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COUNTER-ADVERSARIAL ESTIMATION FOR SPACE
NAVIGATION: THE FUSION REPRODUCING KERNEL HILBERT

SPACE EXTENDED KALMAN FILTER

Alberto Zamora* and Kyle J. DeMars†

Estimating spacecraft states in space is uniquely challenging due to nonlinear and
uncertain dynamics, limited or unreliable observations, and the presence of ex-
ternal disturbances, such as signal interference and spoofing. This paper intro-
duces the fusion (inverse) reproducing kernel Hilbert space extended Kalman filter
(REKF) as a novel approach for robust and adaptive state estimation in this regime.
By leveraging an online expectation-maximization algorithm, the REKF learns
unknown system parameters and approximates nonlinear dynamics and measure-
ments through kernel-based function representations. This framework enables
accurate threat detection and active sensing, offering a promising approach for
resilient spacecraft navigation in uncertain conditions. Simulation results demon-
strate that the proposed REKF with online EM significantly outperforms the stan-
dard EKF in terms of estimation accuracy, particularly under nonlinear and noisy
measurement conditions.

INTRODUCTION

A wide variety of engineering applications require inferring the parameters of a system, such
as its system and observation matrices, as well as its process and measurement noise covariance
matrices, by observing its output. Also, prior investigations have proposed adaptive filters to reduce
the sensitivity of the Kalman filter to system uncertainties. However, the general case for nonlinear
systems filtering is not considered.1–4 In this context, fusion filtering techniques are key to cognitive
and counter-adversarial systems, where nonlinear dynamics and unknown system parameters are
unknown to an agent employing the fusion filter.

This work builds on advanced filtering methods, specifically within the framework of the fusion
extended Kalman filter (FEKF) paradigm.5, 6 The FEKF is designed to address the challenges of
modeling complex, uncertain, and nonlinear dynamics while enabling highly precise state estima-
tion. Applications also include threat detection and active sensing for space navigation operations.

The extended Kalman Filter (EKF) and FEKF are both used for state estimation, but they differ
in their approaches. The EKF propagates the state estimate using the nonlinear system model, while
the state uncertainty is updated using a linearization of the dynamics around the current estimate.7–10

In contrast, the FEKF works in refining or correcting an existing state estimate. The FEKF is
typically employed in filter fusion systems or adversarial scenarios, where it corrects the output
of another filter like the EKF. The key distinction lies in the fact that the EKF provides real-time
estimates, while the FEKF works to improve or refine those estimates based on existing estimates.
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The FEKF consists of two stages: the Alpha filter (AF) and the Omega filter (ΩF). The AF may
be any conventional EKF variant, such as the EKF, the second-order EKF, the dithered EKF, or the
REKF.5, 6 More sophisticated approaches, such as the Gaussian Sum EKF, may also be incorporated
depending on the application.5 The Omega filter (ΩF) receives the AF’s estimates and its goal is to
compute a more accurate estimate, using the AF’s state transition equations (STEs) as a reference.

This work considers the case where the system and observation models, as well as the structure
of the AF, are unknown. To address this, the REKF is proposed as a kernel-based approximation
technique within the FEKF framework. The REKF uses kernel function representations to learn un-
known nonlinear functions, while an online approximate expectation-maximization (EM) algorithm
simultaneously identifies unknown parameters.11 This enables the Ω-agent to operate even under
partial or uncertain knowledge of theA-agent’s model.

Traditional FEKF theory assumes that the Ω-agent has full access to the AF’s parameters.6 How-
ever, this assumption is relaxed within the context of this work. The A-agent and Ω-agent represent
the agents using the AF and ΩF, respectively. When the Ω-agent lacks knowledge of the A-agent’s
model, the REKF becomes a valuable tool for estimating the AF’s outputs indirectly. Although
this lack of knowledge about the AF introduces a potential model mismatch between the AF and
ΩF, numerical results demonstrate that the Ω-agent can still estimate the AF’s state with reasonable
accuracy.5 Furthermore, by increasing the computational effort, a more sophisticated REKF can
achieve even better performance despite mismatches.

THE REPRODUCING KERNEL HILBERT SPACE EXTENDED KALMAN FILTER

The space environment presents unique challenges for state estimation due to nonlinear and un-
certain dynamics, limited or unreliable observations, and the potential for external disturbances such
as signal interference and spoofing. To address these challenges, the fusion REKF (FREKF) is in-
troduced as an adaptive and robust framework for state estimation. The REKF utilizes kernel-based
function representations to approximate unknown nonlinear system dynamics and measurements,
leveraging an online expectation-maximization (EM) algorithm to iteratively learn system parame-
ters. This approach makes the REKF highly suitable for real-time, resilient state estimation, particu-
larly in demanding domains such as cislunar operations, where robust threat detection and adaptive
sensing are critical for successful operations.

