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INFORMATION-THEORETIC SENSOR TASKING FOR
OPTIMAL SPACE OBJECT CUSTODY

Brighton N. Smith∗ and Kyle J. DeMars†

Increased congestion across orbital regimes and the growing heterogeneity
of sensor networks demand adaptive tasking strategies to ensure effective
space domain awareness. This work investigates an information-theoretic
approach to sensor scheduling, using the expected Kullback–Leibler diver-
gence between prior and posterior state distributions as the optimization
objective. A forecasted formulation is employed, in which measurement
utility is evaluated at a common reference time, enabling consistent pri-
oritization across sensing modalities and asynchronous observation time-
lines. The framework is demonstrated in two representative scenarios: a
single-target, single-observer case in cislunar space and a multitarget, multi-
observer problem in low Earth orbit, showcasing its flexibility, scalability,
and applicability to complex surveillance networks.

INTRODUCTION

As the population of space objects (SOs) grows across orbital regimes – from crowded low
Earth orbit (LEO) to the expanding cislunar domain – efficient sensor tasking has become
essential for space domain awareness (SDA). Tracking diverse targets such as satellites,
debris, and uncooperative objects requires intelligent allocation of limited sensing resources.
Traditional methods often rely on fixed schedules or heuristic policies that struggle to adapt
to evolving mission priorities like detection, classification, or high-accuracy tracking.1

Information-theoretic frameworks offer a principled alternative by directly optimizing ex-
pected information gain, independent of specific filter designs or data association rules.1
This work adopts the expected Kullback-Leibler (KL) divergence between prior and poste-
rior target distributions as the tasking objective, enabling selection of measurements that
most effectively reduce uncertainty within operational constraints.

Extending the approach in Reference 2, each candidate measurement is forecasted to a
common reference time, allowing consistent evaluation across asynchronous, heterogeneous
sensor networks. This common-epoch formulation supports batch updates and accommo-
dates various sensing modalities. The reference time can be chosen strategically – for in-
stance, before a visibility gap or expected maneuver – shifting the objective from immediate
gain to long-term uncertainty reduction. In doing so, the forecasted framework addresses
the limitations of myopic strategies, such as those explored in Reference 3, and enables
coordinated, information-driven tasking across complex space surveillance networks.
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INFORMATION ENTROPY AND DIVERGENCES

To understand the usage of information divergence as a tasking objective, it is first imper-
ative to define the concept of information entropy, which is a measure of the uncertainty or
spread of a random variable.4 Consider a continuous random vector x defined on the event
space X with probability density function (pdf) p(x). The information entropy, commonly
referred to as Shannon entropy, is defined by the quantity H[·] and is given by4

H[p] = −
∫
X
p(x) log p(x) dx . (1)

This value quantifies the inherent uncertainty in the random variable’s outcome, which
bounds the maximum amount of information that could be gained through observation.2
A higher entropy value indicates greater uncertainty, while lower entropy signifies a more
predictable distribution.

It is often useful to quantify how different two distributions are from one another, leading
to the notion of an information divergence, which measures the discrepancy between two
probability distributions.5 Considering two pdfs p(x) and q(x), the information divergence,
written as D[q ‖ p], provides an asymmetric measure of how well p approximates q. Unlike
symmetric metrics that measure distance in a geometric sense, information divergences
reflect directional information loss, often with one distribution interpreted as the true source
and the other as an approximation.4

Considering an nx-dimensional random target state vector x ∈ X ⊆ Rnx , the Kullback-
Leibler (KL) divergence from q(x) to p(x) can be expressed as

DKL[q ‖ p] = H[q, p]−H[q] =

∫
X
q(x) log

q(x)

p(x)
dx , (2)

where H[q] is the Shannon entropy of q(x), and H[q, p] is the cross-entropy, defined as

H[q, p] = −
∫
X
q(x) log p(x) dx .

This formulation highlights that the KL divergence quantifies the additional information
required to represent q using p.4

When considering two multivariate Gaussian distributions, defined as

p(x) , pg(x;m
−
x ,P

−
xx)

q(x) , pg(x;m
+
x ,P

+
xx) ,

a closed-form solution to Eq. (2) exists as

DKL[q ‖ p] =
1

2

[
log |P−

xx(P
+
xx)

−1|+ tr{(P−
xx)

−1P+
xx}

+ (m+
x −m−

x )
T (P−

xx)
−1(m+

x −m−
x )− nx

]
. (3)
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THE KL DIVERGENCE AS A TASKING OBJECTIVE

To develop the KL divergence as an objective for sensor tasking, consider space objects
whose motions follow the continuous-time dynamical system6

ẋ(tk) = f(x(tk)) ,

where xk , x(tk) is the state of the target at time tk, defined on the state space X ⊆ Rnx ,
and the function f : X → X represents the deterministic system dynamics. This formulation
omits process noise and assumes no control inputs, making it suitable for non-maneuvering
objects whose trajectories can be well-approximated by known physics. Such assumptions
are generally appropriate for cataloged space object tracking.6

Additionally, measurements zk , z(tk) at time tk defined on the measurement space
Z ⊆ Rnz are generated according to the discrete-time process2

zk = h(xk) + vk , (4)

where vk ∈ Z is zero-mean, Gaussian white noise with symmetric and positive definite
covariance Pvv,k, and h : X → Z is the measurement function.

