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THRUSTER POINTING CONSTRAINED OPTIMAL 6-DOF
PROXIMITY OPERATIONS USING INDIRECT OPTIMIZATION

Himmat Panag*, Ruthvik Bommena†, and Robyn Woollands‡

Future space missions, such as in-space telescope assembly and on-orbit servicing,
require rendezvous and proximity operations that avoid thruster-induced contam-
ination and plume impingement on sensitive components of the client spacecraft.
In this paper, we introduce a novel thruster pointing constraint into the six degrees-
of-freedom (6DOF) optimal rendezvous problem and solve it using indirect opti-
mization techniques. A thruster pointing constraint limits the angular range over
which a spacecraft’s thrusters may operate, thereby avoiding plume contamination
while still minimizing the desired objection function (e.g. fuel consumption or
time-of-flight). By embedding this constraint directly into the dynamical model,
our solution method eliminates the need for prior knowledge of the burn sequence
or the precise times at which the constraint transitions to active/inactive. The
spacecraft’s 6-DOF motion is controlled by a set of fixed translational thrusters
and an attitude control system that can provide instantaneous torque. Our so-
lution method is demonstrated for an orbit rendezvous problem considering the
Clohessy-Wiltshire relative dynamics for the translational motion and modified
Rodrigues parameters for the attitude motion. A validation is presented through
comparison with solutions to the simpler 3DOF problem.

INTRODUCTION

Rendezvous, proximity operations, and docking (RPOD) are essential elements of many upcom-
ing space missions, including cargo delivery, refueling, inspection, and in-space assembly. Ad-
vances in reusable rockets, enhanced flight computer processing power, and the push for sustainable
space operations have sparked renewed interest in on-orbit servicing and manufacturing (OSAM)
missions, also referred to as ISAM. A typical scenario involves a chaser spacecraft performing ma-
neuvers in close proximity to a target spacecraft. In such situations, it is crucial to consider the
potential impact of exhaust plumes from thrusters, which can induce contamination and undesired
forces and torques on the target spacecraft. This is especially critical when the target spacecraft
carries sensitive payloads, such as a space telescope or star tracker, where plume impingement can
significantly jeopardize mission success. While using inert gas thrusters can help mitigate contam-
ination by design, they are inefficient and still contribute to plume impingement. An alternative
approach explored in this work is the introduction of a thruster pointing constraint, which limits the
angular range in which thrusters can operate. This constraint helps reduce both plume impingement
and contamination, however, the constraint is nonlinear, discontinuous, and varies with the rela-
tive position and orientation of the chaser spacecraft, making the resulting optimal control problem
particularly challenging to solve.

*PhD Student, Department of Aerospace Engineering, hpanag2@illinois.edu
†PhD Student, Department of Aerospace Engineering, rbomme2@illinois.edu
‡Assistant Professor, Department of Aerospace Engineering, rmw@illinois.edu

1



Two approaches are typically used to solve these optimal control problems: Direct and Indirect
methods. Direct methods involve discretizing and parameterizing the states and controls using
a set of basis functions. This results in a large nonlinear programming problem, which is then
solved through an iterative procedure. This method does not guarantee an optimal solution. In
contrast, indirect methods focus on finding solutions by solving for the necessary conditions of
local optimality, derived from Pontryagin’s Maximum Principle.1 These necessary conditions lead
to a two-point boundary value problem, where the unknown initial costates are determined using
single or multiple shooting methods to satisfy the final state boundary conditions. While indirect
methods are effective at handling nonlinearities and ensure local optimality, they are often highly
sensitive to the initial guess and typically require smoothing and continuation techniques to arrive
at the final solution.

The thruster-pointing constrained optimal transfer problem has received attention in recent years
with a direct sequential convex optimization approach applied to both 3DOF2 and 6DOF3 cases.
These methods address the nonconvexities in the constraints and dynamics through linearization.
The problem is then discretized into a nonlinear programming problem and solved using a method
of successive approximations.4 However, the reliance of these approaches on linearizing the highly-
nonlinear rotational dynamics severely limits their utility. In the context of indirect methods, the
constrained 3DOF problem is typically approached in two ways. One approach, as discussed in,5

involves augmenting the cost functional with an integral penalty barrier function. While this barrier
function method is general and powerful, it can suffer from slow convergence and implementation
complexity. The second approach, outlined in,6 relies on knowledge of the sequence of constrained
and unconstrained arcs. It solves for these arcs and applies the Weierstrass-Erdmann corner condi-
tions at the junction points to piece together the optimal solution. This method is faster to compute
but lacks scalability, as the optimal burn sequence is generally not known in advance. More recently,
Panag & Woollands,7 solved the problem by reparameterizing the control set to smoothly embed
the constraint into the state dynamics. In this approach, the control set of the resulting optimal con-
trol problem is fixed, allowing the problem to be solved as though it were an unconstrained 3DOF
problem.