Consider a discrete-time stochastic dynamical system where the Ω-agent’s state xk ∈ Rnx is
observed by the A-agent as measurements yk ∈ Rny , evolving according to

xk = fΩ (xk−1) +wk−1 (1)

yk = hΩ (xk) + vk, (2)

where wk−1 and vk are the additive process and measurement noises, respectively. The A-agent
computes the estimate m+

x,k ∈ Rnx of the Ω-agent’s state xk using its observations {yℓ}
k
ℓ=1. The

A-agent then takes an action hA

(
m+

x,k

)
, whose noisy observation made by the Ω-agent is given by

zk = hA

(
m+

x,k

)
+ uk, (3)
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where uk is the Ω-agent’s additive measurement noise. Finally, the Ω-agent computes the estimate
m+

xΩ,k
∈ Rnx of m+

x,k using its observations {zℓ}kℓ=1. Note that for this work, the process and
measurement noise are taken to be additive, white, zero-mean and mutually uncorrelated. The A-
agent’s noise covariance matrices are known, while the Ω-agent’s covariance matrices need to be
estimated (see the Expectation-Maximization for Parameter Learning section).

Unknown AF and System Model

In practice, the functions fΩ(·) and hΩ(·), as well as the corresponding process and measurement
noise covariances, may not be known to the agents. This uncertainty arises in scenarios where either
the system dynamics or the observation models are partially or entirely unknown, which is common
in complex environments like cislunar space where external disturbances such as spoofing can alter
the system’s behavior.

To overcome this, the REKF uses kernel-based approximations to learn unknown nonlinear dy-
namics and observations. This enables the Ω-agent to estimate the state of the A-agent, even with
limited or no prior knowledge about the A-agent’s system model. This capability is essential for
navigating and sensing in cislunar space, where traditional filtering techniques may fail due to the
lack of reliable models. The REKF framework combines kernel function representations with an
online EM algorithm to iteratively update the system parameters, providing a powerful tool for
resilient state estimation and threat detection in uncertain conditions.

An unknown function f (·) : Rn → R can be approximated using the reproducing kernel Hilbert
space (RKHS) induced by a kernel κ (·, ·) : Rn × Rn → R.12 The RKHS-based function approxi-
mation has been proposed for nonlinear state-space modeling and recursive least squares algorithms
with unknown nonlinear functions.13–17 The representer theorem from Reference 18 ensures that
the optimal approximation in RKHS with respect to an arbitrary loss function takes the form of

f (·) =
L∑

ℓ=1

aℓκ (x̃ℓ, ·) , (4)

where {x̃ℓ}Lℓ=1 are the L input training samples (or dictionary) and {aℓ}Lℓ=1 are the corresponding
mixing parameters that are to be learned. There are many types of kernels used in RKHS, but often
the Gaussian kernel, given by

κ (xi,xj) = exp

(
−
∥xi − xj∥22

2σ2

)
, (5)

with kernel width σ > 0 controlling the smoothness of the approximation, is an appropriate choice.
This is a universal kernel, meaning that any continuous function can be arbitrarily well-approximated
by functions from the RKHS, i.e., its induced RKHS is dense in the space of continuous functions.

In the following, a general nonlinear system model is considered, wherein both state transition
and observation functions are unknown to the agent employing the filter, and a general REKF is
developed. The Ω-agent can employ the REKF as its ΩF without assuming any prior information
about the A-agent’s AF. The REKF may be trivially simplified to yield REKF AF for the A-agent
that knows its observation function. In particular, this REKF adopts the EKF to obtain the state

3



estimates while the unknown system parameters are learned using an EM algorithm.19 The EM
algorithm is widely used to compute maximum likelihood estimates in presence of missing data.

System Models for Uncertain Dynamics. Here, the functions fΩ (·) and hΩ (·) and their corre-
sponding process and measurement noise covariances, Pww,k−1 and Pvv,k, from the nonlinear state
transition and observation model, Eqs. (1) and (2), respectively, are taken to be unknown. Consider
a kernel function κ (·, ·) and a dictionary {x̃ℓ}Lℓ=1 of size L. Denote a kernel vector, such that

κ (x) =
[
κ (x̃1,x) · · · κ (x̃L,x)

]T
. (6)

Given the unknown dynamics of the system, the kernel approximation is applied to the state
transition and observation equations, yielding

xk = Aκ (xk−1) +wk−1 (7)

yk = Bκ (xk) + vk, (8)

where A ∈ Rnx×L and B ∈ Rny×L include the unknown mixing parameters to be learned. The
dictionary {x̃ℓ}Lℓ=1 can be formed using a sliding window (see Reference 17) or an approximate
linear dependency (ALD) criterion (see Reference 15). These approximations allow the REKF to
estimate the states as m+

x,k and update the system parameters Θ = {A,B,Pww,k−1,Pvv,k} as new
data arrives, ensuring that the system adapts in real-time to environmental changes and uncertainties.

Expectation-Maximization for Parameter Learning. The EM algorithm is employed to iteratively
update the estimates of the unknown parameters. During the E-step, the expected value of the log-
likelihood function is computed, and in the M-step, the parameters are updated to maximize the
expected log-likelihood.6 This iterative process enables the REKF to learn the system parameters
while refining the state estimates, making it highly effective for real-time operations in unpredictable
environments.

