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A GENERAL GAUSSIAN STEERING FRAMEWORK
LEVERAGING NONLINEARITY CONSTRAINTS

William N. Fife*, Jackson Kulik’, and Kyle J. DeMars?*

Gaussian steering has been proposed in the literature as a means of constructing—
a priori—a feedback law to control the mean and covariance of state dispersions.
The primary astrodynamics application is the ability to develop nominal and cor-
rection maneuvers for a spacecraft that are robust to modeled uncertainties, such
as orbit determination and maneuver execution. An additional goal for Gaussian
steering is that robustness to uncertainties is claimed as a result of a successful op-
timization and not as a product of Monte Carlo verification. To that end, this paper
develops a general Gaussian steering framework for nonlinear systems with affine
control input where an additional constraint based on the system’s nonlinearity is
inserted. The generalized aspect comes from the ability to evaluate expectations
via analytical linearization or quadrature. The approach is demonstrated in various
simulated examples commonly used in the literature.

INTRODUCTION

A principal component of spacecraft maneuver design is ensuring that the statistical dispersions
of both the spacecraft state and control usage are minimized or constrained. In practice, this process
is separated into a trajectory design step (i.e., optimal control') and an uncertainty quantification
step, where the latter informs changes to the former and the process is repeated. Not only is this
procedure overly time consuming for potential onboard applications, it also lacks the infrastructure
to assign statistical constraints within the optimization step itself. The same problem exists in
other domains where optimized control sequences must be resilient to uncertainties, such as entry,
descent, and landing.? Alternatively, covariance control or Gaussian steering directly embeds the
evolution of uncertainty parameters, namely mean and covariance, into the optimization along with
desired statistical constraints.? Gaussian steering is a subset of stochastic control approaches that
include stochastic dynamic programming and unscented trajectory optimization.*

In Gaussian steering, parameters of a feedback control law are optimized while ensuring that the
evolution of the state mean and covariance satisfy various criteria. A multitude of implementations
have been presented in the literature for linear systems>~’ and nonlinear systems.?!? One stan-
dard approach is to develop a representative nonlinear programming (NLP) problem—where the
optimization variables are the set of open loop controls and feedback gains—and solve it via off-
the-shelf NLP solvers. Another common approach is to make all parts of the NLP problem convex
by linearizing the dynamics about a nominal trajectory and/or an initial guess of the optimization
variables, then iteratively solving convex programs (i.e., successive convexification). These two
approaches stem from the same originating NLP but can result in distinct optimal values. In this
work, a general architecture is presented where the driving source of non-convexity—the nonlinear
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dynamics—can be dealt with either by analytical linearization or statistical linearization (i.e., Gaus-
sian quadrature). Quadrature eliminates the analytical linearization of the dynamics and statistical
constraints but with an increase in computational expense. In the case of analytical linearization,
the successive convexification technique can be recovered without further approximations using
lossless relaxations previously discovered.’

A natural benefit of Gaussian steering for linear systems is that—despite modeled uncertainties—
theoretical guarantees of constraint satisfaction is a product of a successful optimization. This
feature is akin to that of the Kalman filter exactly characterizing the covariance of the true estimation
error distribution and is termed covariance realism. The guarantee of covariance realism vanishes
in the presence of nonlinear dynamics due to the required approximations. To that end, this work
develops an additional constraint based on the system’s underlying nonlinearity as measured by a
semianalytical measure. "' The result is a more constrained optimization problem that bounds the
state dispersions within a region of the state space where linear approximations are well-suited.

This work is organized as follows. First, the general Gaussian steering framework is outlined
along with the traditional assumptions made. Two implementations—analytical linearization and
quadrature—are developed along with a description of a special lossless convexification case. Then,
the measure of nonlinearity constraint, and how it is embedded into the optimization, is discussed.
Finally, the approach is applied to a Near Rectilinear Halo Orbit (NRHO) maneuver planning sce-
nario and tested in Monte Carlo simulations.