Myopic Objective

The myopic objective seeks to quantify the information gain from a single measurement
in terms of how much it reduces the uncertainty in the estimated target state. This is
done by evaluating the KL divergence between the a priori and a posteriori Gaussian state
densities, as described in standard Kalman filtering treatments.7,8

Let m−
x,k and P−

xx,k denote the mean and covariance of the a priori estimate at time tk,
and let m+

x,k and P+
xx,k be the corresponding a posteriori quantities after a Kalman update.

Assuming that the state estimates are described by Gaussian pdfs, the same closed-form
solution developed in Eq. (3) can be applied. Substitution of the standard Kalman mean
update equation given in Reference 7 yields2,9

DKL[q ‖ p] =
1

2

[
log |P−

xx,k(P
+
xx,k)

−1|+ tr{(P−
xx,k)

−1P+
xx,k}

+ (zk −m−
z,k)

TKT
k (P

−
xx,k)

−1Kk(zk −m−
z,k)− nx

]
, (5)

where zk is the measurement taken at time tk, m−
z,k is the expected measurement at the same

time, Kk is the Kalman gain, and nx is the dimension of the state vector. By simultaneously
considering the measurement model and the uncertainty in the state estimation itself, this
expression gives the relative impact an observation has on the state estimate density.

In practice, Eq. (5) requires a measurement, zk, in order to determine the information
gain that is realized through the update; as the objective is to determine when to take a
measurement, Eq. (5) is not immediately applicable. Instead, it is common practice to con-
sider the average (or expected) information gain that would be realized by a measurement
taken at tk. This is done by computing the expected KL divergence, otherwise known as
the first moment of the KL divergence.10 This first moment can be computed by taking the
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expected value of Eq. (5) with respect to the measurement pdf, p(zk), giving

MKL(tk) = E
{
DKL[q ‖ p]

}
=

∫
Z
DKL[q ‖ p]p(zk) dzk

=
1

2
log
∣∣P−

xx,k(P
+
xx,k)

−1
∣∣ , (6)

where the argument tk is the time at which measurement zk is “taken.”

This expression is a compact and computationally inexpensive method for assessing the
impact of measurements without requiring a measurement to be acquired, as opposed to
Eq. (5). This approach is hereafter referred to as “myopic” to signify the emphasis on the
information gain at each of the tk observation times as opposed to at a downstream or
upstream time.

Given a set of M candidate measurement time indices ζ = {δ1, . . . , δM}, the cumulative
myopic objective is defined as

argmax
ζ

J(ζ) , argmax
ζ

∑
δ∈ζ

MKL(tδ)

= argmax
ζ

1

2

∑
δ∈ζ

log |P−
xx,δ(P

+
xx,δ)

−1| . (7)

For a multitarget scenario with N independent targets, the multitarget myopic objective
simply accumulates the single-target contributions as

J (ζ) u
N∑
i=1

J(ζ(i)) , (8)

where ζ(i) denotes the measurement time indices for the ith target.

Forecasted Objective

While the myopic objective offers a tractable and interpretable tasking objective, it suffers
from two key limitations: a bias toward later measurements due to growing uncertainty, and
difficulty in comparing heterogeneous observations across time, sensors, and modalities.2,10

As uncertainty accumulates over time, the myopic KL divergence tends to prioritize delayed
measurements, potentially overlooking earlier data that could have significantly improved
estimation. Additionally, because each measurement is evaluated in isolation at its acquisi-
tion time, there is no consistent mechanism to compare observations from different sensors
or epochs.

To address these limitations, this work adopts a forecasting approach that maps the
impact of each observation to a common reference time. By evaluating expected informa-
tion gain at a strategically chosen epoch, the method enables consistent comparison across
measurement types and prioritizes observations based on long-term utility rather than im-
mediate uncertainty reduction.2
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Forecasting information to a common reference time naturally facilitates a batch update
formulation, allowing multiple measurements to be processed simultaneously within a uni-
fied estimation framework. Given a measurement acquired at time tk, a mapped Jacobian
is defined as

H̃k = Hx,kΦ(tk, tref) , (9)

where tref is the reference epoch at which all measurements are analyzed, Hx,k = Hx(m
−
x,k)

represents the Jacobian of the measurement model evaluated at the a priori mean, and
Φ(tk, tref) is the state transition matrix that propagates the state from tref to tk.

For a set of M measurements acquired at times t1, t2, . . . , tM , the batch update structure
is constructed by concatenating the mapped measurement Jacobians as

H̄ =


H̃1

H̃2
...

H̃M

 =


Hx,1Φ(t1, tref)
Hx,2Φ(t2, tref)

...
Hx,MΦ(tM , tref)

 .