The 6DOF problem is important to proximity operations for several reasons. Firstly, limits on
spacecraft angular accelerations are naturally incorporated into the 6DOF problem by limiting the
available control torque. Furthermore, during proximity operations position and attitude are often
coupled, and both need to be controlled simultaneously throughout the trajectory. The attitude of
the spacecraft may be represented by various attitude parameterizations.8 Most commonly em-
ployed are Euler Angles (which suffer from singularities), quaternions and rotation matrices (which
are non-minimal and require additional constraints to be satisfied, unit quaternion norm and matrix
orthogonality respectively), and Modified Rodrigues Parameters (MRP)9 which represent each at-
titude using two sets (standard and shadow), and are the parameterization used in this paper. It is
important to note that MRPs are discontinuous when switching between the standard and shadow
set, and thus the corresponding MRP costate switching condition (derived in [10]) must be intro-
duced in order to formulate the OCP.

Irrespective of the formulation chosen, the rotational dynamics are highly nonlinear, making
direct approaches unsuitable. While indirect methods can handle these nonlinearities, spacecraft
reorientation problems in which the control appears linearly in the Hamiltonian often suffer from
singular arcs for the control torque,11, 12 which occur when the necessary conditions obtained from
PMP do not provide enough information to determine the optimal control. While control torque is
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often penalized in 6DOF transfer problems,13 in this work we assume that objective is to minimize
fuel consumption only, giving rise to singular controls.

Singular controls can be treated by various regularization techniques which modify the dynam-
ics,14, 15 cost function16 or both by a small factor (say γ). While it is not always practical to trace
these homotopies, it can be shown that solutions to the modified OCP converge to solutions of the
original OCP as γ → 0. The Epsilon-Trig regularization method relies on appending one control
term to the state dynamics and replacing the bounded control −1 ≤ u ≤ 1 with a trigonometric
function sinuTRIG, however it encounters numerical issues if both switch function and costate are
simultaneously near zero.15 The ϵ − algorithm,16 adds a quadratic control term to the running cost
in order to remove the singular arc. While this approach yields good initial convergence, our exper-
iments showed that it was difficult to reduce the factor sufficiently to approximate the singular arc.
These methods require altering the system dynamics, which in turn modifies the Hamiltonian and
costate equations, making them expensive and complex to implement. More recently, the Unified
Trigonometric Method (UTM) uses trigononometrization of the control and appends an orthogonal
control term to the running cost only.17 This requires no modification to the implementation, except
for inclusion of an L2 norm-based regularization smoothing function.18

The main contribution of this paper is the development of an indirect optimization framework to
solve the 6DOF thruster-pointing-constrained problem. Plume models suggest that approximately
99% of the engine exhaust mass is concentrated within 10◦ of the plume centerline.2 While the spe-
cific choice of constraint region is left to the mission designer, it’s important to note that overly re-
strictive constraints can make the desired final state unreachable. In this work, we do not address the
question of reachability and instead assume that the constrained problem is feasible. Our approach
incorporates continuation and smoothing techniques to gradually enforce the pointing constraints
within the iterative solution process. To address the challenge of singular arcs, we implement the
L2 norm-based regularization approach within the optimization scheme. We demonstrate the effec-
tiveness of our method on a 6DOF spacecraft rendezvous scenario and validate the results using a
convex optimization solver.

The paper is organized as follows: We first introduce the dynamical models used to formulate
the problem, including the incorporation of the shadow sew for the MRPs. We then formulate the
unconstrained optimal control problem, introduce the homotopy and continuation techniques used
and describe how singular arcs are treated. Following this we modify the dynamics to include
the thruster pointing constraint and present various results, including a comparison to the simpler
constrained 3DOF problem.