GAUSSIAN STEERING FOR NONLINEAR-AFFINE SYSTEMS

Consider a stochastic state € R" governed by discrete, nonlinear-affine dynamics of the form

xp = f(xr—1) + Fyup—1(xp—1) + wi—1, (1)

where w € RP is a zero-mean, Gaussian process noise term with known covariance P,,,. The
process noise is assumed to be uncorrelated with the state at all times, and is used to model both
epistemic and aleatoric uncertainties. The control u € R"™ is applied at discrete nodes via the
control mapping matrix F,, and, importantly, « is a function of the state ;. Equation (1) is a
common preliminary model for astrodynamics scenarios employing impulsive control. Continuous
forms of f(-) in Equation (1) can also be considered by assuming f(-) is the result of numerical
integration. At the initial time ¢g, the set of all possible states is characterized by a given Gaussian
probability density function (pdf) p(zo) = pg(To; M2,0, Prao), Where py((-); m(), P(y) is a mul-
tivariate Gaussian pdf with mean m .y and covariance P(.). The objective is to compute a set of
feedback controls w = {ug, w1, ...,uy—_1} that steer the state pdf from p(x() to some prescribed
Gaussian pdf pg(xs;m, ¢, Py ¢) in a given finite interval ¢ € [to,¢y] by minimizing a scalar
performance index J and while adhering to potential path constraints on the control and state.

It is important to acknowledge here that p(x() represents the true dispersions and not an ob-
server’s estimate of them. In the subsequent developments, the assumption is that the feedback con-
trols u are enacted with zero estimation uncertainty (i.e., full state feedback). For linear-Gaussian
systems, observer estimation error can be incorporated without approximation using the separation
theorem!. Approximations are required for nonlinear systems, with the prevalent approach being
linearization of the observer uncertainty propagation equations along a reference trajectory !4,
This effectively results in an additional source of uncertainty that further constrains the frue disper-
sions compared to the case with perfect observer knowledge.

In this work, the boundary constraints on the state are the aforementioned pdf prescriptions, and
the path constraints are given by the dynamics in Equation (1). The control has path constraints



given by the expectation,
IE{uct] +yIS{uetlr < pu  VEE[O,N—1], @)

where p,, is the control magnitude bound, v is a scaling parameter, || - || is the Frobenius norm,
E{-} is the expectation operator, and S{-} is the covariance operator defined by S{a} = E{[a —
E{a}][a — E{a}]"}. While most of the Gaussian steering literature applies the chance-constraint
P(|lug|| < pu) > 1— e for bounding the control magnitude (see References 8—10 and 14) this work
chooses Equation (2) based on the following arguments. Firstly, the deterministic analogs developed
in the aforementioned references for the chance constraint are themselves relaxations, and different
formulations result in more or less conservatism (see Table 1 in Reference 14). Secondly, as will
be discussed, the nonlinearities in the problem result in a lack of guarantee of Gaussianity, and,
therefore, selection of the allowable probability violation (i.e., the value of €) is arbitrary until
statistically proven.

The performance index is typically prescribed as expectations of a nonlinear function of the states
and controls; that is,

J:E{g(ﬁ,a_:)}—FC-S{g(ﬁ,i)} ) (3)

where g(+) is a deterministic nonlinear function of the concatenation of all control and state pa-
rameters u and &, respectively, and c is a scaling parameter to align the units of J and weight the
covariance index relative to the mean index. It is not required that both E{-} and S{-} be present in
the objective. The problem, as developed thus far, is expressed as

win  E{g(a, &)} + ¢ S {g(a, @)} , (4a)
subject to path constraints

x = f(xp—1) + Fuup_1(Tr—1) + wi1 Vk e [0,N —1] (4b)

I E{ui ] +vl|S{urtr < pu Vk e [0,N —1] (4c)
and terminal constraint

TN ~ pg(Tprimyg r, Py r) . (4d)

Equations (4) represent a generic optimization for the nonlinear-affine, Gaussian steering problem.
Note that since uy_1 in Equation (4b) is itself a function and due to Equation (4c¢), this problem as
posed is infinite dimensional. The problem is made finite by parameterizing the control via

Up—1(Tp—1) = Vp—1 + Gr—1[Tp—1 — My 1], %)

where vy _1 represents a nominal or open loop control and G, is a feedback gain matrix operating
on the discrepancy between the true state and the expected (mean) state m,, .1 at time ¢;_1. Both
v_1 and G are deterministic. Computing the mean and covariance of Equation (5) gives

E{up_1} = vp1
S{up_1} = Gr_1Po s 1GL_1,

where P, ;1 is the state covariance at ¢;,_;. Additionally, Equation (4d) is relaxed into separate
mean and covariance constraints

E{xy} = My N =My ¢ (7a)



