return from taking action a in state s and following policy
Y-

N-1

Q™ (s,a) = Ern, Z 'Yk,_krk’ | sk, =s,a, =a (16)
k'=k

This expectation is typically estimated using one of two approaches. The first, the Monte Carlo
method, computes the expectation based on rewards collected along sampled trajectories, yielding
an unbiased but high-variance estimate. A more effective approach, however, is the Actor-Critic
method, which utilizes a separate neural network, known as the critic, to learn an approximation of
Q7 (s, a). This approach can be further improved by subtracting a baseline function from Q™ (s, a)
to help increase training stability. A common choice for this baseline is the state value function
V7é(s), leading to the definition of the advantage function A™(s), which quantifies the relative
benefit of taking action a in state s compared to following the current policy.

N-1

VT(s) = Erun, [Z ’yk,_krk/ | s, = s] a7n
k' =k

A™(s,a) = Q™ (s,a) — V™(s) (18)

This approach forms the basis of the Advantage Actor-Critic (A2C) framework. In practice, the ad-
vantage values are computed using Generalized Advantage Estimation (GAE), where the parameter
\ governs the bias-variance trade-off:?

N—-1
Ak = Z(’)/)\)k,ikék/ (19)
K=k

where O = 7 + YV (Sp11) — V™ (sk)

are unbiased estimates, as E ., [0x] = A™ (s, a;). This reformulation allows for the policy gra-
dient to be evaluated more efficiently by reducing variance in gradient estimates, thereby enhancing
training efficiency and stability.

N—-1

Z V@ log W@(ak|sk)/1k
k=0

Vo J(0) = Eror, (20)

PPO further improves upon the A2C framework by introducing a clipped surrogate objective
function, which restricts the updated policy to remain within a small range €. This prevents ex-
cessively large updates, which can often lead to the problem of catastrophic forgetting in RL. The
clipped surrogate objective function is defined as:

N—-1

Jclip(e) = Err, [Z min (fk/lk, clip(7g, 1 — €, 1+ E)Ak>
k=0

2D

m)(ak|sk)

where fk (71'9) = m
0

is a ratio of the new and old policies.

As of now, the objective functions and corresponding policy gradients discussed have focused
solely on updating the actor. For updating the critic, stochastic gradient descent is utilized to mini-
mize the mean squared error objective H and thereby learn the value function for the current policy:

| N1y N-1 2
H(Q) = ETNWQ N Z 5 <V7T6 (Sk,‘) — Z ,.Yk' _krk/> (22)
k=0 k'=k

In addition to the actor and critic objectives, PPO also utilizes an entropy regularization term S' to
encourage exploration and prevent premature convergence:

N—-1
1
S(0) = Err, [N D Eayory(se) [~ log mo(ag | sk)]] (23)
k=0

These objectives are then combined into a single loss function by weighting them with hyperparam-
eters c; and cg, which control the contributions of the value function objective and entropy terms,
respectively:

JPP(9) = JUP(0) — 1 H(6) + c25(6) 24)

This objective is optimized through an iterative learning process consisting of two phases. The
first phase is the policy rollout, which involves using the current policy to gather data to fill a rollout
buffer. This buffer temporarily stores the collected data for the second phase, known as the policy
update, where the data is sampled with batch size np, used to evaluate the objective, and perform
nept €pochs of stochastic gradient ascent. PPO alternates between performing policy rollouts and
policy updates until the total number of training steps 7' is reached.

RISK-SENSITIVE REINFORCEMENT LEARNING

Although optimizing the expected return has yielded promising results, it often leads to policies
that are sensitive to initial conditions, prone to instability, and lack robustness. This issue stems from
the expectation operator in the objective, which tends to overlook rare but significant trajectories.
As a result, this objective does not account for risk and is considered risk-neutral. In contrast, RSRL
approaches are less affected by these issues and therefore have gained increasing attention. There are
two primary methods for introducing risk into the risk-neutral objective that reinforcement learning
optimizes: incorporating risk as a constraint or embedding it explicitly into the objective function.
In this paper, we focus on the latter approach and optimize the exponential criterion, where 5 > 0
corresponds to a risk-seeking objective, and 3 < 0 corresponds to a risk-averse objective:?’