Given the unknown parameters Θ, the state estimate m+
x,k can be computed using EKF-based

recursions.5 To estimate the unknown parameters, the EM algorithm in Reference 19 is used. Con-
sider the states up to time k as x0:k = {xℓ}kℓ=0 and the corresponding observations y1:k = {yℓ}

k
ℓ=1.

The joint conditional probability density function (pdf) given the parameters Θ is

p (x0:k,y1:k|Θ) = p (x0)
k∏

i=1

p (xi|xi−1,Θ)
k∏

j=1

p
(
yj |xj ,Θ

)
, (9)

where p (x0) = pg (x0;mx,0,Pxx,0) is the initial pdf, p (xi|xi−1,Θ) is the transition density and
p
(
yj |xj ,Θ

)
is the measurement likelihood. Under the assumption of additive Gaussian noise, the

conditional pdfs become

p (xi|xi−1,Θ) = pg (xi;Aκ (xi−1) ,Pww,i−1) (10)

p
(
yj |xj ,Θ

)
= pg

(
yj ;Bκ (xj) ,Pvv,j

)
, (11)
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where pg (·; ·, ·) denotes the Gaussian pdf. Assume the initial state x0 ∼ pg (x0;mx,0,Pxx,0).
Note that this assumption is taken here in order to initialize the EKF recursions. Using this in
Eq. (9) along with Eqs. (10) and (11), after some manipulation, yields

log
[
p
(
x0:k,y1:k|Θ

)]
= −1

2

{
log |Pxx,0|+ (x0 −mx,0)

T P−1
xx,0 (x0 −mx,0)

+
k∑

i=1

[
log |Pww,i−1|+

(
xi −Aκ (xi−1)

)T
P−1

ww,i−1

(
xi −Aκ (xi−1)

)]
+

k∑
j=1

[
log |Pvv,j |+

(
yj −Bκ (xj)

)T
P−1

vv,j

(
yj −Bκ (xj)

)]}
+ c,

(12)

where c denotes the constant terms that do not affect the maximization.

A basic EM algorithm to estimate Θ based on observations y1:k consists of following two steps
that are iterated a fixed number of times or until convergence:

E-step: Given the estimate Θ̂− of the unknown parameters, the expectation of the joint log-likeli-
hood Q is computed, where

Q
(
Θ, Θ̂−) = Ey1:k,Θ−

{
log
[
p
(
x0:k,y1:k|Θ

)]}
. (13)

M-step: The updated parameter estimate Θ̂+ = argmaxΘQ
(
Θ, Θ̂−). Note that for online EM,

at the k-th time step, the current estimate Θ̂− is Θ̂k−1 and the updated estimate Θ̂+ is Θ̂k.

To ensure that the REKF can operate efficiently in real-time, the EM algorithm is adapted to an
online version. This allows the REKF to update the parameter estimates incrementally as new data
arrives, minimizing computational overhead while ensuring that the system remains adaptive. The
online EM algorithm allows the REKF to improve its estimates over time, even in the presence of
incomplete or noisy observations.

For simplicity, denote the conditional expectation operator Ey1:k,Θ̂k−1
{·} given k observations by

Ek {·}. Now, as derived in Reference 5, analytical solutions to the parameters are obtained through
the process described in the E and M steps by substituting Θ by each of the parameters. In order to
obtain an approximate online estimate at low computational expense, define

Sxκ,k =
k∑

i=1

Ek

{
xiκ

T (xi−1)
}

(14)

Sκ1,k =
k∑

j=1

Ek

{
κ (xj−1)κ

T (xj−1)
}
, (15)

such that the estimated A in Eq. (7), or Âk, can be written as
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Âk = Sxκ,kS
−1
κ1,k. (16)

Note that the computation of the sums requires all k observations to be processed together at time
k, and the complexity increases as k increases. The sums in Eqs. (14) and (15) can be approximated
as

Sxκ,k ≈ Sxκ,k−1 + Ek

{
xkκ

T (xk−1)
}

(17)

Sκ1,k ≈ Sκ1,k−1 + Ek

{
κ (xk−1)κ

T (xk−1)
}
. (18)

Up to this point, Eqs. (17) and (18) seem to be the same as Eqs. (14) and (15). The real-
ity is that Eqs. (17) and (18) are approximations because the prior updated parameter estimates
Θk−1

{
Âk−1, B̂k−1, P̂ww,k−1, P̂vv,k−1

}
(which are obtained using observations up to time k − 1)

for computing the expectations in the prior sums Sxκ,k−1 and Sκ1,k−1, are not considered. Similarly,
other approximate parameter updates are obtained by approximating sums as in Eqs. (17) and (18),
yielding

Syκ,k ≈ Syκ,k−1 + Ek

{
ykκ

T (xk)
}

(19)

Sκ2,k ≈ Sκ2,k−1 + Ek

{
κ (xk)κ

T (xk)
}

(20)