S{mN} = me,N = sz,f ) (7b)

as is typically done in the literature3>. Note that A < B is used to denote that the difference
B — A > 0 (i.e., the difference is positive semidefinite). The constraint in Equation (7b) can
be implemented in a variety of ways, depending on the nature of the optimization problem. With
these modifications, the optimization variables become the concatenated set of open loop controls
0, feedback matrices G, and state means 1, and covariances P. Letting 8 = {v, G, my, PM},
the problem is thus expressed as

min - E{g(6)} +c-S{g(6)} (8a)
subject to path constraints
xp = f(xp-1) + Fu(vi-1+ Gr_1[Tr—1 — My 1)) + Wi Vk € [1,N] (8b)
vkl + NGk Prw i GE |7 < pu VEe[0,N—1] (8
and terminal constraints
My N = My f (8d)
Py N X Pyyy. (8e)

It should be noted that the given problem data for Equations (8) are m. o, Pyz 0, My ¢, Pry g, Fu,
pu, and P,. For a given function g(@), Equations (8) describe a nonlinear program. However, it is
still undefined how the state means 1, and covariances P, are related through the dynamics. What
follows are two approaches to implement Equations (8) that differ in how the nonlinear function f(-)
is handled.

Linearized Formulation

Assume a reference trajectory is generated, for all k € [1, N|, by & = f(&x_1), where &g =
m o. The right-hand side of Equation (8b) can be linearized about & such that

xp = Fp(@p_1)xp—1 + FuGr_1[Tp—1 — My 1] + cp—1 + wi—1, )

where ¢;_1 = f(&x_1) — Fp(Tk_1)&Tr—1 + F,vr_1 and F, is the Jacobian Of /Ox. Letting

F, 1 = Fy(2,_;) and assuming F} is a deterministic quantity, the expectation of Equation (9)
gives the linearized mean dynamics as

My =Fop 1myp 1 +cp1, (10)
and computing the covariance of Equation (9) gives
Pacz,k = [Fx,kfl + Fqufl]sz,kfl [Fac,kfl + Fqufl]T + wa . (1 1)

Equation (8b) is then replaced with Equations (10) and (11). Since Equations (10) and (11) are
themselves dependent on the open loop controls v and feedback gains G, the optimization variables
set is reduced to @ = {v, G’} and the problem is expressed as

min E{g(0)} +c-S{9(6)} , (12)
subject to path constraints
Mg = Fppm g1 + f(@6-1) = Fopa@e1 + Fuvp vk € [1,N] (12b)



me,k = [Fx,k—l + Fqu—l]er,k—l[ﬁr,k—l + Fqu—l]T + wa,k—l Vk € 17 N] (120)

vkl + Y Gk Pow G |l P < pu Vk € [0, N — 1] (12d)

and terminal constraints

My N = My f (12e)

Pzz,N = sz,f . (12f)
Equations (12) is a linearized Gaussian steering problem assuming a form for the feedback control
given by Equation (5). Alongside the previously defined problem data, the reference trajectory
&), Vk is supplied as an input to the optimization problem. For the variable set & = {v, G}, this
problem is nonconvex and can be solved via many nonlinear programming techniques. !> However,

as References 7, 13, and 16 show, an expansion of the optimization variables for a specific kind of
performance index g(@) results in a convex program.

Special Case of Convex Optimization For the function,

N-1
g= [ — M i]” GEGrlzr — mai] + vivy,
k=0

and discarding the variance of g, the performance index becomes

N—-1
J = Z tr{GkPﬁB’kGZ} + 'va'vk .
k=0

Creating two new sets of optimization variables

Uy £ GpPry i
1]143 = GkPacx,kaga

a new optimization problem can be posed as

N-1
mrﬁkykagifcl,k:UkaYk kZ:O tr{ Y3} + vl vy, (13a)
subject to path constraints
Map = Fop 1meg 1+ F(@r1) — Fopa@r 1+ Fuop Vk e [1,N]  (13b)
P, = Fx,kflpmx,kflﬁgkfl + Fukalﬁf:kfl
+ Fx,k—lUkang + F, Y 1 F + Puwji—1 Vk € [1, N] (13¢)

vl + V1Yl F < pu VEe[0,N—1]  (13d)
[PE}’:’“ l{,ﬂ >0 Vke[0,N—1]  (13e)
and terminal constraints