J5(0) = Eyrer, [56573“)} (25)

To understand why the exponential criterion incorporates risk into the objective function, we can
take its Taylor expansion, which consists of an infinite sum of higher moments of the return with
diminishing weights for small values of 5:

3

Ernry [B7%) = 4 BB [R(7)] 4 B[R] 6)
This expansion allows us to see that optimizing the exponential criterion is analogous to optimizing
the risk-neutral objective, with an additional bonus or penalty for high-variance returns depending
on the sign of 5. Additionally, as J approaches zero, the criterion converges to the risk-neutral
objective as the higher-order terms drop out. The exponential criterion can also be interpreted as
representing the worst-case return when 3 < 0 and the best-case return when 3 > 0.28 This
interpretation, in particular, is the reason we selected the exponential criterion over alternative risk
measures. Since we aim to learn policies that perform well in worst-case scenarios, the risk-averse
exponential criterion will be especially useful for our application.

To optimize this objective, we adopt a risk-sensitive actor-critic algorithm. In this framework, ad-
vantage values are computed as the difference between the exponential Bellman backup, Rf (sk, ax)
—analogous to (s, ay) in standard actor-critic methods—and a scaled version of the risk-sensitive
value function Vér ?, denoted as Vg ?, which is derived from the risk-sensitive objective Jz(6):

N-1
V37 (sk) = BErmr, [exp (B > A (e, ak/)) | Sk] 27

k' =k
B 1 N—-1
Vi (sk) = EVge(sk) =E;r, [exp <ﬁ Z Ak _kr(skl,ak1)> | sk] (28)
k' =k
Rf(sk, ay) = exp (Br(sk, ai) +vlIn Vﬁ” (sk+1)) (29)
AT (s, ax) = Ry (sg, ax) — Vi (sy) (30)

Similar to A2C, these advantage values are then used to compute policy gradients with reduced
variance, with the key exception that they are scaled by the risk parameter 3, resulting in the policy
gradient V.J3(6) :

N—-1
VoJ5(0) = Err, [ﬁ > Vologm(ag|s) AF (sk, a@] 31)
k=0

To train the critic, we minimize the mean-squared error objective Hg:

1 N-1 1 5 9
Hy(0) = Errry | 1o ;) 5 (V3 (s) = Rl (s, a0) (32)
JR(0) = J5(0) — c1Ha(0) (33)

It is important to note that we do not include an entropy term .S in our objective, as the risk-sensitive
objective JX already serves as an upper bound on the standard RL objective .J, which includes the
entropy term.?’

10

IMPLEMENTATION DETAILS

To develop our RSRL algorithm for designing robust low-thrust trajectories, we improve upon
the risk-sensitive actor-critic method introduced in the earlier section. Specifically, we compute ad-
vantage values using generalized advantage estimation and integrate the clipping mechanism from
PPO to mitigate the instability that can arise from using the exponential operator. This modified
algorithm, which we call RS-PPO, is built upon the Proximal Policy Optimization (PPO) algorithm
from Stable Baselines3—an open-source library providing high-quality implementations of RL al-
gorithms in PyTorch—by replacing its standard actor-critic algorithm with the risk-sensitive variant
proposed earlier. To evaluate RS-PPO, we compare its performance against the original PPO al-
gorithm it was built upon, which serves as our baseline. Both algorithms are trained for a total of
1 x 10 timesteps to ensure a fair comparison. They also share the same underlying deep neural
network architecture, consisting of separate actor and critic networks, each with two hidden layers.
A summary of the network architecture, including the number of neurons per layer and activation
functions, as well as hyperparameters is provided in Table 3 and Table 4.

Table 3: Network Architecture

Policy Network Value Network

Layer 1 64 64

Layer 2 64 64

Output 3 1
Activation tanh tanh

Table 4: Hyperparameters

Algorithm Hyperparameters
v A « € a Co Ny Nopt
PPO 09999 099 5x107* 03 05 4.75x10°% 64 50
RS-PPO [0.9999 099 5x10~* 03 0.5 - 64 50

For building our low-thrust interplanetary transfer environment, we utilize Basilisk, a high-
performance spacecraft simulation framework, to construct our simulation engine. With Basilisk,
we are able to model three-body dynamics as well as configure the spacecraft, Earth, and Mars such
that they match the data in Table 1. This simulation engine serves as our transition function f, which
is subsequently incorporated into a Gymanisum environment that defines the remaining components
of the MDP. In addition to using Gymanisum to formalize the MDP, we emulate control execution
errors arising from actuator noise, thruster misalignment, and MTEs within the Gymanisum envi-
ronment prior to passing them into Basilisk, allowing us to utilize the same Basilisk environment
throughout our entire experiment.