B̂k = Syκ,kS
−1
κ2,k (21)

P̂ww,k =

(
1− 1

k

)
P̂ww,k−1 +

1

k

(
Ek

{
xkx

T
k

}
− ÂkEk

{
κ (xk−1)x

T
k

}
− Ek

{
xkκ

T (xk−1)
}
ÂT

k + ÂkEk

{
κ (xk−1)κ

T (xk−1)
}
ÂT

k

) (22)

P̂vv,k =

(
1− 1

k

)
P̂vv,k−1 +

1

k

(
Ek

{
yky

T
k

}
− B̂kEk

{
κ (xk)y

T
k

}
− Ek

{
ykκ

T (xk)
}
B̂T

k + B̂kEk

{
κ (xk)κ

T (xk)
}
B̂T

k

)
,

(23)

where the sums Syκ,k and Sκ2,k are introduced to obtain approximate online estimates, while B̂k is
the estimate of B in Eq. (8). Recall that all the results in Eqs. (16) and Eqs. (21) - (23) are the result
of substituting each of the parameters to be learned are obtained by following the process described
in the E and M steps described earlier in this manuscript by substituting Θ to each of the parameters
Âk, B̂k, P̂ww,k and P̂vv,k, one at a time.

Expectation Computations. As mentioned earlier, the required expectations are calculated in
Eqs. (17) - (23) using the EKF estimates. In this work, it is assumed that the mean and covari-
ance outputs of the EKF recursion represent a Gaussian distribution of the posterior distribution
of the required states given all the observations available up to the current time instant. However,
these expectations involve a nonlinear transformation κ (·). In the EKF, the first-order Taylor series
expansion (FOTSE) is used to approximate these nonlinear expectations. The statistics of κ (xk−1)
given y1:k are also needed. Hence, an augmented state

sk =
[
xT
k xT

k−1

]T
, (24)
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is also considered to obtain a smoothed estimate m+
x,k−1 of the previous state xk−1 given y1:k.

Using these approximations, the REKF is formulated to jointly compute estimates m+
x,k and Θ̂k.

The calculation of the required expectations is detailed in the parameter update step that is presented
in the next Section.

REKF Recursion

In terms of the augmented state sk, the REKF system model is given by

sk = f̃Ω (sk−1) + w̃k−1 (25)

yk = h̃Ω (sk) + ṽk, (26)

where f̃Ω (sk−1) =
[
(Aκ (xk−1))

T xT
k−1

]T
, h̃Ω (sk) = Bκ (xk) and ṽk = vk. The actual

noise covariance matrix of w̃k−1 =
[
wT

k−1 01×nx

]T is given by

P̃ww,k−1 =

[
P̂ww,k−1 0nx×nx

0nx×nx 0nx×nx

]
. (27)

At the k-th time instant, an estimate of the previous recursion is given by

m+
s,k−1 =

[(
m+

x,k−1

)T (
m+

xA,k−2

)T ]T
, (28)

with respective error covariance matrix P+
ss,k−1, estimates of coefficient matrices Âk−1 and B̂k−1,

and estimates of noise covariance matrices P̂ww,k−1 and P̂vv,k−1. The current estimates m+
s,k,

Âk, B̂k, P̂ww,k and P̂vv,k are computed based on the new available observation yk through the
following steps.

Prediction. Using Ak = Âk−1 and Eq. (27) in Eq. (25), compute the predicted state and the
associated prediction error covariance matrix as

m−
s,k = f̃Ω

(
m+

s,k−1

)
(29)

P−
ss,k = F̃Ω,kP

+
ss,k−1F̃

T
Ω,k + P̃ww,k−1, (30)

where F̃Ω,k = ∇sf̃Ω (s)
∣∣∣
s=m+

s,k−1

.

Measurement Update. Using Bk = B̂k−1 and Pvv,k = P̂vv,k−1 in Eq. (26), compute
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m+
s,k = m−

s,k +Kk

(
yk −m−

y,k

)
(31)

P+
ss,k = P−

ss,k −KkH̃Ω,kP
−
ss,k (32)

m−
y,k = h̃Ω

(
m−

s,k

)
(33)

P−
sy,k = P−

ss,kH̃
T
Ω,k (34)

P−
yy,k = H̃Ω,kP

−
sy,k +Pvv,k−1 (35)

Kk = P−
sy,k

(
P−

yy,k

)−1
, (36)

where H̃Ω,k = ∇sh̃Ω (s)
∣∣∣
s=m−

s,k

. In Eq. (30), m+
s,k =

[(
m+

x,k

)T (
m+

x,k−1

)T ]T , where m+
x,k−1

is the REKF’s estimate of xk. The prediction and measurement update steps follow from the stan-
dard EKF recursions to estimate the augmented state sk with the system model as given by Eqs. (25)
and (26).