Additionally, assuming the measurement noise is uncorrelated in time, the corresponding
covariance matrices for all observations can be consolidated into a block diagonal matrix,

P̄vv = diag (Pvv,1,Pvv,2, . . . ,Pvv,M ) . (10)

This formulation allows for the inclusion of heterogeneous measurement sources, as the
individual Jacobians Hx,k need not be derived from the same measurement model, and the
noise covariance matrices Pvv,k may vary across sensors and observation conditions. By
treating all measurements in a batch framework, the covariance update at tref is performed
as11

(P+
xx,ref)

−1 = (P−
xx,ref)

−1 + H̄T P̄−1
vv H̄ , (11)

where P−
xx,ref is the a priori covariance propagated to the reference time, given by

P−
xx,ref = Φ(tref , t0)Pxx,0Φ

T (tref , t0) ,

where Pxx,0 is the initial covariance. This batch processing formulation enables the assimi-
lation of multiple temporally distributed observations into a single, consistent state update
at tref .

The myopic form of the mean KL divergence in Eq. (6) can be reformulated in its fore-
casted form as2

M̄KL(t) =
1

2
log
∣∣P−

xx,ref(P
+
xx,ref)

−1
∣∣

=
1

2
log
∣∣Inx + P−

xx,refH̄
T P̄−1

vv H̄
∣∣ , (12)

where t is the vector of measurement times, Inx is an nx-dimensional identity matrix, and
the overbar notation denotes that the KL divergence is evaluated at the reference epoch
tref .
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Again, given a set of M candidate measurement time indices ζ = {δ1, . . . , δM}, the
forecasted tasking objective for a single target is written as2

argmax
ζ

J̄(ζ) , argmax
ζ

M̄KL(tζ)

= argmax
ζ

1

2
log
∣∣Inx + P−

xx,refH̄
T P̄−1

vv H̄
∣∣ , (13)

where tζ , t(ζ) denotes the measurement times selected by the schedule. For multitarget
scenarios, the forecasted objective extends naturally as2

J̄ (ζ) u
N∑
i=1

J̄(ζ(i)) , (14)

where individual target objectives are aggregated while preserving the reference time frame-
work.

OPTIMIZATION

The objectives developed in the preceding section offer a principled tasking criterion that
maximizes the expected information gain at each measurement instant (Eqs. (7) and (8))
or considering a common reference time (Eqs. (13) and (14)). However, these objectives are
in general non-convex, posing challenges for global optimization.

To demonstrate this, consider the forecasted mean KL divergence from Eq. (12) evaluated
as a continuous function of time for a single measurement,

M̄KL(t) =
1

2
log
∣∣∣Inx + P−

xx,refH̃
TP−1

vv H̃
∣∣∣ , (15)

where H̃ is a single mapped measurement Jacobian as in Eq. (9), Pvv � 0 is a single mea-
surement noise covariance matrix, and P−

xx,ref � 0 is the initial prior covariance propagated
to the reference time. Define the matrix

A(t) , Inx + P−
xx,refH̃

TP−1
vv H̃ ,

which is guaranteed to be positive definite due to the similarity form of the information
matrix, H̃TP−1

vv H̃ � 0. Since the log-determinant function is twice differentiable over the
cone of positive definite matrices,12 the second derivative of Eq. (15) can be expressed as

d2

dt2
M̄KL(t) =

d

dt

(
1

2
tr

{
A−1dA

dt

})
=

1

2
tr

{
A−1d

2A

dt2
−A−1dA

dt
A−1dA

dt

}
.

The first term may be positive or negative depending on the curvature of the Jacobian and
state transition matrix, while the second term can be rewritten as the squared Frobenius
norm of a whitened matrix,13

tr

{
A−1dA

dt
A−1dA

dt

}
=

∥∥∥∥A−1/2dA

dt
A−1/2

∥∥∥∥2
F

.

6
Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL2025-3721



Since the second term is always non-negative and subtractive and the first term is not
guaranteed to dominate it in sign or magnitude, the second derivative may be negative in
some regions and positive in others. This confirms that the function is neither convex nor
concave.

To illustrate this visually, consider a toy example in which a ground-based radar sensor
selects a single measurement time for a geostationary target over a 19-hour period. The
geometry of the forecasted KL divergence objective, shown in Figure 1, reveals the pres-
ence of multiple local maxima and varying curvature, corroborating the theoretical result.
Although this result is derived for the forecasted objective, similar conclusions apply to the
myopic objective, which has also been explained to be non-convex in general.2
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Figure 1: The forecasted KL divergence objective when scheduling a single measurement
for a ground-based radar, with the optimal measurement time denoted by ×.

Furthermore, as the number of sensors, targets, and allowable measurements increases,
the tasking problem quickly becomes computationally intractable. For instance, evaluating
the forecasted objective requires batch matrix multiplications and block inversions whose
complexity grows rapidly with the number of candidate measurements. The myopic objec-
tive is similarly affected, highlighting the need for efficient, structure-aware optimization
strategies. To address this, the following sections introduce a convex relaxation of the
forecasted objective based on submodular function analysis. Analogous formulations and
efficiency gains apply to the myopic case as well.2

Submodular Function Analysis

Submodularity provides a principled way to handle non-convex optimization problems by
leveraging the property of diminishing returns. As shown in numerous applications, such as
sensor placement and experimental design,14 submodular objectives admit efficient greedy
algorithms with provable approximation guarantees. Establishing that the forecasted objec-
tive is submodular opens the door to such scalable and theoretically grounded optimization
methods.