RESULTS

The results from training PPO and RS-PPO with varying risk parameters S on the nominal three-
body environment are presented in Table 5, followed by an evaluation of the resulting policies under
different control execution errors for comparison. To evaluate performance, we train each algorithm
with five distinct random seeds. For every seed, we sample 1,000 trajectories from each environment
to calculate average metrics that reflect the optimality of the resulting trajectories. These metrics

11

include the final spacecraft mass my, position constraint violation percentage Ary/rs, velocity
constraint violation percentage Avs /v, and the undiscounted return J.

Table 5: Robust Trajectory Overview

Algorithm Results
I51 my, kg Ary/rg, % Avy/vg, % J
mean std mean std mean std mean std
PPO - 429.156 74530 1999 2945 0.111 0.187 -10.018 118.015
_ -0.010 | 418.039 111.593 2.603 3.105 0.212 0.286 -23.338 154.937
g -0.005 | 391.148 69.422 0417 0.062 0.029 0.051 94.697 14.812
'g RS-PPO -0.001 | 386.117 53.468 0.426 0.101 0.018 0.017 94.072 22.076
Z 0.001 | 344.199 79.708 2.269 2.7773 0.170 0.228 -20.336 141.755
0.005 | 386.693 105.883 1.563 2.661 0.138 0.284 44.563 138.585
0.010 | 340.687 86.029 2.670 3.261 0.336 0.440 -19.206 167.607
PPO - 424.163 72.887 2.892 2.631 0363 0284 -81.283 84.382
. -0.010 | 415.903 108.158 2.869 2.990 0.329 0.423 -59.099 127.717
% B -0.005 | 387.975 69.539 0.671 0.061 0.040 0.035 47.741 11.368
2 E RS-PPO -0.001 | 382.925 52333 0.805 0.235 0.028 0.021 36.386 24.322
2 0.001 | 343.277 77.590 2.585 2.448 0.348 0.457 -63.479 110.947
0.005 | 384.198 103.963 2.144 2471 0.174 0.297 -34216 95.986
0.010 | 340.061 84.134 3304 2.850 0.604 0.501 -97.083 104.315
PPO - 425.882 72.674 4.048 2468 1.110 0981 -141.391 69.830
g g -0.010 | 420.068 104.077 3.399 3.132 0.882 0.675 -100.827 109.841
2 g -0.005 | 386.954 72.174 1.049 0.362 0432 0372 -10.393 39.502
g0 RS-PPO -0.001 | 382.943 50974 0942 0.245 0.338 0.481 1.235 36.254
ﬁ .g 0.001 | 344.563 76.298 3.075 2.057 1.058 1.509 -109.766 91.129
= 0.005 | 386.669 102.862 2.682 2.298 0.384 0.388 -83.330 80.842
0.010 | 343.088 84.020 3.629 2.806 0.831 0.808 -126.748 83.638
- PPO - 438.094 70.812 3384 2519 0961 0.723 -103.049 76.089
§ -0.010 | 428.418 103.129 2995 2.893 0.674 0378 -78.010 115.923
ﬁ = -0.005 | 400.617 68.467 0.865 0.109 0.390 0.312 6.621 17.756
= 2 RS-PPO -0.001 | 400.884 49.287 1318 0.561 0.461 0.422 -4.403 43.700
% = 0.001 | 356.692 70.079 3.234 2368 0.792 0.504 -97.994 91.338
E 0.005 | 400.220 98.697 2.633 2.176 0.826 0.285 -76.461 79.427
0.010 | 358.416 83.304 4.058 2.644 0983 0.292 -131.979 75.293
From Table 5, we can see that RS-PPO with a small negative risk parameter 3 = —0.005 or
B = —0.001 consistently outperforms PPO across all settings. This is particularly evident in the