Parameters Update. The parameter estimates are updated by approximating the required expec-
tations in Eqs. (17) - (23). Consider Ek

{
xkκ

T (xk−1)
}

from Eq. (17). Based on the standard EKF,
linearize κ (·) as

κ (xk−1) ≈ κ
(
m+

x,k−1

)
+∇κ

(
m+

x,k−1

)(
xk−1 −m+

x,k−1

)
, (37)

where ∇κ
(
m+

x,k−1

)
= ∇xκ (x)|x=m+

x,k−1
. Also, similar to the EKF, the assumption of negli-

gible error in conditional means is taken. That is, Ek {xk} ≈ m+
x,k and Ek {xk−1} ≈ m+

x,k−1.
Substituting Eq. (37) into the expectations from Eqs. (17) - (23), yields

Ek

{
xkκ

T (xk−1)
}
= m+

x,kκ
T
(
m+

x,k−1

)
+P∗

xx,k∇κT
(
m+

x,k−1

)
, (38)

and, by definition,

P∗
xx,k ≈

[
P+

ss,k

]
(1:nx,nx+1:2nx)

(39)

P+
xx,k−1 ≈

[
P+

ss,k

]
(nx+1:2nx,nx+1:2nx)

(40)

P+
xx,k ≈

[
P+

ss,k

]
(1:nx,1:nx)

, (41)

where the notation
[
P+

ss,k

]
(a:b,c:d)

refers to the sub-matrix of the state covariance matrix P+
ss,k,

where a : b and c : d are the rows and columns that form the sub-matrix, respectively. The remaining
expectations are computed as
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Ek

{
κ (xk−1)κ

T (xk−1)
}
= κ

(
m+

x,k−1

)
κT
(
m+

x,k−1

)
+∇κ

(
m+

x,k−1

)
P+

xx,k−1∇κT
(
m+

x,k−1

)
Ek

{
κ (xk)κ

T (xk)
}
= κ

(
m+

x,k

)
κT
(
m+

x,k

)
+∇κ

(
m+

x,k

)
P+

xx,k∇κT
(
m+

x,k

)
(42)

Ek

{
xkκ

T (xk−1)
}
=m+

x,k

(
m+

x,k

)T
+P+

xx,k,

which are used to compute Θ̂k using Eqs. (17) - (23). Further, by substituting Eq. (8) into the
measurement expectations from Eq. (23), yields

Ek

{
yky

T
k

}
= P̂vv,k−1 + B̂kEk

{
κ (xk)κ

T (xk)
}
B̂T

k (43)

Ek

{
ykκ

T (xk)
}
= B̂kEk

{
κ (xk)κ

T (xk)
}
, (44)

which are used to compute Eqs. (19) and (23).

Dictionary Update. The dictionary {x̃ℓ}Lℓ=1 is updated using the new estimate m+
x,k based on

the sliding window or ALD criterion.15 The sliding window method consists of storing the last L
estimates (samples).

The ALD criterion is a process that considers the previous dictionary samples and compares them
to the current state estimate. If the sample contains information that is relevant to the algorithm (if it
is different to the previous ones by a defined tolerance), then the sample is added to the dictionary.
In other words, the ALD criterion builds the dictionary using samples that are not approximately
linearly dependent on the dictionary vectors. To build the dictionary via the ALD criterion, the
importance of the last estimate is measured by computing the ALD coefficient ε, as follows

ε = κs,k − κv,kK
−1
G,kκ

T
v,k (45)

κs,k = κ
(
m+

x,k,m
+
x,k

)
(46)

κv,k = κ
(
m+

x,k

)
(47)

[KG,k]ij = κ (x̃i, x̃j) , (48)

where KG,k is the Gram matrix. These values are found after solving a minimization problem to
find optimal expansion coefficients ak = K−1

G,kκ
T
v,k, with ε = κs,k − κv,kak ≤ δ for each sample

of the dictionary, as shown in Section III-A from Reference 15. Note that the author uses row
vectors to formulate the ALD criterion, while in this manuscript the preferred notation uses column
vectors. The ALD coefficient is compared to a user-defined threshold δ (also known as the level
of sparsification), such that if ε > δ, the last sample is added to the dictionary. Otherwise, the
dictionary remains intact.
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REKF Algorithm

The algorithms in Tables 1 and 2 summarize the initialization and recursion of the REKF, respec-
tively. Note that the size of the dictionary increases when the current size L is less than the window
length considered (initial transient phase) in the sliding window criterion or when m+

x,k is added to
the dictionary based on the ALD criterion.

The REKF initialization reshapes the initial means and covariances to fit the sizes needed by
the algorithm, i.e., according to the augmented states and measurements. The unknown system
matrices, Â0 and B̂0 are initialized with ones for simplicity (not identity matrices), but they could
take any other suitable value as desired by the user.6

As was described in the Expectation-Maximization for Parameter Learning Section, the REKF
adopts EKF recursions to obtain state estimates, while the unknown system parameters are learned
using an online EM algorithm. Here, the a priori state estimate m−

s,k and its respective measurement
update m−

y,k are generated using kernel function approximations with the previously learned system

matrices, Âk−1 and B̂k−1, respectively.