My N = My f (13f)

Py N X Pyyy. (13g)

Equations (13) form a convex program since the performance index and constraints are all convex
functions of the optimization variables. The relaxation stems from the linear matrix inequality



of Equation (13e) allowing for Y, 1 # Gk—le,k—lG;;F_l- However, it has been shown that,
at optimality, it is indeed the case that Y, ; = Gk,le,k,lG{_l, and, thus, the relaxation is
lossless.'® Though the lossless proof is given in Reference 16 (Section IV), the problem herein
also includes Equation (13d) and thus a proof for the case that includes this constraint is given in
the Appendix. Although Equations (13) form a convex program, it is still implicitly tied to the a
priori reference trajectory @. Accordingly, it is common to employ an iterative approach where the
optimal mean trajectory m, j V k from the previous convex iterate becomes the reference trajectory
for the next, i.e., &} < M, V k until a convergence criteria is met or a maximum iteration limit is
exceeded. This approach, along with additional techniques, are detailed thoroughly in References
13, 17 and 18.

Quadrature Formulation

As an alternative to analytical linearization of f(-), consider a set of of N, weights and points

of the form {w%) , w((;j ), X 12]21};‘\21 that comprise a quadrature rule for expectations with respect to
Pg (wkfﬁ my k-1, sz,kfl); that is,

Ny ‘

mep =y widx, (14a)
7j=1

wa,k—l = Z ng)(-’f;(g,)l - mx,k—l)(‘x}(gjzl - mz’,k‘—l)T . (14b)
j=1

Common quadrature methods include Gauss-Hermite quadrature'® and the unscented transform°.

Note that the weights do not depend on time and thus are constant at every node ¢;. Starting from

an initial set of points X (()] ) .7 € {1,..., N4}, every point is passed through Equation (8b) via the

assignment xj_1 < X ,(le such that

X9 — gD )4 Fu(vp 1+ Gea[XY —mup 1)) Ve[, N], (15)
with the propagated mean m, ;. computed using Equation (14a) and propagated covariance given
by

Nq . .
P:mv,k = wa,k—l + Z ng) (X]E;]) - m:p,k)(xj(g]) - mz,k)T . (16)
j=1

Equations (14)-(16) are then leveraged to evaluate Equations (8c)-(8e) within the optimization pro-
cedure. Note that the quadrature points themselves need not be optimization variables. The opti-
mization variables can be decreased to & = {¥, G}, just as in the linearization formulation. The
benefit of using the quadrature approach is the direct usage of the nonlinear dynamics. The cost is
an increased computational burden within the optimization due to the generation of new quadrature
points at every node; though, in the absence of process noise, the same quadrature points can be
propagated through each node. It is also the case that matrix square-root factors are typically used
to compute quadrature points—necessitating additional care in ensuring that the covariance matri-
ces remain positive definite in the optimization process. Further, to the authors’ knowledge, there
does not exist a special case of lossless convexification of the quadrature formulation due to the
presence of f(-) in Equation (15).



COMPARING LINEARIZATION, QUADRATURE, AND CONVEXIFICATION

For comparison, three optimizations of a simple two-dimensional scenario are performed where
two implementations use linearization and the third optimization uses quadrature. One of the lin-
earized implementations uses the lossless convexification (denoted as SCVX) from Equations (13).

Let the position 7 € R? and velocity g € R? of the system evolve according to
T = Trp—1 + Atrqr 1
qr = (1 = cllgr-11)gr—1 + Atpur_1 + wi_1,

where ¢ > 0 tunes the nonlinear term in the velocity dynamics and w is the zero-mean, Gaussian
process noise. The parameters for this example are given in Table 1 with the units considered to
be generic units that are consistent. All three optimizations use the same performance index and
problem data. The performance index is taken to be

N—-1
J = Z tr{GkPmng} + ’UkT’Uk .
k=0

The nonconvex implementations are solved via the sequential quadratic programming solver SNOPT?!,

Table 1. Optimization parameters for the 2D scenario.