DYNAMICAL MODEL

The constrained thruster pointing approach developed in this paper can be applied to any set of
dynamical equations whose origin is collocated with the target spacecraft. Let the relative dynamics
of the region be given by f(x). To model spacecraft maneuvers, a perturbing thrust term for each
engine is added to the dynamics as well as an additional equation to keep track of the spacecraft
mass as propellant is consumed. A single control torque term, τ is added to the rotational dynamics
to capture the control authority of a reaction wheel system. The attitude is expressed using Modified
Rodrigues Parameters, p, with respect to an inertial frame. The equations of motion for the system
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then become:

ṙ = v (1)

ṁ = −T

c

n∑
i=1

δi (2)

v̇ = f(x) +
T

m

n∑
i=1

δiΨ(p, t)ui (3)

ṗ =
1

4

[(
1 + |p|2

)
I3×3 + 2 [p×]2 + 2 [p×]

]
ω, where [p×] =

[
0 −p3 p2
p3 0 −p1
−p2 p1 0

]
(4)

Iω̇ = −ω × (Iω) + T

n∑
i=1

δi (di × ui) + τ , (5)

where T is the maximum thrust available from each engine, c is the exhaust velocity, m is the mass
of the chaser spacecraft, the subscript i denotes the ith engine, δi is the engine throttle, Ψ(p, t)
is a direction cosine matrix (DCM) which transforms vectors from the chaser body frame into the
translational dynamics frame, ui is a unit vector in the direction of thrust (opposite to the plume),
expressed in the body frame of the chaser and di is the location of engine i expressed in the body
frame. In this work we assume that the chaser is a cube of side length 1m.

Figure 1: Chaser spacecraft with two example thruster configurations. The thrust vectors are aligned
with the center of mass (COM) of the chaser.

For the translational dynamics, we utilize the Clohessy-Wiltshire (CW)19 equations, a set of lin-
earized equations describing the relative motion between two objects in close proximity under the
influence of a central gravitational force when the target vehicle is assumed to be in a circular orbit.
The frame for the CW equations is the LVLH (local-vertical-local-horizontal) frame, where the x
axis is pointing radially outward from the Earth to the target spacecraft, the y axis is in the velocity
direction and z axis is oriented in the direction of the angular momentum vector. In order to main-
tain this definition, the frame rotates at a constant rate, Ω about its z axis. Therefore the rotation
matrix Ψ(p, t) can be written as follows:

Ψ(p, t) = DCMInertial→LVLH(t)DCMBody→Inertial(p). (6)
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The rotation matrix from the body frame to the inertial frame is given by,20

DCMBody→Inertial(p) = I −
4
(
1− |p|2

)
(1 + |p|2)2

[p×] +
8

(1 + |p|2)2
[p×]2 . (7)

Finally, due to the constant rotation rate of the LVLH frame, the rotation matrix from the Inertial to
LVLH frame is given by:

DCMInertial→LVLH(t) =

[
cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1

]
. (8)

Propagation of the dynamics is done using a numerical integrator. Further details about the CW
equations can be found in most orbital mechanics textbooks (e.g. Curtis21).

Shadow Set for MRPs

To avoid the singularity of the original MRP at principal rotation angles of 360◦, a switching
surface defined by pTp = k is implemented in MATLAB using event detection (k is set to a value
slightly above 1 to avoid chattering). When the switching surface is hit, the integration is stopped
and the MRP is replaced with its equivalent from the shadow set. This discontinuity also requires
replacing the MRP costate.10

pS = − p

pTp
(9)

λS
p =

[
2ppT − (pTp)I

]
λp, (10)

where the superscript S denotes the value of the state/costate after the switch function. The other
states and costates remain unchanged and the integration is continued until the final time is reached.

FORMULATION OF THE FUEL-OPTIMAL CONTROL PROBLEM

In this section we first formulate the unconstrained fuel-optimal control problem by applying
primer vector theory.22 We then incorporate the thruster pointing constraint using a homotopy,
which reduces a thruster’s effectiveness if it is directed at the target by a factor η.

Unconstrained Fuel-Optimal Formulation

The cost functional (J) for minimizing the total propellant mass consumed in a fixed time-of-
flight can be written as

J(δ) =
T

c

∫ tf

0

n∑
i=1

δidt. (11)

For a solution to be at least locally optimal, Pontryagin’s Maximum Principle1 must be satisfied.
That is, the Hamiltonian must be minimized pointwise in time over the set of all permissible controls
to drive a dynamical system from the initial to the final state. The Hamiltonian can be written as

H =
T

c

n∑
i=1

δi

[
1 +

c

m
λT
vΨ(p, t)ui − λm + cλT

ωI
−1 (di × ui)

]
+ λT

ωI
−1τ + ...