To establish the submodularity of the forecasted objective function in Eq. (13), consider a
set function f : 2Z → R defined over subsets ζ ⊆ Z. A set function is said to be submodular
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if it satisfies the diminishing returns property,14

f(ζ1 ∪ {τ})− f(ζ1) ≥ f(ζ2 ∪ {τ})− f(ζ2) ∀ζ1 ⊆ ζ2 ⊆ Z, τ ∈ Z \ ζ2 . (16)

Let ζ ⊆ Z denote a set of selected measurement indices and τ be a candidate measure-
ment index not yet in ζ. Define a fixed reference time tref that occurs after all possible
measurements, such that the information from each observation is mapped in a consistent
direction to this common time. Utilizing the block-diagonal property of P̄vv in Eq. (10),
the forecasted information gain from the set ζ is represented by the matrix

F̄ (ζ) =
∑
δ∈ζ

Fδ ,

where Fδ , F (tδ, tref) = H̃T
δ P

−1
vv,δH̃δ is the mapped Fisher information contribution from

measurement δ. Each matrix Fδ is symmetric positive semi-definite, as it is constructed
by a similarity transform of positive definite noise covariance Pvv,δ. As a result, the sum
F̄ is also symmetric positive semi-definite. Using this notation and adding a new index τ ,
Eq. (13) becomes

J̄(ζ ∪ {τ}) = 1

2
log
∣∣∣Inx + P−

xx,ref

(
F̄ (ζ) + Fτ

)∣∣∣ . (17)

Subtracting J̄(ζ) from Eq. (17) to get into the form of Eq. (16), the marginal gain is found
as

J̄(ζ ∪ {τ})− J̄(ζ) =
1

2
log

∣∣∣∣Inx +
(
Inx + P−

xx,ref F̄ (ζ)
)−1

P−
xx,ref F̄τ

∣∣∣∣ . (18)

To prove submodularity, define two sets ζ1 ⊆ ζ2 and consider the marginal gain of
adding a new index τ to each. Since ζ2 contains all elements of ζ1 and possibly more, the
corresponding information matrices satisfy F̄ (ζ1) � F̄ (ζ2), meaning that their determinants
obey |F̄ (ζ1)| ≤ |F̄ (ζ2)|.13 Using the same “information never hurts” argument,4 it follows
that ∣∣∣∣(Inx + P−

xx,ref F̄ (ζ1)
)−1

P−
xx,refFτ

∣∣∣∣ ≥ ∣∣∣∣(Inx + P−
xx,ref F̄ (ζ2)

)−1
P−
xx,refFτ

∣∣∣∣ . (19)

It remains to show that adding the identity matrix inside the determinant in Eq. (18) pre-
serves the inequality. Although the matrices in Eq. (19) are not necessarily symmetric, they
are similar to symmetric positive semi-definite matrices. Specifically, under the assumption
that P−

xx,ref � 0 and both F̄ (ζ) and Fτ are symmetric positive semi-definite, the matrices
on the left and right sides of Eq. (19) are similar to

P−1/2
(
I + P 1/2F̄ (ζ)P 1/2

)−1 (
P 1/2FτP

1/2
)
P 1/2 ,

where P , P−
xx,ref . This matrix is symmetric and positive semi-definite, so its eigenvalues

are real and non-negative. Therefore, the original matrix has real, non-negative eigenvalues.
Let λ

(1)
i and λ

(2)
i , for i = 1, . . . , nx, denote the eigenvalues of the left and right sides
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of Eq. (19), respectively. Since λ
(1)
i ≥ λ

(2)
i , adding one to each eigenvalue preserves the

ordering,

nx∏
i=1

(1 + λ
(1)
i ) ≥

nx∏
i=1

(1 + λ
(2)
i ) .

This confirms that the forecasted objective in Eq. (13), along with its multitarget extension
in Eq. (14), satisfies the diminishing returns property in Eq. (16), and therefore constitutes
a submodular set function.

Convex Closure Relaxation

Recall that to formulate the forecasted objective in Eq. (13) as a submodular set func-
tion, the optimization variables are a set of discrete measurement indices ζ, and t(ζ) is
used to select the times from these indices. While each precise value in t is technically con-
tinuous, the scheduling problem naturally admits discretization as a finite set of candidate
measurement times.

To enable convex optimization, the discrete selection process is reformulated using binary
indicator variables. For each sensor s ∈ {1, . . . , S} and target i ∈ {1, . . . , N}, let t

(i)
s =

{t1, . . . , tK} denote the candidate measurement times. Each candidate time tk is assigned
an indicator variable

γ
(i)
s,k =

{
1 if sensor s observes target i at time tk,

0 otherwise.

Let γ
(i)
s ∈ {0, 1}K denote the full indicator vector for the s-i sensor-target pair, and define

the full scheduling vector as γ ∈ {0, 1}d, where d = S ·N ·K is the total number of scheduling
opportunities.