Quantity Value Description
c 0.01 Nonlinearity scaling
myg [1,8,2,0] Initial mean
my [1,2,—1,0] Final mean
P..0 0.01 x I Initial covariance
P, 0.1x 1y Final covariance
P, 1074 x Iy Process noise covariance
At 0.6 Time Step
N 25 Nodes
Pu 0.3 Mean control constraint
P, 1073 Control dispersion constraint

while the lossless convexification is implemented with CVX.?? The discrete system is propagated
with (N, At) given in Table 1 with an initial reference control @ = [—0.3,0.1]7 used at all nodes
k € [0, N — 1]. The result is a reference trajectory & that is used in the linearized implementa-
tions (including SCVX). The initial guess for the nonconvex implementations is given by v, = 4
and G = 0,,x» V k, while SCVX does not require a user-generated initial guess. For the quadra-
ture implementation, the unscented transform is used to compute quadrature points with parameters
a = 0.1, 8 = 2, and kK = 1 defined in Reference 20. Lastly, SCVX is iterated over a maximum of
10 iterations or until the norm between successive reference trajectories is less than ¢ = 1073,

The optimized position statistics for the linearized, quadrature, and SCVX implementations are
shown in Figures 1-3. The illustrated covariance ellipses represent the 99.75% confidence interval.
All three implementations satisfy all boundary and path constraints. Although Figures 1-3 are vi-
sually similar, a notable difference is that the nonconvex linearization implementation uses heavier
feedback control, as seen via the smaller position covariances and velocity uncertainty profile in Fig-



ure 5, where RSS = /02 + 05. This highlights the inverse relationship between state uncertainty

P, and feedback control. Similarly, Figures 4 and 5 show that the SCVX and quadrature imple-
mentations use larger amounts of nominal control and less feedback, as seen by the higher velocity
uncertainty in Figure 5. This demonstration illustrates the possibility to obtain significantly differ-
ent results depending on (i) the fundamental problem formulation (i.e., convex vs nonconvex) and
(ii) the approach for computing the state mean and covariance within the nonconvex optimizations.
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Figure 3. SCVX optimization result.

NONLINEARITY CONSTRAINT VIA TENSOR MEASURE OF NONLINEARITY

The linearization—either analytical or statistical (i.e., quadrature)—invites two interdependent
sources of inexactness: truncation and non-Gaussianity. Assuming that the initial state distribu-
tion remains Gaussian may degrade the statistical consistency of the method. There are, however,
certain locations of the state space where the first-order truncation of the dynamics is a worse ap-
proximation than at other locations (i.e., where higher-order terms dominate the linear term). If
the state distribution has a large amount of probability mass outside of the region where the linear
approximation is valid, then the Gaussian uncertainty model can quickly lose its realism.

To guard against the loss of realism of the Gaussian model, a degree of nonlinearity measure is



I I
012 p=======~= - - - -
N | —— linearized
Z 01| —— quadrature || |
=]
§ SCVX
g oos| --- bound a
= ool i =)
=2 : : § 0.06 =
—— linearized 2
» 0.04 |- 8
—— quadrature 2
0.1 - SCVX \/* 0.02 |~ |
--- bound -/
| | | | | 0 | | L | |
0 5 10 15 20 25 0 5 10 15 20 25
k k
Figure 4. Optimized control magnitude. Figure 5. Optimized velocity uncertainty.

embedded as a constraint in the optimization. Various nonlinearity measures have been proposed
in the literature with detailed overviews given by Jenson and Scheeres'! and Kulik.'? The measure
used in this work leverages the induced 2-norm of the second-order state transition tensor.'> A brief
overview of the measure is given here. The measure 7 maximizes the 2-norm contribution of the
second-order term in the Taylor series expansion of f(-); that is,

E;(F?5z? 17
= 3 tnax x | Ej(FPsz®)|, (17)

where F( " is the (i4-1)" order tensor related to the i derivative of f(-), éx = £ —, and F( )52
describes the i™ tensor contraction with dz, which produces a vector with the same dimensions as
dz. The projection matrix E; slices the tensor contraction to yield the error for only the i state. For
instance, the position slice for a state vector & = [r” , vT|”, where 7 is the position, is E,. = [I ,0].
The maximizations are over the unit ball of dimension identical to dz. For “small” radii dx, the
second-order contribution should approximate the overall linearization error. The maximizations
can be rescaled for a ball of radius « by

To = 2T (18)
The radius « is related to a measure of the size of the state covariance, such as

a = /o, ) Amax(Prz) , (19)

where \pax(-) is the largest eigenvalue of P,, which is a convex function of P,., and ¢(p,n) is
the inverse cumulative distribution function for a chi-squared distribution with n degrees of freedom
and probability gate p. The maximization in Equation (17) has a semianalytical solution requiring
a tensor eigenpair computation. From Equations (18) and (19), the constraint at time ¢,