+ λT
r v + λT

v f(x) + λT
p ṗ+ λT

ωI
−1 (ω × (Iω)) (12)
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where λx = [λr,λv, λm,λp,λω]
T is the vector of costates. The necessary conditions for optimal-

ity (costate dynamics) are obtained using the Euler-Lagrange relation as follows:

λ̇x = −∂H

∂x
, (13)

where x [r,v, λm,p,ω]T. Note that all of the controls terms are contained in Eq. 12. The optimal
choice (superscript “*”) of the throttle of engine i is given by:

δ∗i = arg min
0≤δi≤1

H =
1

2
(1 + sign(Si)) , (14)

where Si = λm − 1− c

m
λT
vΨ(p, t)ui − cλT

ωI
−1 (di × ui) (15)

Similarly each component of the control torque τ is chosen independently to minimize the Hamil-
tonian

τ∗j = argmin
|τj |≤τmax

H = −τmaxsign
(
λT
ωI

−1
)
j

j = 1, 2, 3. (16)

Note that the Maximum Principle only requires τ to be piecewise continuous, so there is no re-
striction on how fast τ can change. This assumption may not be realistic for some attitude control
systems, at which point it would be necessary to include the reaction wheel dynamics into the prob-
lem formulation. In this analysis, we assume that the control system is not near saturation and can
provide instantaneous (finite) torques in all directions. For a fixed-time rendezvous problem, the
final conditions can be written in the form of thirteen equality constraints,[

x(tf )− xF

λm(tf )

]
= 0. (17)

Note, the above equation should be scaled so that the magnitude of each equation is approximately
representative of the desirable relative errors in any solution. For example, a 1◦ error in attitude may
be deemed of the same significance as a 1mm error in position. By scaling the MRP and position
error equation accordingly, we can further aid the solver in deciding which direction to optimize in.
The state/costate dynamics for the fuel-optimal, fixed-time, optimal control problem can be written
as follows.

Ẋ =

[
ẋ
λ̇

]
, (18)

where τ = τ ∗ and δi = δ∗i (Si, ρ) are used in the RHS of Eq. (18). Numerical integration of the
equations of motion with the known initial states x(t0) = x0 and unknown initial costates λ(t0)
are required to solve the two point boundary value problem such that Eq. (17) is satisfied.

Homotopy and Continuation Techniques

We use a hyperbolic tangent smoothing function to approximate the engine throttle step input as
shown below. The continuation parameter, ρ, is swept from 1 to 1× 10−5, and clearly, as ρ → 0 the
hyperbolic tangent function approximates the sign() function. Using a hyperbolic tangent smoothing
function aids the numerical convergence for this bang-bang type optimal control problem. More
details on the hyperbolic tangent smoothing function are presented in [23] and [24].

δ∗i (Si) =
1

2
[1 + sign(Si)] ∼= δ∗i (S, ρ) =

1

2

[
1 + tanh

(
Si

ρ

)]
(19)
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The 6DOF problem is extremely sensitive when the inertia of the spacecraft is small. For example,
for a problem consisting of 60◦ rotation only, any initial guess of the costate easily converges when
ρ is large. We expect the solution to consist of a simple rotation, however upon sweeping ρ →
1 × 10−5 we find that the spacecraft completed multiple revolutions before settling to the target
attitude. While these are valid locally optimal solutions, they are undesirable trajectories. This
sensitivity can be overcome with various continuation techniques, such as gradually; reducing the
inertia, increasing the allowable control torque, or penalizing control torque.

Singular Control Torques

The minimum-time spacecraft reorientation problem can contain both bang-bang and singular
controls due to the control appearing linearly in the Hamiltonian.25 This occurs when the torque
switch function (Eq. 20) is zero on some time intervals of the transfer. This proved to be the
case in this problem, and while penalizing the control torque as in the ϵ−algorithm16 provides an
approximate way to handle any singular arcs, it is sub-optimal and increasingly difficult to converge
trajectories as the penalty term approaches zero. In order to circumvent this, we use L2-norm based
regularization18 to handle bang-bang and singular arcs, as follows:

Sτj = −
(
λT
ωI

−1
)
j
=

∂H

∂τj
(20)

τ∗j =
S2
τj√

S2
τj + κ2

. (21)

As κ → 0, Eq. 21 approximates Eq. 16 for large |Sτj | >> κ and converges to the singular control
otherwise. For a finite order singular arc, the optimal control, τ ∗

singular can be derived by taking the
time derivative of the switch function until the control term appears. In this work, we do not analyse
the singular arc analytically.