The forecasted information objective J̄(ζ) from Eq. (13) can now be interpreted as a set
function J̄(γ) defined over {0, 1}d. To obtain a tractable relaxation of the combinatorial
problem, the domain is extended to γ ∈ [0, 1]d, and the convex closure of J̄(γ) is considered.
The convex closure, or Lovász extension, is a continuous extension of a submodular function
from {0, 1}d to [0, 1]d, and it preserves convexity if and only if the original set function is
submodular.14

Formally, the Lovász extension f : [0, 1]d → R of a submodular function F : {0, 1}d → R
is defined as14

f(γ) =

∫ 1

0
F ({k ∈ {1, . . . , d} : γk ≥ τ}) dτ ,

where γ ∈ [0, 1]d is a vector of relaxed indicator variables, and τ ∈ [0, 1] is a threshold
parameter. For each τ , the set {k : γk ≥ τ} selects a subset of elements for which the relaxed
weights exceed the threshold. This subset is evaluated using the original set function F , and
the result is averaged over all τ from 0 to 1. Intuitively, this process interpolates the values
of F across the continuous hypercube, yielding the tightest convex function that matches F
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at all binary vectors. This extension allows the reinterpretation of the optimization problem
as a convex program

γ∗ = argmax
γ∈[0,1]d

J̄(γ) ,

where J̄(γ) is now the Lovász extension of the original submodular objective.
This reparameterization yields a convex objective over the continuous hypercube, enabling

efficient optimization while preserving the structure of the original submodular problem. By
relaxing the binary scheduling variables to lie in [0, 1], the resulting formulation supports
global optimization and admits meaningful linear constraints:15

γ
(i)
s,k ∈ [0, 1] ∀ s ∈ {1, . . . , S}, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} ,

K∑
k=1

γ
(i)
s,k = M (i)

s ∀ s ∈ {1, . . . , S}, i ∈ {1, . . . , N} ,

N∑
i=1

γ
(i)
s,k ≤ 1 ∀ s ∈ {1, . . . , S}, k ∈ {1, . . . ,K} .

The first constraint defines the feasible domain of the relaxed problem as the continuous
hypercube. The second constraint enforces that each sensor-target pair (s, i) is assigned
exactly M

(i)
s measurements across the scheduling horizon. The final constraint ensures

that, at any given candidate time tk, each sensor s is assigned to at most one target,
preventing simultaneous tasking of multiple targets by the same sensor. These conditions
define a feasible region over which the relaxed problem remains convex.

In this formulation, the measurement model in Eq. (4) used during optimization is aug-
mented with the indicator variable,

z′
s(x

(i)
k ) = γ

(i)
s,k · h(x

(i)
k ) + vk .

The indicator applies directly to the batch update in Eq. (11) as

(P+
xx,ref)

′ =
(
(P−

xx,ref)
−1 + ΓH̄T P̄−1

vv H̄Γ
)−1

,

where the diagonal matrix of indicator variables is given by

Γ = diag(γ
(i)
s,1, . . . , γ

(i)
s,K) .

The single-target forecasted convex optimization problem can then be written as

argmax
γ

J̄(γ) , M̄KL(tγ)

=
1

2
log
∣∣∣Inx + P−

xx,refΓH̄
T P̄−1

vv H̄Γ
∣∣∣ , (21)

where tγ , t(γ) denotes the set of measurement times corresponding to nonzero entries in
the relaxed indicator vector. When γk = 0, the k-th row of H̄ is effectively ignored, ensuring
that unselected measurements do not influence the update. The multitarget extension
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follows the same structure as Eq. (14), summing contributions across all targets to yield a
globally consistent scheduling objective.

After solving the convex relaxation, the optimal schedule γ∗ typically contains fractional
entries. A final rounding procedure is used to extract a feasible binary schedule. Follow-
ing Reference 15, a simple and effective heuristic is to select the M

(i)
s entries in γ

(i)
s with

the largest weights for each sensor-target pair. This ensures feasibility while preserving
the structure of the relaxed solution. While this convex closure formulation requires a
higher-dimensional decision space, it enables globally consistent optimization with guaran-
tees inherited from submodularity and convex analysis.12 Additionally, since each t

(i)
s is

static, expensive operations such as computing the state transition matrix Φ(tk, tref) can be
precomputed and cached at each candidate time tk, allowing the optimization to proceed
efficiently without redundant evaluations.

CISLUNAR SIMULATION

Scenario Description

To evaluate the effectiveness of the forecasted tasking approach, a representative single-
target, single-observer scenario is considered in the cislunar environment. The target is
placed in a near-rectilinear halo orbit (NRHO) about the Earth–Moon L2 point, while the
observer is assumed to reside in a distant retrograde orbit (DRO).16

The target and observer are both propagated according to the dynamics of the circular
restricted three-body problem (CR3BP), with the governing equations of motion given as
in Reference 6. The initial uncertainty in the target’s state is represented by a diagonal
covariance matrix,

Pxx,0 =

[
σ2
rI3 03×3

03×3 σ2
vI3

]
, (22)

with position and velocity uncertainties given by σr = 10 km and σv = 0.1 m/s, respectively.
Figure 2 illustrates the orbital geometries of the target NRHO and observer DRO.
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Figure 2: Geometry of the target NRHO and observer DRO orbits in the CR3BP synodic
frame.
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The observer is capable of obtaining angles-only measurements of the target’s position,
with azimuth α and elevation ε defined as

α = arccos

 γxρx + γyρy√
γ2x + γ2y

√
ρ2x + ρ2y


ε = arccos

(
γxρx + γzρz√

γ2x + γ2z
√
ρ2x + ρ2z

)
,

where γ is the vector from the observer to a reference body (e.g., the Moon), and ρ is the
vector from the observer to the target:

γ =
[
γx γy γz

]T
= xref − xobs

ρ =
[
ρx ρy ρz

]T
= x− xobs .