So(pa n>)\max(P:ca:,k) Tk < Bk (20)

enforces that the state covariance stays under a size when scaled by the measure of nonlinearity 7%
at the current linearization point &;. Note that the form of 7 is given in Reference 12 and omitted
here for brevity, but it suffices to declare 75, as input data for the optimization. Because 75, depends
on the specific reference trajectory &, a new 73, should ideally be computed for every iterate of the



optimization. In practice, the constraint is split into a constraint for each dimension with different
units. Thus, the user-defined parameter 3; has identical units to the slice of /P, ; which has
consistent units (e.g., the position-only slice). Equation (20) is an opposing constraint to Equation
(2) since, in order to lower the state covariance to satisfy Equation (20), a corresponding increase in
feedback control is typically required. Note that, for the lossless convexification of Equations (13),
Equation (20) does not affect the relevant Karush-Kuhn-Tucker (KKT) conditions described in the
Appendix.

NRHO STATISTICAL MANEUVER ANALYSIS

Consider a preliminary statistical maneuver planning study along a selected Lo Near Rectilinear
Halo Orbit (NRHO). The true dynamics models for the spacecraft position r and velocity v are
given in the rotating frame by

7(t) = v(t)
b(t) = V,U + Mu(t),

where
L—p H 2 2
U= + = (z° +y°)
Ve+p)?2+y2+22 J(o+p—12+y2+22 2
0 20
M=|-2 00
0 00

The components of the position vector, 7, are given by z, y, and z; v is the velocity vector as seen
from the rotating frame, and © = 0.01215058426 is the mass ratio of the Earth-Moon system. All
quantities are nondimensionalized by the conventional Earth-Moon values (DU = 385,690 km,
TU = 377,110 seconds, and VU = DU/TU). Eight open loop impulsive maneuvers—four executed
just before apolune and four just after—are optimized along with their associated feedback gains
for dispersion control. These impulse times are fixed and are equally separated by three hours.
The goal is to generate dispersion statistics (e.g., AV-99 intervals) for both the control and states
from a single-shot optimization at points of interest along one revolution of the NRHO. These
statistics are then compared to a Monte Carlo (MC) simulation that propagates samples from the
given initial covariance P, using the optimized open loop impulses and feedback terms with
numerical integration in between impulses.

The linearized, successive convexification (SCVX) approach is used for this application through
CVX.?? To build the discrete system for Equations (13), the continuous dynamics are linearized
about the reference trajectory & and discretized via numerical integration. Letting f7 = [#7, 7]
and using the Jacobians of f evaluated at &, the state transition matrix (STM) for the ballistic
dynamics are numerically integrated using Matlab’s ODE452% between each discretization node.
The relevant input data for the optimization is shown in Table 2—with the caveat that, though
N = 300, there are only eight nodes where control is allowable. Since Ty = m, o = my, itis
expected that the magnitudes of optimized open loop controls be small since the mean trajectory
should require minimal interference. Additionally, since the covariance values are much smaller
than those for the mean in this application, the scaling method from Reference 13 is employed for
solver stability.
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Table 2. Optimization parameters for the NRHO maneuver planning scenario. Note that m o, Zo,
and m are in nondimensional units.

Quantity Value
ty —to 1 revolution
N 300
myo0=xo=my [1.0213,0,—-0.1816,0, —0.1018,0 I
. 30213 km2 03><3
sz,O - Pf |: 033 302[3 (ijs)2
033
Fu [ I3 }
Pu 50 cm/s
¥ 10

Optimization Results

The optimization performed three convex iterations for a total runtime of 20 seconds. The optimal
mean trajectory and open loop impulse directions are illustrated in Figure 6 and similarly in Figure
7 for the y-z projection. Here, ER = 6370 km (i.e., Earth radii), and the covariance ellipses are
scaled by a factor of eight for visibilty. The final optimized covariance remains within Py, as
required. Figure 7 highlights the usual trend of covariance behavior for an NRHO starting from a
spherical covariance at apolune; that is, the semimajor axis of the covariance starts to align with the
orbit moving towards perilune, and once at perilune the covariance becomes long and “skinny.”