Thruster Pointing Constrained Fuel-Optimal Formulation

We now wish to restrict the control set of the chaser so that its engine plumes do not strike
a spherical zone around the target during the transfer as shown in Figure 2. Theoretically, PMP
could be applied to choose the optimal (Hamiltonian minimizing) control point-wise in time, from
a non-smooth state dependent control set. However, this approach is impractical as fsolve and
ode45 require a smooth formulation of the necessary conditions in order to achieve convergence.
There are numerous ways to implement a constraint function that is continuous and smooth. One
such example is presented in our previous work,7 however is limited to spherical constraints. In
this work we derive a simpler constraint function which can be easily extended to convex solids.
Suppose the target has radius R, the equations for a sphere and the ray aligned with the center-line
of the ith engine plume (in the LVLH frame) are given by equations 22 and 23 respectively. Here, θ
is a parameter which describes the ray.

|rsphere|2 = R2 (22)

rray = rLVLH
i +Ψdi − θΨui, θ ≥ 0 (23)

rLVLH
i (r,p, t) = Ψ(p, t)di + r (24)

r
Body
i (r,p, t) = Ψ(p, t)Tr + di. (25)
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Figure 2: The thruster pointing constraint varies as a function of distance from the spherical target
(blue sphere). The red sphere is centered at the ith engine, if ui lies in the green zone, the constraint
is activated.

The points of intersection of these two functions are found by solving equations 22 and 23 for θ.
The resulting quadratic has 0, 1, or 2 real solutions, with the constraint being inactive if no real
solutions exists. The discriminant of the resulting quadratic equation gives rise to the following
constraint function Ei:

Ei(r,p, t) =


1
R2

(
|r|2 + 2rTΨdi + |di|2 −R2 −

(
uT
i r

Body
i

)2
)
, uT

i r
Body
i ≥ 0,

1
R2

(
|r|2 + 2rTΨdi + |di|2 −R2

)
, otherwise

(26)

ηi(r,p, t) =
1

2

[
1 + tanh

(
Ei

ϵ

)]
ϵ→0−→

{
0, constraint violated,
1, otherwise.

(27)

Note that Eq. 26 is smooth and differentiable, in which the second case handles negative real
solutions of θ. Using the constraint function, we define the thruster effectiveness, ηi which smoothly
scales the throttle to zero if the constraint is violated. By adding this term into the dynamics, any
optimal solution of the problem automatically satisfies the constraint. Like the bang-bang thrust
profile, this is a nonlinear phenomenon, which requires a second continuation parameter ϵ to aid
the solver in convergence. With the definition above, we modify the dynamics equations 2, 3, 5 to
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include ηi.

ṁ = −T

c

n∑
i=1

δiηi (28)

v̇ = f(x) +
T

m

n∑
i=1

δiηiΨ(p, t)ui (29)

Iω̇ = −ω × (Iω) + T

n∑
i=1

δiηi (di × ui) + τ . (30)

This causes a change to the Hamiltonian and the equation for the switch function (Eq. 31) becomes:

Si = −1 + ηi

(
λm − c

m
λT
vΨ(p, t)ui − cλT

ωI
−1 (di × ui)

)
. (31)

Note, if the cost function is modified to include the ηi term, the switch function would approach zero
whenever the constraint was active. This would lead to a singular arc for ϵ → 0 and complicates
the implementation. Intuitively, if ηi = 0, we expect δ∗i = 0 since a non-zero value would have no
affect on the dynamics, costate dynamics and serve only to increase the cost. We therefore exclude
it from the cost function, and notice that Si = −1 when ηi = 0.

