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DISCRETE PARAMETER FLOW FILTERING FOR SPARSE
TRACKING OF OBJECTS IN CISLUNAR ORBITS

William N. Fife*, Kyle J. DeMars†, and Gunner S. Fritsch‡

Numerous challenges exist when conducting recursive Bayesian inference for non-
linear systems—especially when observations are sparsely available. Although
increasing the amount of available data to process is tempting, it is simply a real-
ity that more sophisticated algorithms are required to track the rapidly increasing
number of space objects. To that end, this work develops a discrete homotopic
continuation of Bayes’ rule that partitions the traditional single-step update into
multiple incremental updates. The method, termed discrete parameter flow, is
applied with Gaussian mixture representations to achieve superior performance
compared to traditional filtering schemes on a cislunar object tracking application.
Multiple variations of the filter are presented including a square-root factorized
version and a novel adaptive-inference-step procedure that reduces the computa-
tional requirements of discrete parameter flow without sacrificing performance.

INTRODUCTION

The precise estimation of a spacecraft’s state (e.g., position and velocity) is of crucial importance
for space domain awareness and mission operations. Almost all spacecraft in the cislunar regime
use observations from an increasingly constrained set of ground-based assets to determine an up-
dated estimate of the spacecraft’s state. These assets are tasked with tracking not only cislunar
objects, but Earth-orbiting satellites and orbital debris1. Moreover, the cislunar regime introduces
non-Keplerian dynamics that can lead to a loss of custody for significant time intervals between
measurements. This puts an imperative for tracking algorithms—the concern of this work—to “do
more with less” as the problem cannot be overcome with an ever-increasing number of sensors.

Conventional tracking algorithms take a given estimate and uncertainty (e.g., from initial orbit
determination or prior tracking) and leverage the underlying dynamics to evolve the estimate and
uncertainty to a measurement epoch. At the epoch, the measurement is processed, typically via
an approximation of Bayes’ rule, to arrive at an updated estimate and uncertainty. The process is
repeated for the next measurement epoch and thus aptly named recursive Bayesian inference2. It
is ubiquitous for the inference phase to be conducted in “one step”; that is, the measurement infor-
mation is incorporated into the state and its uncertainty at once. Alternatively, this work develops
a partitioned solution of the inference phase through a homotopic continuation of Bayes’ rule. The
underlying motivation for this partitioned approach is that errors arising from linearization (either
analytical or statistical) can be ameliorated through “smaller” linearization steps.

Iterative or progressive inference procedures have been investigated previously. The progressive
Bayes framework3 introduced the idea of approaching the true posterior density via intermediate

*PhD Candidate, Department of Aerospace Engineering, Texas A&M University, College Station, TX.
†Associate Professor, Department of Aerospace Engineering, Texas A&M University, College Station, TX.
‡Sr. Professional Staff I , SES/SAC , Johns Hopkins University Applied Physics Laboratory, Laurel, MD.

1



densities. Instead of partitioning Bayes’ rule, the authors of Reference 3 form an ordinary differen-
tial equation (ODE) for the parameters of an approximating distribution where the ODE is associated
with the minimization of a performance index. Another approach is particle flow4,5 wherein Bayes’
rule is transformed into a linear-log homotopy and used to flow particle representations of the prior
toward the posterior. The recursive update by Zanetti6 splits the Kalman gain equation into equal
partitions in order to re-linearize the measurement model. Michaelson et al.7,8 introduced partition-
ing of the measurement likelihood as is conducted in the approach proposed herein, but limited their
developments to Gaussian densities or particle representations. Lastly, the work by Craft9 provides
a continuous flow of parameters (e.g., Gaussian mixture components) through the inference step
that is general to multiple types of likelihoods. The current work is distinct from Reference 9 in
two ways. Firstly, for computational expediency and runtime guarantee, this work retains the finite
iterative inference procedure instead of a numerical integration. Secondly, a method for adaptively
selecting the size of discrete inference steps is presented.

This work is organized as follows. First, the recursive Bayesian inference paradigm is outlined
and a description of the recursion of partial updates is given for various filter implementations. A
method for selecting the discrete inference steps is also described. Then, a low-dimensional example
is provided to illustrate the benefits of this approach. Additionally, a cislunar tracking scenario is
presented along with conclusions on those results.