Note that the size of the dictionary increases when the current size L is less than the window
length considered (initial transient phase) in the sliding window criterion or when m+

x,k is added to
the dictionary based on the ALD criterion.

Table 1. REKF initialization
Input: mx,0, Pxx,0

Output: ms,0, Pss,0, L, {x̂ℓ}Lℓ=1, Â0, B̂0, P̂ww,0, P̂vv,0, Sxκ,0, Sκ1,0, Syκ,0, Sκ2,0

1: ms,0 ←
[
mT

x,0 mT
x,0

]T and Pss,0 ← blkdiag
(
[Pxx,0 Pxx,0]

)
.

2: Set L = 1 and x̂1 = mx,0.
3: Â0 ← 1nx×L and B̂0 ← 1ny×L.
4: Initialize P̂ww,0 and P̂vv,0 with some suitable p.d.* noise covariance matrices.
5: Set Sxκ,0 = 0nx×L, Sκ1,0 = 0L×L, Syκ,0 = 0ny×L and Sκ2,0 = 0L×L.

Return ms,0, Pss,0, L, {x̂ℓ}Lℓ=1, Â0, B̂0, P̂ww,0, P̂vv,0, Sxκ,0, Sκ1,0, Syκ,0, Sκ2,0.

Table 2. REKF recursion
Input: yk, m+

s,k−1, P+
ss,k−1, Âk−1, B̂k−1, P̂ww,k−1, P̂vv,k−1, Sxκ,k−1, Sκ1,k−1, Syκ,k−1, Sκ2,k−1

Output: m+
x,k, m+

s,k, P+
ss,k, Âk, B̂k, P̂ww,k, P̂vv,k, Sxκ,k, Sκ1,k, Syκ,k, Sκ2,k

1: Compute m−
s,k and P−

ss,k using Eqs. (29) and (30).
2: Compute m+

s,k and P+
ss,k using Eqs. (31) and (32).

3: m+
x,k ←

[
m+

s,k

]
(1:nx)

.
4: P∗

xx,k ←
[
P+

ss,k

]
(1:nx,nx+1:2nx)

, P+
xx,k−1 ←

[
P+

ss,k

]
(nx+1:2nx,nx+1:2nx)

and P+
xx,k ←

[
P+

ss,k

]
(1:nx,1:nx)

.
5: Compute the expectations using Eq. (38) and Eqs. (42) - (44).
6: Compute Âk, B̂k, P̂ww,k and P̂vv,k using Eqs. (16) - (23).
7: Update the dictionary {x̂ℓ}Lℓ=1 using m+

x,k based on the sliding window or ALD criterion.
8: If dictionary size increases then augment Âk, B̂k, Sxκ,k, Sκ1,k, Syκ,k and Sκ2,k with suitable initial values to
take into account the updated dictionary size.

Return m+
x,k, m+

s,k, P+
ss,k, Âk, B̂k, P̂ww,k, P̂vv,k, Sxκ,k, Sκ1,k, Syκ,k, Sκ2,k.

EXAMPLE: IN-PLANE CLOHESSY-WILTSHIRE EQUATIONS

This section presents simulation results designed to evaluate the performance of the REKF in a
scenario where direct access to measurements is not available to the filter. To illustrate this, the in-

*Positive definite.
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plane Clohessy-Wiltshire (CW) equations are used to model the motion of a chaser particle that is in
close proximity to a target, with a mismatched filtering setup: the A-agent employs a conventional
EKF, while the Ω-agent uses the proposed REKF. Two scenarios are investigated to test the FEKF
performance. The first case uses linear A-agent’s observations, while nonlinear range observations
are used for the second. Note that with linear system dynamics and measurements, the EKF becomes
a Kalman filter (KF).

Dyanmics Modeling

The CW equations are chosen for the simulations because they provide a well-known linearized
representation of relative motion in a circular reference orbit, commonly used for spacecraft prox-
imity operations and navigation.20 The simulated system follows the model

xk =


4− 3c 0 s/n 2(1− c)/n

6(s− n∆t) 1 2(c− 1)/n (4s− 3n∆t)/n
3ns 0 c 2s

6n(c− 1) 0 −2s 4c− 3

xk−1 +wk−1, (49)

where n is the mean motion of the target, ∆t = tk − tk−1, s = sin (n∆t), c = cos (n∆t), the in-
plane state vector is given by the in-plane positions and velocities xk =

[
x1,k x2,k ẋ1,k ẋ2,k

]T
and sk =

[
xT
k xT

k−1

]T is the augmented state.

For the simulations, the target is taken to be orbiting around Earth in a circular orbit with a
semimajor axis of 6775 km, and the gravitational parameter of the Earth given by µ = 398600.442
km3/s2.

Initial Conditions

The initial estimates for the mean and covariance of the object are given by

mx,0 =
[
1000 0 − 1.23 − 1.73

]T (50)

Pxx,0 = diag
([
1× 102 1× 102 4× 10−6 4× 10−6

])
, (51)

in units for positions and velocities of m and m/s, respectively. The initial state is assumed to
be drawn from a Gaussian distribution with mean and covariance as shown in Eqs. (50) and (51),
respectively.