RESULTS

Table 1: Parameters used for simulation

Parameter Value
Target spacecraft altitude 696km
Mean motion of target, Ω 0.001060923rad/s
Transfer time, tf 48sec
Chaser initial mass, m (t0) 100kg
Maximum Engine Thrust, T 3N
Maximum Control Torque (in each direction), τj 0.5Nm
Engine Specific Impulse, Isp 300sec
Chaser Inertia, I diag ([36, 37, 38]) kg.m2

Initial relative position, r (t0) [0, 10, 0]Tm
Final relative position, r (tf ) [0, 4, 0]Tm
Initial and final relative velocity, v (t0) ,v (tf ) [0, 0, 0]Tm/s
Initial and final MRP, p (t0) ,p (tf ) [0, 0, 0]T

Initial and final angular velocity, ω (t0) ,ω (tf ) [0, 0, 0]Trad/s

We consider the problem of rendezvous and proximity operations around a target located in a
circular low Earth orbit. The relative motion dynamics are modeled using Clohessy-Wiltshire dy-
namics in the LVLH frame. In our simulations, the chaser starts 10 metres in front of the target
(i.e. in the velocity direction) and it terminates at a position 4 metres in front of the target. Un-
less specified otherwise, in all simulations a time of flight of 48 seconds is used and the chaser
data used to generate the results is given in Table 1. The chaser configuration consists of 6 iden-
tical engines, one on each face of a cube of side length 1m. Each engine’s thrust direction is
aligned with the COM of the spacecraft as shown in Figure 1. Each optimal control problem is
solved using single shooting and MATLAB’s ode45 and fsolve. The final state error used as the
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objective function for fsolve was scaled in such a way that errors in position, velocity, orientation
and angular velocity of 1mm, 0.1mm/s, 1◦ and 0.1◦/s respectively, had approximately the same
magnitude. This helps fsolve weight the error contributions more meaningfully and aided in con-
vergence, although is not strictly necessary. The code to generate the results below can be found at
https://github.com/himmatpanag/ThrusterPointingConstrainedRPOD.

Solutions without control torque

We first present results for the problem without reaction control torque. Since the thrusters are
aligned with the COM, the attitude dynamics are not controllable. This is a restrictive assumption,
however it illuminates some of the intricacies of the problem and is a good starting point when
comparing against previous results.7 Note, since the attitude dynamics is uncontrollable, the attitude
costates (λp,λω) are removed from the initial guess to reduce the dimensionality of the search
space for fsolve. Figure 3 shows the initial and final orientations of the chaser over an unconstrained
transfer with engine 5 on and pointing almost directly at the target during the terminal braking burn.

Figure 3: Solution of the unconstrained 6DOF problem without control torque showing initial and
final orientation

In Figure 4 we see that as the constraint radius is increased the chaser is forced further from the
nominal (unconstrained) trajectory to avoid engine 5 firing while pointed at the target during the
final burn. Figure 4a shows the plume angle of engine 5 for different target radii. Dashed lines
indicate that the engine is off and solid lines indicate that the engine is on. The minimum allowable
plume angle corresponding to each target radius is shown in a dash-dot line and it can be seen that,
for each transfer, engine 5 is only active at values greater that the minimum allowable plume angle.
The corresponding change in shape of the trajectory is shown in Figure 4b. The converged values
of the initial costates (λx(0)) for several cases presented in this section are summarized in Table 2.
To achieve convergence, we start at ϵ = .2 and ρ = 0.4 before gradually reducing these to small
values.
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(a) Engine 5 plume angle from target (b) Trajectories and constraint regions (hashed area)

Figure 4: Solutions of the 6DOF problem without control torque with increasing constraint radius.

Table 2: Converged initial costates for the single shooting constant constraint angle fuel-optimal
problem

Variable Unconstrained R = 1.02m R = 2.5m R = 3.02m
ρ 0.00099854 0.00084212 0.01841 0.0097338
ϵ 0.5 0.050353 0.00093571 0.0070538
λr1 -1.36117063 2.35113642 3.4185088 4.26076013
λr2 1.68363843 2.98309447 4.78887926 5.81537138
λr3 -4.89872128e-11 -4.49830699e-07 -6.26982534e-09 4.61516004e-08
λv1 -34.2324575 35.9038924 45.4958453 54.123807
λv2 39.5411119 54.1277672 75.1068362 87.9190385
λv3 -3.97992384e-10 3.19443139e-05 -4.1878299e-08 -1.30022771e-06
λm 0.000101020535 0.00027213008 0.000573912077 0.00076507811
λp1 -8.931051e-06 -8.931051e-06 -8.931051e-06 -8.931051e-06
λp2 -1.093674e-06 -1.093674e-06 -1.093674e-06 -1.093674e-06
λpr 3.52454e-06 3.52454e-06 3.52454e-06 3.52454e-06
λωx -7.1361039e-05 -7.1361039e-05 -7.1361039e-05 -7.1361039e-05
λωy -1.0314917e-05 -1.0314917e-05 -1.0314917e-05 -1.0314917e-05
λωz 8.709836e-06 8.709836e-06 8.709836e-06 8.709836e-06