Py
0
T
~
)
- i
=}
Zg -5 =
2 ) i
® =
g
£ |
&
—10 > N
60 2
0
61 L |
| |
-position [ER
z-position [ER] vp [ER] 4 6
. . y-position [ER]
Figure 6. Reference NRHO and open loop im-
pulse directions. Arrow scales represent relative ~ Figure 7. Optimal mean and covariance history.
impulse magnitudes. Covariances are scaled by a factor of eight.

Monte Carlo Results

Although the optimized terminal covariance remains within Py, as shown in Figure 7, this is
within the linearized model used in the optimization. Thus, two MC simulation with 500 samples
are conducted where, in the first MC, each sample is steered with natural dynamics only. In the

11



second MC, each sample is steered with closed-loop impulses via the optimized feedback gains and
the continuous, natural dynamics. Figure 8 shows the terminal location of the samples, when subject
to natural dynamics only, relative to m, i.e., their error from m ¢, for the pair-wise combination of
the six-dimensional state. Additionally, the terminal boundary covariances (i.e., Py) are depicted. A
significant number of samples fall outside the prescribed boundary in all six dimensions. Thus, it can
be said that, for the prescribed initial covariance P, o in Table 2, a nonzero amount of dispersion
control is required. Figure 9 shows the MC sample distributions at the terminal time when steered by
the optimized feedback law. The MC sample distributions are well-characterized by the optimized
covariances at the terminal time. Thus, in this scenario, the optimization successfully predicts the
state dispersions. The dispersion of realized control magnitudes and the predicted 99% interval

*” "> MC £30 (O Boundary 30 « trial errors + MC avg. error
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Figure 8. MC sample dispersions relative to the terminal mean state 1 ; with natural motion only.

from the optimization are shown via violin plots* in Figure 10. The realized control dispersions
(i.e., closed-loop control samples) are shown for each control node, where the width of each cluster
indicates the frequency at that magnitude. The optimization predicts the control dispersions without
being overly conservative which is desired. Note the dispersions are skewed towards lower control

“For more information on violin plots, see Reference 24.
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Figure 9. MC sample dispersions relative to the terminal mean state m ; along with the optimal and
boundary covariances.



magnitudes, indicating that, on average, the state dispersions need only a small correction. Though
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Figure 10. Control magnitude dispersions.

Figure 9 shows satisfactory results for the terminal dispersions, Figure 11 highlights the loss of
covariance realism between the optimization and MC. Even with the amount of closed-loop control
enacted before perilune (i.e., the first four nodes of Figure 10), the MC dispersions at perilune are
heavily skewed and not well-characterized by the optimized covariance. Since the optimization
has no size constraint on the perilune covariance, and since the combination of optimal closed
loop controls and natural dynamics yields terminal constraint satisfaction, covariance realism is not
guaranteed at perilune. This highlights the general possibility that covariance realism may be lost
at times for which the optimization has no size constraint on the covariance.

Including Nonlinearity Constraints

To account for the loss of covariance realism in Figure 11, a second optimization is performed
with the nonlinearity constraint from Equation (20). In this scenario, a probability gate p =
0.99 is used, and Equation (20) is split into constraints for position and velocity separately with
B = 500 km and 8, = 250 m/s. These constraints are applied to the covariances at the first
four impulse nodes. The unit-ball values for 7 at these nodes for position and velocity are 7, =
[1746,1600,1474,1367] and 7, = [3.2,2.9,2.7,2.5] x 10, respectively. Note that 7, is much
larger, indicating that linearization impacts the velocity state more than the position at perilune.

The optimization results for the nonlinearity constrained case are subjected to MC simulation as
done before. The dispersion of realized control magnitudes is shown in Figure 12. As discussed,
the nonlinearity constraint tends to increase the closed loop control usage due to the fact that a
smaller covariance almost always decreases the measure of nonlinearity. This phenomena is clearly
seen in Figure 12 for the control nodes before perilune (nodes 1-4). Figure 13 illustrates the MC
dispersions at perilune, where it is now true that the optimized covariance well-captures the MC
dispersions. Additionally, since perilune is the location for which nonlinearity is most significant,
this constraint also results in covariance realism for all other time nodes. For comparison to the
unconstrained case, the MC dispersions at the terminal time are also shown in Figure 14. Figures
9 and 14 show identical distributions for all state pairs except the 2 state, where it is clear the
nonlinearity constrained case results in much smaller dispersions in that state at the terminal time.
This is expected as a result of the z dispersions at perilune (in Figure 13) being nearly a third of
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Figure 12. Control magnitude dispersions for the nonlinearity constrained case.
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their size from those in the unconstrained case (in Figure 11).
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Figure 14. MC sample dispersions relative to the terminal mean state m ; along with the optimal and
boundary covariances for the nonlinearity constrained case.