The output of the measurement function is given as h =
[
α ε

]T . These angles are illus-
trated in Figure 3. The measurement noise is considered to be constant and is represented
by the covariance matrix

Pvv =

[
σ2
α 0
0 σ2

ε

]
, (23)

with σα = σε = 3′′.

O

x

y

z

Observer

Target

Reference Point

γ

ρ

ε

α

θ

Figure 3: Schematic of the angles and vectors in the measurement model for the cislunar
scenario.

To ensure measurement validity, a lighting exclusion constraint is enforced. Specifically,
the observer refrains from taking measurements when the target appears too close to either
the Earth or the Sun, due to their brightness. This is handled by requiring that the angle
θ, depicted in Figure 3, between the vectors γ and ρ satisfies

θ = arccos

(
γ · ρ

‖γ‖‖ρ‖

)
> φ ,

where the threshold angle is defined as φ� = 20◦ for the Sun and φ⊕ = 10◦ for the Earth.17

The target is propagated for one orbital period, approximately 6.5 days in duration. Within
the visibility region, the observer is heuristically assigned 50 measurement opportunities.
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To initialize the optimizer, a representative candidate set of measurement times is selected
using a Sundman-like transformation that reparameterizes time to promote uniform spatial
sampling along the trajectory.18 Rather than sampling uniformly in physical time, which can
lead to measurement clustering near apoapsis and sparsity near periapsis,19 the trajectory
is reparametrized according to arc length. This transformation is given by

s(t) =

∫ t

t0

‖ṙ(τ)‖ dτ,

where s denotes the cumulative arc length along the trajectory and ṙ = v is the velocity
vector in the CR3BP rotating frame.

The optimization proceeds by iteratively adjusting the measurement times to maximize
the expected information gain under either the myopic or forecasted tasking procedure,
while enforcing the aforementioned visibility constraints. For the forecasted objective, a
reference time of interest is set to the point of closest lunar approach, approximately 3.25
days into the simulation.

Results

The optimized measurement schedules for both the myopic and forecasted approaches are
projected onto the true target trajectory in Figure 4. A notable feature of this comparison is
the wait-and-see behavior exhibited by the myopic strategy. Although visibility is achieved
earlier, the myopic schedule defers its first measurement by approximately 7 hours, in
contrast to the forecasted schedule, which initiates measurements as soon as visibility begins.
Interestingly, both schedules avoid taking measurements within roughly 25 minutes of the
reference time tref , which corresponds to the point of closest lunar approach.

3.8 3.85 3.9

·105

−1

0

1

·104

Moon

x [km]

y
[k

m
]

Exclusion Zone Myopic Forecasted

Figure 4: Optimized measurement schedules projected onto the target trajectory in the
CR3BP synodic frame, with the direction and beginning of the propagation window denoted
by I.

To evaluate the resulting schedules, a set of 1,000 Monte Carlo trials is performed, with
the position and velocity errors plotted in Figure 5. In each trial, the initial state is sampled
using the covariance specified in Eq. (22), and independent measurement noise realizations
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are applied at the fixed schedule times. This allows the statistical consistency and uncer-
tainty reduction performance of each tasking strategy to be assessed. These results show
that the average filter uncertainty ±3σ for the forecasted schedule consistently lies within
that of the myopic case. This is particularly pronounced in the velocity channel, where the
forecasted schedule anticipates the sharp nonlinear dynamics around perilune and dramati-
cally reduces uncertainty at the time of this event. In contrast, the myopic schedule – unable
to foresee the impending change – suffers a noticeable growth in uncertainty thereafter.
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ẏ
[m

/s
]

60 70 80 90 100 110 120 130 140
−1

−0.5

0

0.5

1

Time Elapsed [hours]

ż
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Figure 5: Monte Carlo position and velocity error statistics for the resulting schedules,
including average filter error ( ), average filter ±3σ ( ), and Monte Carlo ±3σ ( ).

To assess the informativeness of each schedule, the Shannon entropy over time is plotted
in Figure 6a, where the entropy is defined as in Eq. (1). Additionally, the time-averaged
Shannon entropy is computed as

H̃ =
1

tf − t0

M−1∑
δ=1

Hδ(tδ+1 − tδ) , (24)

where M is the number of measurements, and t0 and tf denote the initial and final times of
observability, respectively. This quantity, shown in Figure 6b, provides a scalar measure of
overall uncertainty reduction across the observation window. From these plots, it is evident
that the forecasted schedule achieves a more consistent and timely reduction in uncertainty,
reflected in lower entropy values across the observation window.