Solutions with control torque

We now solve the problem with a control torque τ ∈ [−τmax, τmax]
3, letting each component

of torque vary independently. Figure 5 shows the unconstrained trajectory, the thruster-pointing-
constrained trajectory without attitude control, and finally, the thruster-pointing-constrained trajec-
tory with attitude control. It is clear that when attitude control is permitted, a much smaller deviation
in the trajectory is needed to hit the same final boundary conditions, while also satisfying the speci-
fied thruster pointing constraints. The arrows indicate when an engine is on and its plume direction.
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Figure 5: Comparison of results with snapshots of chaser orientation

Figure 6: Snapshots of chaser orientation (relative to target) during a constrained 6DOF problem
with attitude control torque (R = 3.5m) at times t = 0, 7, 16, 25, 39, 48 sec.

Figure 6 shows the attitude manouevre performed by the chaser (rotating for the terminal burn) to
reduce fuel consumption and satisfy the thruster pointing constraint. When the final MRP is fixed
to zero, the chaser must arrive early at the terminal position with zero velocity to have enough time
to rotate back to the required attitude. This necessitates a faster transfer and slightly higher fuel
consumption when compared to the case with a free final attitude (see Figure 10). This slightly
higher fuel consumption is still significantly lower than the case without attitude control torque (i.e.
a 47% fuel saving). Note the slight rotation of the relative orientation of the chaser at the final
position is due to the rotation of the LVLH frame during the transfer. Figure 7 shows a comparison
of the yaw angle, angular velocity and torque over the transfer for different size constraint spheres.
It is evident that as the sphere radius is increased, the chaser must rotate more to avoid firing at the
target, requiring longer thrust arcs and more control torque.

To obtain the converged solutions presented in this paper it is necessary to perform multi-parameter
continuation on κ, ϵ and ρ respectively. In our simulations, we start with a value of κ = 1 and sweep
this down to κ = 10−3. Starting with a value of κ = 1 is similar to reducing the maximum torque
available, and discourages the solver from performing arbitrary rotations and finding a local min-
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(a) Chaser yaw angle, solid segments indicate that an engine is on

(b) Chaser angular velocity

(c) Control Torque

Figure 7: Chaser rotational motion with increasingly strict constraint region radius

(a) Trajectory variation (b) Control torque about z-axis (c) Control torque switch function

Figure 8: Effect of reducing κ on the trajectory, constraint Radius R = 3.5m
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imum. At a value of κ = 10−3, the chaser has more control torque authority (singular torque is
resolved), enabling a more efficient transfer. Note, if the chaser has fewer than 6 thrusters, the
translational motion may not be controllable without torque, and we would need to start with a
smaller value of κ, or start by solving problems where the control torque is penalized (as these are
non-singular problems). The effect of the κ sweep on trajectory shape and control torque is shown
in Figure 8a and 8b. Note the torque switch function for t ∈ [0, 25] (Figure 8c) reduces in mag-
nitude with κ, while the torque profile (on this segment) does not change, indicating a singular arc
is present. We then make the pointing constraint more strict by sweeping ϵ → 10−2, although this
often has no effect as even a moderate reduction in thruster effectiveness causes the solver to avoid
using a thruster. Finally, we reduce ρ → 10−2 to approximate a bang-bang engine profile. Figure
9 shows the throttle profiles of the active engines (1,2,5), with shaded red regions indicating that a
thruster would be violating the pointing constraint and is not permitted to fire. The converged values
of the initial costates (λx(0)) and homotopy parameters (κ, ϵ, ρ) for several cases presented in this
section are given in Table 3.