perturbed environments, where optimizing the risk-averse objective allows RS-PPO to better pre-
pare for worst-case scenarios caused by control execution errors. In addition to improved overall
performance, RS-PPO demonstrates significantly smaller increases in position and velocity con-
straint violations compared to PPO. For example, in the actuator noise setting, PPO experiences a
1% increase in position violations and a 0.2% rise in velocity violations, while RS-PPO sees only
a 0.2% increase in position violations and a 0.02% increase in velocity violations. A similar trend
emerges under thruster misalignment, with PPO showing increases of 2% and 1% in position and
velocity violations, respectively, while RS-PPO limits these to just 0.5%-0.6% for position and
0.3% for velocity. Even in the case of missed-thrust events, RS-PPO with mild risk aversion keeps
position violations below 1%, further highlighting its robustness. In the nominal setting, RS-PPO
also performs better, which may seem less obvious at first. We believe that by penalizing negative
returns more strongly, the agent learns to avoid poor decisions early in training and is pushed to

12

explore more effectively. This leads to faster learning and better final performance even without any
disturbances.

Interestingly, RS-PPO with a small positive risk parameter also outperforms PPO in all settings
aside from the nominal case. This result is somewhat counterintuitive since risk-seeking policies
are not typically associated with robustness to changes in dynamics. However, it is possible that
the added risk encourages broader exploration in the nominal environment, allowing the agent to
learn how to act in a wider range of states that PPO may not encounter until errors occur. These
results suggest that incorporating risk, whether risk-averse or risk-seeking, can lead to more robust
policies. At the same time, setting 3 too high or too low, such as 8 = —0.01 or 5 = 0.01, leads to
performance across all metrics that is worse than or similar to that of PPO. This makes sense since
excessive risk aversion can stifle exploration and prevent the discovery of optimal strategies, while
overly risk-seeking behavior leads to reckless actions that accumulate large negative returns.

Although Table 5 clearly shows that RS-PPO with 8 = —0.005 or § = —0.001 outperforms
standard PPO in terms of constraint violations, we note that these trajectories are not mass-optimal.
In fact, PPO consistently conserves more mass across all scenarios. This trade-off arises from the
structure of our reward function, which places greater emphasis on minimizing terminal position
and velocity constraint violations than on fuel efficiency. As a result, RS-PPO with § = —0.005 is
still able to achieve a higher return compared to the PPO baseline. We hypothesize that this issue can
be addressed by either increasing the number of training timesteps, modifying the reward function
to better balance fuel efficiency with constraint satisfaction, or a combination of both.

To further analyze the results in Table 5, we take the individual trajectories sampled from PPO,
our best-performing risk-averse algorithm RS-PPO with 5 = —0.005, and our best-performing
risk-seeking algorithm RS-PPO with 8 = 0.005 and aggregate their metrics across all scenarios and
seeds into 100-bin histogram plots, as shown in Figure 2. These histogram plots provide a detailed
view of the distribution of each metric across different risk parameter settings. In particular, these
plots highlight the clear superiority of RS-PPO with 8 = —0.005 over its risk-seeking counterpart
and PPO, as its return histogram follows a Gaussian-like distribution, while the other two exhibit
greater overall spread and show an additional peak around large negative returns, likely caused by
the thruster misalignment and missed-thrust event scenarios, which both methods struggled with.
Furthermore, the multi-modal nature of the mass histograms across all algorithms suggests that the
reward function permits trade-offs between final mass and constraint satisfaction—allowing similar
returns to be achieved by sacrificing one for the other—especially given that the return histogram is
largely Gaussian, aside from the distinct peak observed in the risk-seeking and risk-neutral cases.

To complement our numerical results, we also provide visualizations to compare the perfor-
mance of the baseline PPO algorithm (Figure 3a) with our best-performing algorithm, RS-PPO
with 8§ = —0.005 (Figure 3b). For creating these visualizations, we sample 25 trajectories from
each environment using policies trained on different seeds. These trajectories are then used to
generate two plots, with the first displaying the entire transfer from Earth to Mars and the second
offering a zoomed-in view near Mars. In the second plot, markers are placed at the endpoints of
each trajectory to indicate velocity constraint violations. The size of each marker corresponds to the
severity of the violation, with larger markers representing greater violations. These visualizations
allow for an intuitive comparison of position and velocity constraint violations, offering additional
insight into the performance differences between the algorithms.