DISCRETE PARAMETER FLOW FILTERING

Consider the system state vector xk ∈ Rn at time tk that evolves and is observed via the discrete,
nonlinear stochastic processes

xk = f(xk−1) +wk−1 (1a)
zk = h(xk) + vk , (1b)

where f(·) represents the system dynamics, h(·) is the observation model, zk ∈ Rm is the measure-
ment, and wk−1 and vk are noise vectors with covariances Pww and Pvv, respectively. At an initial
epoch t0, it is assumed that all possible configurations of the state are characterized by a probability
density function (pdf) p(x0). This work is concerned with the Bayesian filtering recursion com-
prised of two stages—predictor and corrector. Since particular focus is given to the corrector, only
a brief overview of the predictor stage is given. For two arbitrary epochs tk−1 and tk, the predictor
is given by the Chapman-Kolmogorov equation10 as

p(xk | z1:k−1) =

∫
Rn

p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1 , (2)

where p(xk | z1:k−1) is the prior pdf, p(xk | xk−1) is termed the transition pdf, and p(xk−1 | z1:k−1)
is the posterior state pdf at tk−1 conditioned on all past measurements (i.e., z1:k−1 = {z1, . . . ,zk−1}).
In most practical cases, Equation (2) is intractable in the given form due to a lack of conjugacy be-
tween the pdfs and/or inability to represent the pdfs via finite parameters. Thus, it is common
to choose a parameterized density model (e.g., Gaussian mixtures) and approximate Equation (2)
through linearization, quadrature, or Monte Carlo techniques11.
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Corrector

Let the representation of choice for the state pdf be a Gaussian mixture model (GMM); as such,
the prior pdf is an Lx-component mixture of the form

p(xk) =

Lx∑
ℓ=1

w
(ℓ)−
x,k pg(xk;m

(ℓ)−
x,k ,P

(ℓ)−
xx,k ) , (3)

where pg(y;my,Pyy) is a multivariate Gaussian pdf with mean my and covariance Pyy. The
weights, means, and covariances of each component within the mixture are w

(ℓ)−
x , m(ℓ)−

x,k , and

P
(ℓ)−
xx,k , respectively. The conditional dependence on past measurements z1:k−1 is dropped on the

left-hand side of Equation (3) for notational convenience. Note that a singular Gaussian representa-
tion of the prior, and thus a Gaussian form of discrete parameter flow, is a special case of the GMM
form where Lx = 1 and w

(1)−
x = 1. The corrector is given by Bayes’ rule, defined as

p(xk | zk) =
1

p(zk)
p(zk | xk)p(xk) , (4)

where p(zk | xk) is the likelihood density. For measurement models given by Equation (1b),
approximations—of similar type to those used on Equation (2)—must be made to facilitate so-
lutions to Bayes’ rule. However, it is common to evaluate Equation (4) in “one step” as is done in
Reference 12.

Alternatively, consider a partitioning of the corrector that progressively incorporates measure-
ment information as follows. Let a sequence of points sm ∈ [0, 1] be prescribed such that 0 = s1 <
s2 < · · · < sM+1 = 1 and

∑
m∆sm = 1 where ∆sm = sm+1 − sm. The likelihood can then be

equivalently expressed as

p(zk | xk) =

M∏
m=1

p∆sm(zk | xk) . (5)

Let the likelihood be given by the Gaussian pdf pg(zk;h(xk),Pvv), which is the probabilistic state
space model of Equation (1b), assuming that the measurement noise is zero-mean and Gaussian
with covariance Pvv. Substituting the Gaussian likelihood into Equation (5) gives

p(zk | xk) = |2πPvv|−
1
2

M∏
m=1

|2πPvv/∆sm|
1
2 × pg(z;h(xk),Pvv/∆sm) . (6)

Note that, since ∆sm > 0, there are no (theoretical) issues with the singularity of (Pvv/∆sm) so
long as Pvv is nonsingular. Substituting Equations (3) and (6) into Equation (4) yields

p(xk|zk) ∝
Lx∑
ℓ=1

w(ℓ)−
x |2πPvv

− 1
2

[ M∏
k=1

|2πPvv/∆sk
1
2

]

×
[ M∏
k=1

pg(z;h(x),Pvv/∆sm)

]
pg(x;m

(ℓ)−
x,k ,P

(ℓ)−
xx,k ) ,

where proportionality of Bayes’ rule is not enforced for brevity. Applying a generalized form of the
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Ho-Lee equation13 for the products of Gaussians in conjunction with statistical linearization of the
measurement model, the resulting posterior pdf is a GMM given by

p(xk | zk) =
Lx∑
ℓ=1

w(ℓ)+
xk

pg(xk;m
(ℓ)+
x,k ,P

(ℓ)+
xx,k ) ,

where the weights, means, and covariances are determined by the iterative relationships

w(ℓ,i)
x = k(ℓ,i)w(ℓ,i−1)

x /
∑Lx

ℓ′=1k
(ℓ′,i)w

(ℓ′,i−1)
x (7a)

m(ℓ,i)
x = m(ℓ,i−1)

x +K(ℓ,i)(z −m
(ℓ,i−1)
h ) (7b)