CONCLUSION

A key component of trajectory design is ensuring that the statistical dispersions of both the space-
craft state and control usage are minimized and/or constrained. In place of the common process
involving repeating optimizations with deterministic state modeling assumptions, Gaussian steering
has been proposed in the literature as a means of constructing—a priori—a feedback law to con-
trol state dispersions. This work introduces a general framework for a class of Gaussian steering
problems to allow for multiple methods for mean and covariance approximation. Additionally, a
nonlinearity constraint is introduced to ensure covariance realism such that the optimization well-
captures the true dispersions.

The optimization framework is demonstrated on an Lo Near Rectilinear Halo Orbit (NRHO)
example wherein dispersions are kept within a prescribed covariance after one revolution of the
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NRHO, as verified by Monte Carlo (MC) analysis. It is shown that, without the nonlinearity con-
straint, covariance realism is lost at perilune of the NRHO. Thus, a second optimization that includes
a nonlinearity constraint is performed and a subsequent MC analysis establishes that covariance re-
alism is satisfied at perilune. As expected, the increase in covariance realism in a highly nonlinear
region of the state space requires larger amounts of closed-loop control. The NRHO application
highlights the ability for Gaussian steering to extract dispersion statistics without MC analysis.

APPENDIX: LOSSLESS CONVEXIFICATION PROOF

From Equations (13), specifically Equation (13e), let

C. £ UyP,\ Ul - Vi, 1)

Z

such that requiring C, to be negative semidefinite (Cyx < 0,,x) is equivalent to Equation (13e)
via the Schur complement.? Also let

A A

by =Fyp_1my i1+ f(@p-1) — Fpr_1Zr—1 + Fuop_1 —mg
Hk = Fa:,k—lpa:a:,k—ngg:k—l + FuUk—lF;z:k_l
+ Fx,k—lUg—ng + Fqu—ng + wa,k—l - P.tz,k )

such that by, = 0,1 and Hy, = 0, «,, are equivalent to Equations (13b) and (13c). The Lagrangian
for Equations (13) is written as

N-1
L= tu{Y} +vfvp + A b + r{ AL Hp} + op(ogl| + (Ve p) + o{TILCr},  (22)
k=0

where A, A, ¢, and II; are Lagrange multipliers and Ay and IT; are symmetric. It has been
shown in Reference 7 that, for a deterministically controllable system, Equations (13) satisfy Slater’s
conditions for strict feasibility, and since the problem is convex, this means strong duality holds, and
the KKT conditions for Equation (22) are sufficient conditions for an optimum. This proof leverages
a contradiction in the KKT conditions for Equation (22) when C}, # 0,;,x.m Vk. The relevant KKT
conditions are’

oL -
TU_IC = HkUkPa:_a,’:,Lk + FgAkaJg—l - Oan (233.)
oL Y
—— =1, -1+ FTA,F, + = Opxm (23b)
tr{TI, Cy} = 0 (23¢)

Ck: = Om><ma Hk: = 0m><m7 1]k: = Omea wa,k = 0n><na ¢k > 0, (23d)

where Equation (23c) is the complementary slackness condition and Equation (23d) is true by prob-
lem construction. Using Lemma 1 of Reference 7, the Lagrange multiplier IT; must be singular if
C}; has at least one nonzero eigenvalue due to Equation (23c). If ITj, is nonsingular, Cj = 0y, 5.
Substituting F.I' A}, from Equation (23a) into Equation (23b) results in

Y,
1Ykl F

I + iy =I,(I, + Uy P, F, . | F,). (24)

zx,k
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Note that it is assumed that ﬁ’x k—1 is invertible V k. Taking the determinant of both sides gives

Y; )
det (Im + gbmHY]j’F) = det(ITy) det(I,, + Uy P, F, | | F,). (25)

By construction, Y, >~ 0,,xm, and, therefore, the left-hand side of Equation (25) is always positive;
thus, II; must be nonsingular and C, = 0,;,«,, for all k at the optimum.
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