Figure 3a demonstrates the limitations of PPO in generalizing to control execution errors. As

13

[

my, kg Argfrg, %

—— PPO
RS-PPO 8 = —0.005

2000 4 8000 = RS-PPO 8 = 0.005

1500 6000 4
1000 4000 4
500 4 2000 4

0 T T T T T T T 0 T T T T T T
250 300 350 400 450 500 550 0 5 10 15 20 25

Avgfvg, % J
20000 3000 4
17500

Frequency

2500 1
15000
12500 2000 4
10000 4 1500 4
7500 4
1000
5000

500 4
2500 ’

0

T T T T T 0 T T T T T
0 50 100 150 200 —600 —400 —200 0 200 400

Figure 2: Histogram plots of performance metrics across 5,000 trajectories (1,000 per seed, five
seeds) for PPO, RS-PPO with 5 = —0.005, and RS-PPO with 8 = 0.005.

shown in Table 5, the trajectories designed using PPO under nominal conditions remain noticeably
closer to Mars, whereas those affected by execution errors fan out further from the target. We also
observe that some of PPO’s trajectories overshoot Mars, indicating that the agent does not account
for control execution errors that could lead to overshooting. This behavior contrasts with a more
cautious strategy that aims to undershoot, ensuring the spacecraft stays in a position where it can
still reach Mars until the very end.

Figure 3b showcases the robustness of RS-PPO with 5 = —0.005 in the presence of control
execution errors. As with PPO, we see that the trajectory behavior aligns closely with the results
in Table 5, which indicate minimal position and velocity constraint violations. This is evident in
both plots, where, unlike in Figure 3a, the trajectories do not fan out and instead remain tightly
clustered around Mars, indicating consistently near-optimal performance across all settings. We
also notice that the number of visible markers at the end of each trajectory is smaller compared to
PPO, indicating smaller velocity constraint violations on average. Additionally, the overshooting
observed is minimal and significantly less pronounced than in the PPO case. This suggests that
RS-PPO with 8 = —0.005 learns a more cautious policy, likely favoring undershooting until the
final moments in order to reliably reach Mars even in the presence of control execution errors.

CONCLUSION

In this paper, we propose the use of Risk-Sensitive Reinforcement Learning (RSRL) for design-
ing low-thrust interplanetary trajectories that are robust to control execution errors. To assess the
effectiveness of RSRL compared to standard RL algorithms in this setting, we focus on the problem
of executing an interplanetary transfer from Earth to Mars, which we model as a Markov Decision
Process (MDP). Then, we train both PPO and our risk-sensitive extension, RS-PPO, with varying
risk parameters 3, on the Earth-to-Mars MDP that we have constructed. Finally, we evaluate both
our risk-neutral and risk-sensitive policies in the presence of control execution errors resulting from

14

0.100
m===_Nominal ° /
= Thruster Misalignment = 84/100 trajectories visible.
0.07 === Actuator Noise f 7
1.5 A 075 Missed-Thrust Event
0.050 A
1.0 A
0.025 A
0.5 1
L]
S
> 0.000 -
0.0 4 p
—0.025
_05 -
—0.050 o
710 -
—0.075 &
= Mars
—151 Sun o p
T T T T T T —0.100 T T T T T T T
-1.0 —0.5 0.0 0.5 1.0 1.5 —0.100 —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075 0.100
z /7 z /7
(a) PPO
0.100
me= Nominal
= Thruster Misalignment 100/100 trajectories visible
0.075 === Actuator Noise /
159 : Missed-Thrust Event
104 0.050
0.025
0.5 1
I~
= 0.000 A
0.0 4
S e
—0.025 A
_05 -
—0.050 A
—1.0 A
—0.075 A
715 -
T T T T T T —0.100 T T T T T T T
—1.0 —0.5 0.0 0.5 1.0 1.5 —0.100 —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075 0.100
x /7 x /7

(b) RS-PPO with 8 = —0.005

Figure 3: Left: Earth-to-Mars trajectories generated using PPO and RS-PPO. Right: Zoomed-in
view of the final approach, centered on Mars, which is located at the origin.