To further compare performance, the position and velocity root-sum-square (RSS) errors
at both the reference time and the final time of observability are reported in Table 1.
Interestingly, while the myopic schedule slightly outperforms the forecasted schedule in
velocity at the reference time, the forecasted approach yields significantly lower position
error at that time and dominates in both position and velocity at the final time.

14
Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL2025-3721



60 80 100 120 140

−70

−60

−50

Time Elapsed [hours]

H
[n

at
s]

Myopic Forecasted

(a) Shannon entropy reduction over time

-50 -55 -60 -65 -70 -75

MKL

M̄KL

H̄ [nats]

O
bj

ec
tiv

e

(b) Time-averaged Shannon entropy

Figure 6: Shannon entropy reduction and average Shannon entropy for the optimized
myopic (MKL) and forecasted (M̄KL) schedules.

Table 1: The position and velocity RSS values at the reference time (closest lunar approach)
and the final time (end of the observation window) for the myopic (MKL) and forecasted
(M̄KL) schedules.

r [km] v [m/s]
MKL M̄KL MKL M̄KL

tref 9.080 3.054 1.376× 10−1 2.230× 10−1

tf 2.981 1.818 1.423× 10−2 8.831× 10−3

LOW EARTH ORBIT SIMULATION

Scenario Description

Having demonstrated the effectiveness of the forecasted tasking framework relative to the
myopic approach, a new simulation scenario is introduced to assess the forecasted approach’s
performance in a multitarget, multi-observer context. This scenario highlights two key
advantages of the forecasted methodology: its natural extension to heterogeneous sensor
networks – where the myopic objective lacks a direct analog – and its compatibility with
convex relaxation techniques for scalable optimization. By exploring this more intricate
environment, the utility and flexibility of the forecasted objective are further emphasized.

Specifically, 12 space objects are initialized in low Earth orbit (LEO) and propagated
using two-body dynamics over a one-hour analysis window, with the governing equations
of motion provided in Reference 6. The initial uncertainty in the state of each target is
assumed to be identical and is specified by Eq. (22), with position and velocity standard
deviations of σr = 16.67 m and σv = 6.67 cm/s, respectively.

Observations are collected from two platforms: a space-based observer in a 400 km cir-
cular orbit with a 75◦ inclination, and a ground-based observer located at the Goldstone

15
Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL2025-3721



Deep Space Communications Complex (GDSCC) in California. The space-based platform
provides full observability of all targets via relative right ascension (α) and declination
(δ) measurements, while the ground-based observer collects range (ρ) and range-rate (ρ̇)
measurements. The measurement models for each modality are implemented following the
formulations in Reference 2. Measurement noise is assumed to be constant for each observer
and is defined by Eq. (23), with σα = σδ = 3′′ for the space-based observer and σρ = 15 m,
σρ̇ = 4 mm/s for the ground-based observer. Each observer-target pair is heuristically as-
signed 5 measurement opportunities, yielding a total of 120 scheduled measurements over
the analysis window.

The resulting measurement geometry from the space-based observer is illustrated in Fig-
ure 7a. Nine of the targets remain within the orbital plane of this observer, while the
remaining three exhibit out-of-plane motion. Due to the close proximity of the target ob-
jects to the space observer, the visibility window for the ground-based observer is driven
by its geometric relationship with the space platform. Specifically, the elevation angle θ
between the ground and space observers is computed as

θ =
π

2
− arccos(ρ̂ · k̂) ,

where ρ̂ is the unit vector from the ground observer to the space observer, and k̂ is the
unit vector normal to the local horizon at the ground site. Applying a 10◦ elevation mask
constraint yields approximately 5 minutes of ground-based visibility during the analysis
window. The resulting elevation angle profile is shown in Figure 7b.
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Figure 7: Measurement geometry for the LEO scenario. (a) Angular measurement profiles
from the space-based observer. (b) Elevation angle between the ground observer and the
space-based observer, indicating visibility windows.

Unlike the cislunar scenario, where a natural reference time such as perilune emerges
from the dynamics, this LEO-based simulation lacks a dominant orbital feature. As such,
the reference epoch for forecasted tasking is selected to coincide with the end of the obser-
vation window. The optimization proceeds by applying both the standard (Eq. (13)) and
convexified (Eq. (21)) forms of the forecasted multitarget objective to generate measure-
ment schedules, while enforcing visibility constraints for the ground-based observer. Due
to the high dimensionality of the scheduling problem, a greedy-in-target (GIT) and greedy-
in-observer (GIO) algorithmic structure is adopted for both formulations. Justification for
the use of these greedy strategies is provided in Reference 2.
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Results

The optimized measurement schedules produced by both forecasted objectives are shown
in Figure 8, with target color associations matching those in Figure 7a. For the convexified
case, the optimization is performed over a discrete candidate time grid with 20-second
spacing. This yields a total of 15 candidate times for the ground-based observer and 180
candidate times for the space-based observer.
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(b) Convexified forecasted objective

Figure 8: Optimized schedules from both the standard and convexified forms of the fore-
casted objective, with colors matching Figure 7a. Ground observer measurements are de-
noted with +, and space observer measurements are denoted with ×.