(a) Engine 1 (b) Engine 2 (c) Engine 5

Figure 9: Effect of reducing ρ on throttle profile, constraint Radius R = 3.5m

(a) Constraint Radius R = 2m (b) With control torque and fixed final orientation

Figure 10: Fuel comparison of various trajectories

Figure 10a shows the variation in the propellant mass consumed for fuel-optimal trajectories
with different constraints (i.e. active/inactive & fixed/free final boundary conditions) and available

14



control authority. These simulations consider spherical constraint of radius 2-meters. Figure 10b
also shows propellant mass consumed, but for no-thrust spherical constraints of increasing radius.
The time histories of the costates are presented in Figure 11. It is clear that the costates (including
the MRP costates) for the fuel-optimal transfer are continuous, indicating that the MRPs did not
contain any switches to the shadow set during our simulations. Additionally, the costates exhibit
smooth behavior, as illustrated in the inset of Figure 11.

Figure 11: Costates for constrained approach with attitude control (R = 3m)

Table 3: Converged initial costates for the single shooting fuel-optimal problem with control torque

Variable Unconstrained R = 1m R = 2m R = 3m
ρ 9.9092e-05 0.0096539 0.0096539 0.0091746
κ 0.00092413 0.00089331 0.00089331 0.00089331
ϵ 0.5 0.0070715 0.0081743 0.0070715
λr1 -0.706182604 -0.362565562 0.732702307 1.37948394
λr2 1.77797982 2.4101687 3.08025246 3.5480307
λr3 -5.51257611e-17 -1.25548985e-14 3.01654416e-16 1.36659668e-16
λv1 -34.1516114 -5.05941283 30.7469978 34.2015753
λv2 41.5788879 47.6102431 51.4354861 55.2911856
λv3 -2.65056742e-15 -5.07779001e-13 1.08719111e-14 4.57478858e-15
λm 0.000106683928 0.000150830693 0.000191247664 0.000224251149
λp1 -1.38230214e-18 -3.1322081e-16 7.21849712e-18 3.18403645e-18
λp2 -6.85008808e-20 6.43625611e-19 -1.22846486e-19 -1.37454849e-19
λpr 0.0167182194 0.00165502066 -0.0224886801 -0.0245702846
λωx -6.85776933e-19 -1.83586983e-16 4.54502214e-18 2.03103433e-18
λωy -4.71100059e-21 1.47832496e-20 -8.85212418e-20 1.14154433e-19
λωz 0.00878291738 -0.00274171252 -0.0214464401 -0.0281054034
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Validation of approach with 3DOF results

In this section we validate our approach against solutions of the simpler 3DOF problem detailed
in.7 For the 3DOF work, it is assumed the spacecraft is a point mass and that the thrust direction can
change arbitrarily fast. As such, some differences are to be expected when compared to the 6DOF
solutions. For this comparison study, we allowed the final orientation of the 6DOF problem be free
in order for a fairer comparison to be made. Figure 12a and 12b show a quick (infeasibly) fast
change in plume direction in the optimal 3DOF solution. This results in shorter burns arcs than for
the 6DOF problem as indicated by solid lines in Figure 12b (3DOF) and Figure 12c (6DOF). Figure
12c shows that, by yawing about the z-axis, the chaser spacecraft uses two engines simultaneously
during the terminal burn to achieve a similar acceleration to the one in Figure 12a. Finally, Figure
12d shows that only very small differences are apparent between the 3DOF and 6DOF trajectories.

(a) Optimal 3DOF Trajectory with plume directions
during initial and terminal burns shown in red

(b) Plume Angle from target of 3DOF solution

(c) Euler angles of 6DOF solution (d) Comparison of 3DOF and 6DOF solutions

Figure 12: Solutions to the constrained 3DOF and 6DOF problem (R = 2m)

CONCLUSION

We present a novel approach to incorporate a thruster pointing constraint into the 6DOF space-
craft motion and solve the resulting trajectory optimization problem through use of the maximum
principle. We focus on fuel optimality and do not penalize the control torque for the transfer, result-
ing in singular arcs which we address using L2Norm regularization.

Our approach avoids a multi-point boundary value problem and does not require a priori knowl-
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edge the burn sequence or information regarding when the constraint is active or inactive. We
demonstrated the practicality of the method by solving various fuel-optimal rendezvous trajectories
under Clohessy-Wiltshire dynamics with different constraint strictness (target radius), spacecraft
configuration (with and without reaction control torque), and boundary conditions (fixed/free final
MRP). We validate our method against the simpler 3DOF problem and note that it is far simpler to
incorporate torque limits and to compare thruster configurations. Our methodology can be applied
to different dynamical regions, cost functions and chaser configurations, making it a useful tool for
a variety of in-space assembly and servicing missions.
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