15

actuator noise, misaligned thrusters, and missed-thrust events to produce our results. Through our
results, we observe that RS-PPO maintains performance significantly better than PPO when faced
with previously unseen control execution errors. This demonstrates that the simple modification of
replacing the standard RL objective with the exponential criterion in a state-of-the-art algorithm can
result in more robust policies. While our approach is promising, several challenges must be over-
come before it can be realistically used to design robust low-thrust trajectories onboard spacecraft.
First, although our policies demonstrate some degree of robustness, no policy is universally robust,
underscoring the need for retraining during deployment. Second, the optimal risk parameter 3 was
selected through trial and error, without a principled method for tuning it, which is not feasible for
real missions. To address both limitations, we plan to explore model-based RL methods, which are
far more sample-efficient and therefore better suited for online adaptation, as well as approaches
that allow [to be learned rather than treated as a fixed hyperparameter.

REFERENCES

[1] R. Walker, D. Koschny, C. Bramanti, I. Carnelli, E. Team, et al., “Miniaturised Asteroid Remote Geo-
physical Observer (M-ARGO): a stand-alone deep space CubeSat system for low-cost science and ex-
ploration missions,” 6th Interplanetary CubeSat Workshop, Cambridge, UK, Vol. 30, 2017.

[2] A.T.Klesh, J. D. Baker, J. Bellardo, J. Castillo-Rogez, J. Cutler, L. Halatek, E. G. Lightsey, N. Murphy,
and C. Raymond, “Inspire: Interplanetary nanospacecraft pathfinder in relevant environment,” AIAA
SPACE 2013 Conference and Exposition, 2013, p. 5323.

[3] S. Campagnola, N. Ozaki, Y. Sugimoto, C. H. Yam, H. Chen, Y. Kawabata, S. Ogura, B. Sarli,
Y. Kawakatsu, R. Funase, et al., “Low-thrust trajectory design and operations of PROCYON, the first
deep-space micro-spacecraft,” 25th International Symposium on Space Flight Dynamics, Vol. 7, Ger-
man Aerospace Center (DLR) Munich, Germany, 2015.

[4] S. Asmar and S. Matousek, “Mars Cube One (MarCO): the first planetary cubesat mission,” Proceedings
of the Mars CubeSat/NanoSat Workshop, Pasadena, California, November, Vol. 20, 2014, p. 21.

[5] M. Starr, M. Hauge, and E. G. Lightsey, “Shining a light on student-led mission operations: lessons
learned from the Lunar Flashlight project,” AIAA SCITECH 2024 Forum, 2024, p. 0822.

[6] R. Lane, C. Ryals, C. McLemore, and D. Hitt, “Nasa space launch system cubesats: first flight and
future opportunities,” 2023.

[7] L. Casalino and G. Colasurdo, “Optimization of Variable-Specific-Impulse Interplanetary Trajectories,”
Journal of Guidance, Control, and Dynamics, Vol. 27,7 2004, pp. 678-684, 10.2514/1.11159.

[8] W. A. Scheel and B. A. Conway, “Optimization of very-low-thrust, many-revolution spacecraft trajecto-
ries,” Journal of Guidance, Control, and Dynamics, Vol. 17, 11 1994, pp. 11851192, 10.2514/3.21331.

[9] K. F. Graham and A. V. Rao, “Minimum-Time Trajectory Optimization of Multiple Revolution Low-
Thrust Earth-Orbit Transfers,” Journal of Spacecraft and Rockets, Vol. 52, 5 2015, pp. 711-727,
10.2514/1.A33187.

[10] Z. Wang and M. J. Grant, “Optimization of Minimum-Time Low-Thrust Transfers Using Convex Pro-
gramming,” Journal of Spacecraft and Rockets, Vol. 55, 5 2018, pp. 586-598, 10.2514/1.A33995.

[11] Z. Wang and M. J. Grant, “Minimum-Fuel Low-Thrust Transfers for Spacecraft: A Convex Ap-
proach,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, 10 2018, pp. 2274-2290,
10.1109/TAES.2018.2812558.

[12] U. Eren, A. Prach, B. B. Koger, S. V. Rakovié, E. Kayacan, and B. A¢ikmese, “Model Predictive Control
in Aerospace Systems: Current State and Opportunities,” Journal of Guidance, Control, and Dynamics,
Vol. 40, 7 2017, pp. 1541-1566, 10.2514/1.G002507.

[13] L. Federici, B. Benedikter, and A. Zavoli, “Machine Learning Techniques for Autonomous Spacecraft
Guidance during Proximity Operations,” AIAA Scitech 2021 Forum, American Institute of Aeronautics
and Astronautics, 1 2021, 10.2514/6.2021-0668.