Scenario #1: Linear Measurements

The first scenario uses linear measurements of position in the AF, as given by

yk =

[
x1,k
x2,k

]
+ vk (52)

zk = Bκ (ms,k) + uk, (53)

11



where yk are the A-agent measurements and zk the Ω-agent observations. Recall that the REKF
does not have access to the system model in Eqs. (49) and (52). Instead, the REKF uses approxi-
mations of these as in Eqs. (25) and (53). The REKF is tasked with estimating the state indirectly,
using noisy observations zk rather than raw measurements.

The initial process noise covariance is taken to have values of

Pww,k−1 = diag
([
1× 10−6 1× 10−6 1× 10−9 1× 10−9

])
, (54)

in units of m2 and m2/s2. Samples of the process noise are drawn from a zero-mean Gaussian
distribution to simulate noise effects on the evolution of the true states. The initial measurement
noise covariances use values of Pvv,k−1 = 4I2 and Pvv,k−1 = 4, respectively. For the ΩF, the
initial process noise covariance is taken to have values of P̃ww,k−1 =

(
1× 106

)
Pww,k−1, while its

measurement noise covariance was initialized as Puu,k−1 =
(
0.1
)
Pvv,k−1. This choice reflects the

need for the ΩF to initially explore a wider range of dynamic behaviors (via a larger process noise)
while placing greater confidence in early measurements (via a smaller measurement noise), thereby
accelerating the learning of unknown model components.

The sliding window was chosen to build the dictionary in with L = 50, the kernel approximation
uses a smoothing coefficient of σ =

√
1× 109 and the online approximate EM algorithm uses a

tolerance of 1× 10−3 to estimate the parameters. The simulation uses a fixed time-step and a final
time tf = 2800 s.

A Monte Carlo analysis comprising 1000 trials over 50 time steps is conducted to statistically
characterize the performance of the filter. The average mean squared error (AMSE) is used to
assess estimation accuracy. Figure 1 demonstrates the state trajectories, filter estimates, and obser-
vations for both the AF and ΩF in a representative trial. An interesting finding is that the Ω-agent’s
measurements don’t track the A-agent’s observations. The REKF uses the available information
contained in the dictionary and the current posterior AF estimate to produce new observations. The
REKF tracks the true state effectively despite the system model being unknown.

0 200 400 600 800 1,000
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x1 [m]

x
2

[m
]

xk

mx,k

yk/zk
Target

0 200 400 600 800 1,000

−600

−400

−200

0

x1 [m]

(a) (b)

Figure 1. Illustration of the true and estimated states, as well as the observations of
the (a) AF and (b) ΩF for one of the trials, with linear AF observations.

Figures 2 and 3 show the ensemble average errors and standard deviations for both the AF and
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the ΩF across all trials, revealing that the filter produces unbiased estimates, with error envelopes
consistently contained within the Monte Carlo intervals.
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Figure 2. Illustration of the average and trial error accompanied with their respective
average and Monte Carlo intervals for the AF with linear AF observations.
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Figure 3. Illustration of the average and trial error accompanied with their respective
average and Monte Carlo intervals for the ΩF with linear AF observations.

On average, the total run time of one trial for the given simulation settings is approximately
10.43 s. Note that the maximum window length is used to test the time-performance of the filter,
but smaller window length could be used to considerably reduce the run time.

Most notably, the REKF (ΩF) consistently outperforms the EKF (AF) in terms of estimation ac-
curacy and uncertainty. As illustrated in Figure 4, the REKF achieves a lower AMSE than the EKF,
despite relying on approximate dynamics and indirect measurements. This improvement highlights
the REKF’s ability to learn and compensate for unmodeled dynamics through its kernel-based struc-
ture and online parameter adaptation. In particular, the REKF maintains reliable estimation perfor-
mance even when the assumed system model is incomplete, indicating its potential for scenarios
where accurate analytical models are unavailable or measurements are highly indirect.

Scenario #2: Nonlinear Measurements

This scenario uses nonlinear range measurements of position in the AF, as given by

yk =
√

x21,k + x22,k + vk, (55)
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Figure 4. Illustration of the AMSE for the A and Ω filters, with linear AF observations.

where yk are the A-agent measurements and zk the Ω-agent observations, as given by Eq. (53).

The initial process noise covariance was taken to have values of

Pww,k−1 = diag
([
1× 10−6 1× 10−6 1× 10−9 1× 10−9

])
, (56)

in units of m2 and m2/s2. Samples of the process noise are drawn from a zero-mean Gaussian
distribution to simulate noise effects on the evolution of the true states. The initial measurement
noise covariances use values of Pvv,k−1 = 4I2 and Pvv,k−1 = 4, respectively. For the ΩF, the
initial process noise covariance is taken to have values of P̃ww,k−1 =

(
1× 106

)
Pww,k−1, while its

measurement noise covariance was initialized as Puu,k−1 =
(
0.1
)
Pvv,k−1.