P (ℓ,i)
xx = P (ℓ,i−1)

xx −K(ℓ,i)P
(ℓ,i−1)
hh (K(ℓ,i))T −K(ℓ,i)(Pvv/∆si)(K

(ℓ,i))T , (7c)

which are applied for 1 ≤ i ≤ M . This iterative procedure is initialized with w
(ℓ,0)
x = w

(ℓ)−
x,k ,

m
(ℓ,0)
x = m

(ℓ)−
x,k and P

(ℓ,0)
xx = P

(ℓ)−
xx,k . When the last iteration is completed, the output is w(ℓ)+

x,k =

w
(ℓ,M)
x , m(ℓ)+

x,k = m
(ℓ,M)
x and P

(ℓ)+
xx,k = P

(ℓ,M)
xx . The weight and state gains that appear in Equa-

tions (7) are given by

k(ℓ,i) = pg(z;m
(ℓ,i−1)
h ,P

(ℓ,i−1)
hh + Pvv/∆si) (8a)

K(ℓ,i) = P
(ℓ,i−1)
xh (P

(ℓ,i−1)
hh + Pvv/∆si)

−1 , (8b)

and the mean, cross-covariance (with the state) and covariance of the nonlinear function h(x) that
are required to complete each iteration are defined in terms of expected values as

m
(ℓ,·)
h = E{h(x)} (9a)

P
(ℓ,·)
xh = E{(x−m(ℓ,·)

x )(h(x)−m
(ℓ,·)
h )T } (9b)

P
(ℓ,·)
hh = E{(h(x)−m

(ℓ,·)
h )(h(x)−m

(ℓ,·)
h )T } , (9c)

where the expectations are taken with respect to pg(x;m
(ℓ,·)
x ,P

(ℓ,·)
xx ). Equations (7)-(9) define the

general architecture for the discrete parameter flow filter using Gaussian mixtures. Recall that the
Gaussian case is recovered by having a single GMM component. Of note is the similarity to the
original GMM filtering equations12. Effectively, Equations (7)-(9) describe an iteration of the GMM
filtering equations for M increments ∆sm, which makes the implementation of these equations
for existing GMM filters straightforward. The proof of Equations (7) is given in Appendix A of
Reference 14.

Variations of Filter Formulation

The expectations of Equations (9) can be handled in a variety of ways. The most common ap-
proach is to approximate them as first order Taylor series expansions about the component mean at
the current pseudotime step; that is,

m
(ℓ,i−1)
h ≈ h(m(ℓ,i−1)

x )

P
(ℓ,i−1)
xh ≈ P (ℓ,i−1)

xx (H(ℓ,i−1)
x )T

P
(ℓ,i−1)
hh ≈H(ℓ,i−1)

x P (ℓ,i−1)
xx (H(ℓ,i−1)

x )T ,
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where H(ℓ,i−1)
x is the Jacobian of h(x) with respect to x, evaluated at m(ℓ,i−1)

x . An implementation
of Equations (7)-(9) with these Taylor series approximations is referred to as the discrete parameter
flow extended Gaussian mixture filter (DPF-EGMF).

Alternatively, one may consider a set of Nq weights and points that comprise a quadrature rule for
expectations with respect to pg(x;m

(ℓ,i−1)
x ,P

(ℓ,i−1)
xx ) of the form {w(ℓ,j)

m , w
(ℓ,j)
c ,X (ℓ,i−1,j)}Nq−1

j=0 .
These weights and points are constructed such that

m(ℓ,i−1)
x =

Nq−1∑
j=0

w(ℓ,j)
m X (ℓ,i−1,j)

P (ℓ,i−1)
xx =

Nq−1∑
j=0

w(ℓ,j)
c (X (ℓ,i−1,j) −m(ℓ,i−1)

x )(X (ℓ,i−1,j) −m(ℓ,i−1)
x )T .

Note that the quadrature weights carry no dependence on i; that is, the quadrature scheme is taken to
have constant weights through the update, which is common. The quadrature-based approximation
of the expected values of Equations (9) that are required for the discrete parameter flow approach
are then given by

m
(ℓ,i−1)
h ≈

Nq−1∑
j=0

w(ℓ,j)
m h(X (ℓ,i−1,j))

P
(ℓ,i−1)
xh ≈

Nq−1∑
j=0

w(ℓ,j)
c (X (ℓ,i−1,j) −m(ℓ,i−1)

x )(h(X (ℓ,i−1,j))−m
(ℓ,i−1)
h )T

P
(ℓ,i−1)
hh ≈

Nq−1∑
j=0

w(ℓ,j)
c (h(X (ℓ,i−1,j))−m

(ℓ,i−1)
h )(h(X (ℓ,i−1,j))−m

(ℓ,i−1)
h )T .

An implementation of Equations (7)-(9) with these approximations is referred to as the discrete pa-
rameter flow quadrature Gaussian mixture filter (DPF-QGMF). Several quadrature rules are avail-
able for implementation, such as Gauss-Hermite quadrature15 and the unscented transform16. An
implementation using the unscented transform is herein referred to as the discrete parameter flow
unscented Gaussian mixture filter (DPF-UGMF).