[14] F. E. Laipert and J. M. Longuski, “Automated Missed-Thrust Propellant Margin Analysis for
Low-Thrust Trajectories,” Journal of Spacecraft and Rockets, Vol. 52, 7 2015, pp. 1135-1143,
10.2514/1.A33264.

[15] D. Izzo, E. Oztiirk, and M. Mirtens, “Interplanetary transfers via deep representations of the optimal

policy and/or of the value function,” Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, ACM, 7 2019, pp. 1971-1979, 10.1145/3319619.3326834.

16

[16]

[17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

(28]

[29]

L. Cheng, Z. Wang, Y. Song, and F. Jiang, ‘“Real-time optimal control for irregular aster-
oid landings using deep neural networks,” Acta Astronautica, Vol. 170, 5 2020, pp. 66-79,
10.1016/j.actaastro.2019.11.039.

D. Miller, J. A. Englander, and R. Linares, “Interplanetary low-thrust design using proximal policy opti-
mization,” 2019 AAS/AIAA Astrodynamics Specialist Conference, No. GSFC-E-DAA-TN71225, 2019.

B. Gaudet, R. Linares, and R. Furfaro, “Deep reinforcement learning for six degree-of-freedom plane-
tary landing,” Advances in Space Research, Vol. 65, 4 2020, pp. 1723-1741, 10.1016/j.as1.2019.12.030.

A. Scorsoglio, R. Furfaro, R. Linares, and M. Massari, Actor-Critic Reinforcement Learning Approach
to Relative Motion Guidance in Near-Rectilinear Orbit, Vol. 168. Advances in the Astronautical Sci-
ences, 2 2019.

C. J. Sullivan and N. Bosanac, “Using Reinforcement Learning to Design a Low-Thrust Approach into
a Periodic Orbit in a Multi-Body System,” AIAA Scitech 2020 Forum, American Institute of Aeronautics
and Astronautics, 1 2020, 10.2514/6.2020-1914.

N. B. LaFarge, D. Miller, K. C. Howell, and R. Linares, “Guidance for Closed-Loop Transfers using Re-
inforcement Learning with Application to Libration Point Orbits,” AIAA Scitech 2020 Forum, American
Institute of Aeronautics and Astronautics, 1 2020, 10.2514/6.2020-0458.

J. Broida and R. Linares, Spacecraft Rendezvous Guidance in Cluttered Environments via Reinforcement
Learning, Vol. 168. Advances in the Astronautical Sciences, 1 2019.

A. Zavoli and L. Federici, “Reinforcement Learning for Robust Trajectory Design of Interplane-
tary Missions,” Journal of Guidance, Control, and Dynamics, Vol. 44, 8 2021, pp. 1440-1453,
10.2514/1.G005794.

R. S. Sutton and A. G. Barto, Reinforcement learning : An introduction. MIT Press, 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algo-
rithms,” 2017.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-Dimensional Continuous Control
Using Generalized Advantage Estimation,” 2018.

E. Noorani, C. N. Mavridis, and J. S. Baras, “Exponential TD Learning: A Risk-Sensitive Actor-
Critic Reinforcement Learning Algorithm,” 2023 American Control Conference (ACC), IEEE, 5 2023,
pp- 4104-4109, 10.23919/ACC55779.2023.10156626.

E. Noorani and J. S. Baras, “Embracing Risk in Reinforcement Learning: The Connection between
Risk-Sensitive Exponential and Distributionally Robust Criteria,” 2022 American Control Conference
(ACC), IEEE, 6 2022, pp. 2703-2708, 10.23919/ACC53348.2022.9867841.

E. Noorani and J. S. Baras, “A Probabilistic Perspective on Risk-sensitive Reinforce-
ment Learning,” 2022 American Control Conference (ACC), IEEE, 6 2022, pp. 2697-2702,
10.23919/ACC53348.2022.9867288.

17

	Introduction
	Related Work
	Optimal Control
	Deep Learning

	Problem Statement
	Markov Decision Process
	Formulating the Earth-to-Mars Transfer Problem as a Markov Decision Process

	Reinforcement Learning
	Risk-Sensitive Reinforcement Learning
	Implementation Details
	Results
	Conclusion