A qualitative comparison between the two schedules reveals a degree of corroboration in
the tasking behavior, particularly for Targets 2 and 9, where both methods prioritize similar
measurement epochs. Notably, in the convexified schedule, the space-based observer con-
sistently avoids taking measurements during the ground-based visibility window. Similarly,
the standard forecasted objective includes only two space-based measurements that overlap
with the ground observer’s visibility – those for Targets 3 and 12. This scheduling behavior
suggests that the forecasted framework, in both forms, assimilates the relative value of in-
formation across sensing platforms. By minimizing redundant observations and spreading
measurement effort across complementary epochs, the optimization exploits the strengths
of each sensor and leverages their collective contribution to information gain.

As in the cislunar scenario, the reduction in Shannon entropy over time is plotted for
both forecasted objectives in Figure 9. Entropy is accumulated collectively across all tar-
gets, treating the system as a whole, which is a valid assumption under the condition that
there is no ambiguity in target identity.2,4 The resulting curves show an impressive degree
of agreement, both in the overall magnitude of entropy reduction and in the timing and
trajectory of that reduction. Despite originating from fundamentally different optimiza-
tion processes, the similarity in performance underscores the effectiveness of the convex
relaxation in replicating the essential behavior of the full forecasted formulation.

This alignment is particularly striking in light of the computational disparity between
the two approaches. The optimization is performed under identical operating conditions: a
quad-threaded GIT and GIO scheduling framework, solved using a gradient-based sequential
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Figure 9: Shannon entropy reduction accumulated across all targets for the optimized
schedules obtained using the standard and convexified forms of the forecasted objective.

quadratic programming (SQP) optimizer with strict function and parameter tolerances
(ftol = 10−12, xtol = 10−8). Under these conditions, the convexified forecasted objective
converged approximately 350× faster than the standard formulation.

A natural question arising from the results presented thus far concerns the scalability of
the convexified forecasted objective relative to the standard formulation – both in terms of
computational runtime and the potential for performance degradation as the optimization
space is refined. To examine this, an experiment is conducted in which the separation time
between candidate measurement epochs is varied from 40 seconds down to 5 seconds. For
each case, the optimization runtime is normalized against that of the standard forecasted
objective, and the average Shannon entropy – defined in Eq. (24) – is computed and nor-
malized by the value obtained using the standard formulation. The resulting trends are
shown in Figures 10.
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Figure 10: Scalability analysis of the convexified forecasted objective. (a) Optimization
runtimes for convexified schedules, normalized by the corresponding runtime from the stan-
dard objective. (b) Time-averaged Shannon entropies from convexified schedules, normal-
ized by their standard counterpart. Both are plotted as functions of candidate separation
time.
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Several important behaviors emerge. First, Figure 10a reveals that coarsening the candi-
date time grid leads to a dramatic decrease in runtime. This behavior can be attributed to
two factors: (1) many of the computationally intensive evaluations involved in Eq. (13) are
precomputed, eliminating redundant operations during optimization, and (2) the gradient-
based optimizer efficiently navigates the convex landscape, often converging within 15–20
iterations due to rapid identification of the steepest descent direction.

Second, Figure 10b shows that finer candidate spacing does not necessarily yield better
performance. In fact, the schedules produced using 5- and 10-second separations exhibit
the worst performance in terms of average Shannon entropy, despite requiring significantly
longer runtimes. This counterintuitive result arises because, as the optimization space
becomes increasingly fine-grained, the marginal utility of additional measurement times
diminishes. Many candidate times are nearly indistinguishable in their expected informa-
tion gain, diluting the effectiveness of greedy selection. An emergent artifact of this over-
refinement is that selected measurement times begin to cluster very closely, a phenomenon
observable even in Figure 8b. This behavior underscores the need to introduce additional
proactive constraints – such as limiting the number of measurements allowed within a given
time span – to maintain meaningful diversity in measurement timing and avoid information
redundancy.

CONCLUSIONS AND FUTURE WORK

The utility of the proposed tasking framework lies in its flexibility and broad applicabil-
ity to any operational domain where space domain awareness (SDA) is required. Unlike
approaches tied to specific orbital environments or sensor types, the method presented and
explored in this work generalizes across regimes and adapts to any sensor network. Its
reliance on expected information gain enables principled tasking without requiring fully
specified downstream processing models, and its low computational overhead makes it suit-
able for real-time scheduling and catalog maintenance at scale.

The cislunar scenario highlights how optimizing for future information can yield unin-
tuitive but strategically effective measurement schedules, emphasizing the value of early,
informative sensing. Additionally, the low Earth orbit (LEO) scenario demonstrates the
framework’s applicability to heterogeneous observer networks and validates the scalability
of its convexified formulation – even under high-dimensional scheduling problems – without
significant performance loss.

Together, these case studies show that the forecasted approach not only produces robust
and efficient schedules, but also facilitates intelligent coordination across sensing assets.
This enables a shift toward more agile, globally optimized surveillance strategies – an es-
sential capability in increasingly dynamic space environments. Future work will focus on
more rigorous enforcement of practical constraints, such as sensor-specific limitations on
measurement timing, as well as exploring hybrid optimization pipelines that combine the
standard and convexified formulations to balance optimality with computational efficiency.
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