Again, the sliding window was chosen to build the dictionary with L = 50, the kernel approx-
imation uses a smoothing coefficient of σ =

√
1× 109 and the online approximate EM algorithm

uses a tolerance of 1 × 10−3 to estimate the parameters. The simulation uses a fixed time-step and
a final time tf = 2800 s.

Similarly as in the first scenario, a Monte Carlo analysis comprising 1000 trials over 50 time
steps is conducted to statistically characterize the performance. Figures 5 and 6 demonstrate the
state trajectories, filter estimates, and observations for both filters in a representative trial.

Figures 7 and 8 show the ensemble average errors and standard deviations of both filters across
all trials, revealing that the filter produces unbiased estimates, with error envelopes consistently
contained within the Monte Carlo intervals.

On average, the total run time of one trial for the given simulation settings is approximately
10.45 s. The REKF (ΩF) consistently outperforms the EKF (AF) in terms of estimation accuracy
and uncertainty.

As illustrated in Figure 9, the REKF achieves a lower AMSE than the EKF, despite relying on
approximate dynamics and indirect measurements. These findings highlight the potential of the
REKF to provide accurate state estimates under limited knowledge, setting a strong foundation for
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Figure 5. Illustration of the true and estimated states, as well as the observations of
the AF for one of the trials with nonlinear AF observations.
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Figure 6. Illustration of the true and estimated states, as well as the observations of
the ΩF for one of the trials with nonlinear AF observations.
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Figure 7. Illustration of the average and trial error accompanied with their respective
average and Monte Carlo intervals for both the (a) AF and (b) ΩF, with nonlinear AF
observations.
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Figure 8. Illustration of the average and trial error accompanied with their respective
average and Monte Carlo intervals for both the (a) AF and (b) ΩF, with nonlinear AF
observations.

future applications in nonlinear and adversarial scenarios.
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Figure 9. Illustration of the AMSE for the A and Ω filters, with nonlinear AF observations.

The results reveal several key differences between the two measurement scenarios. In Scenario #1
(linear measurements), both the AF and the ΩF exhibit well-behaved estimation errors. The REKF
achieves lower AMSE compared to the EKF even though it operates with approximate dynamics
and indirect measurements. The error envelopes remain tight and unbiased, with most of the ΩF
error trajectories staying within the standard deviation bounds computed from Monte Carlo trials.

In Scenario #2 (nonlinear measurements), the differences become more pronounced. The nonlin-
ear range measurements introduce additional state-observation coupling, which generally increases
the estimation difficulty for the EKF. As shown in Figure 9, the EKF AMSE remains consistently
higher compared to Scenario #1, reflecting its sensitivity to unmodeled nonlinearities. In contrast,
the REKF adapts its kernel-based dynamics and measurement models online, maintaining error
bounds comparable to those in the linear case. This suggests that the REKF effectively learns and
compensates for nonlinear observation effects.

Another noticeable distinction is the transient behavior is that the REKF shows a short initial
learning phase where errors momentarily increase, particularly in Scenario #2, before converging to
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a steady-state accuracy that surpasses that of the EKF. This behavior is consistent with the REKF’s
reliance on data-driven dictionary updates and parameter adaptation. Once sufficient training data
have been processed, the REKF stabilizes and provides robust performance.

Overall, these comparisons indicate that the REKF’s advantage grows as measurement complex-
ity increases. While both filters perform adequately under simple, linear measurements, the REKF
shows clear robustness and adaptability under nonlinear measurement conditions where traditional
EKF performance degrades.

CONCLUSION

The results of this work demonstrate that the reproducing kernel Hilbert space extended Kalman
filter (REKF) is capable of producing unbiased estimates, with error envelopes consistently con-
tained within the Monte Carlo intervals. On the other hand, the REKF achieves a low average mean
squared error (AMSE) despite relying on approximate dynamics and observations. In other words,
the REKF is a practical tool to provide accurate estimates under limited knowledge.

The REKF maintained consistent performance across both linear and nonlinear measurement
scenarios, whereas the EKF exhibited degraded accuracy under nonlinear range measurements. The
adaptive, kernel-based modeling of the REKF enabled effective compensation for unmodeled dy-
namics and nonlinear observation effects, resulting in reduced steady-state estimation errors relative
to the EKF.

A brief transient learning phase was observed in the REKF due to online parameter adaptation,
after which the filter converged to reliable and robust estimation performance. These results demon-
strate that the REKF provides a flexible and robust alternative to conventional model-based filters,
particularly in scenarios where the measurement model is nonlinear or only partially known.

The REKF framework offers a robust solution for state estimation in cases where highly nonlin-
ear dynamics, limited observations, and disturbances present significant challenges. By leveraging
kernel-based approximations and an approximate online expectation-maximization (EM) algorithm,
the REKF is able to adapt to changing system dynamics and provide accurate state estimates despite
uncertain conditions. This makes it an ideal tool for resilient spacecraft navigation, threat detection,
and active sensing in uncertain environments, such as cislunar space.
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