Almost all quadrature rules generate points X (·) using square-root factors (SRFs) of the covari-
ance matrix. Factorized versions of sequential filters are ubiquitous in operational settings due to
their increased numerical stability17. To that end, it is beneficial to construct a variation of Equa-
tions (7)-(9) that rely on SRFs. Let Saa be an SRF, where SaaS

T
aa = Paa for a random vector a.

Expressing all covariance matrices in Equation (7c) by their SRFs and factoring out the gain gives

S(ℓ,i)
xx (S(ℓ,i)

xx )T = S(ℓ,i−1)
xx (S(ℓ,i−1)

xx )T −K(ℓ,i−1)

[
S

(ℓ,i−1)
hh (S

(ℓ,i−1)
hh )T +

1

∆si
SvvS

T
vv

]
(K(ℓ,i−1))T .

The SRF Svv is typically stored a priori; however, S(ℓ,i−1)
hh is constructed differently depending on

the method of choice for computing expectations. Both factorized implementations are developed
herein for completeness. Starting from the previous state SRF S

(ℓ,i−1)
xx , the linearized implementa-
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tion results in

S
(ℓ,i−1)
hh = H(ℓ,i−1)

x S(ℓ,i−1)
xx .

Within the quadrature implementation, there are a variety of approaches to compute S(ℓ,i−1)
hh . How-

ever, care must be taken since it may be the case that one or more of the covariance weights w(ℓ,j)
c

is negative. A straightforward method, taken from Reference 18, is to sort the weights such that the
first r weights are negative, and the remaining Nq − r weights are positive. Then, define the weight
matrix

W (ℓ) ≜ diag
{√
|w(ℓ,1)

c |, . . . ,
√
|w(ℓ,r)

c |,
√
w

(ℓ,r+1)
c , . . . ,

√
w

(ℓ,Nq)
c

}
,

where diag{·} denotes a diagonal concatenation. Let W (ℓ,p:q) be the square submatrix of W (ℓ)

containing the pth to qth rows and columns of W (ℓ). Additionally, let X (ℓ,i−1,p:q) be a column-wise
concatenation of the pth to qth quadrature points. Then, the SRF S

(ℓ,i−1)
hh is computed by*

M (ℓ) = qr
{
(h(X (ℓ,i−1,r+1:Nq))⊖m

(ℓ,i−1)
h )W (ℓ,r+1:Nq)

}
S

(ℓ,i−1)
hh = cholupdate{M (ℓ), (h(X (ℓ,i−1,1:r))⊖m

(ℓ,i−1)
h )W (ℓ,1:r), “− ”} ,

where qr{·} represents the QR-decomposition as used in Reference 19, cholupdate{A,B} denotes
the Cholesky update20 of A by B, and “−” indicates a Cholesky downdate†

Once S
(ℓ,i−1)
hh is acquired either by linearization or quadrature, computing the updated state SRF

S
(ℓ,i)
xx necessitates, in order, a rank-m Cholesky update and a rank-m Cholesky downdate, where m

is the size of the measurement vector. The complete update is given by

S(ℓ,i−1)
zz = cholupdate{S(ℓ,i−1)

hh ,
1√
∆si

Svv} (13a)

S(ℓ,i)
xx = cholupdate{S(ℓ,i−1)

xx ,K(ℓ,i−1)S(ℓ,i−1)
zz , “− ”} . (13b)

The prediction stage for a square-root factorized sequential filter operating on Equation (1a) is not
the subject of this paper, but the equations can be found in Reference 19.

Adaptive Selection of Discrete Pseudotime Steps

An important question for the discrete parameter flow approach is how to select the pseudotime
increments ∆sm. There are two tuning parameters: (i) the number of increments M and (ii) the size
of the increments relative to one another. The simplest approach is to fix M and use equal incre-
ments. Constant (or a maximum allowable) M results in a fixed computational burden and that is
the approach taken herein. For the relative sizes of the increments, one can consider an optimization
approach such as the one used in Reference 14, though solving a nonlinear optimization problem at
every inference step introduces an inconsistent computational overhead. It is also important to con-
sider that Pvv/∆sm → ∞ as ∆sm → 0 and numerical issues may arise. There may also be many
instances where a single step inference performs nearly identically to a multi-step one—especially
when the a priori state uncertainty and measurement precision are similarly sized.

*The shorthand notation A⊖ a denotes that the vector a is subtracted from each column of the matrix A.
†This notation is aligned with the MATLAB function cholupdate.
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In light of the aforementioned points, this work introduces an adaptive approach that balances
computational expediency and inference robustness. Instead of a fixed set of steps for all inference
phases, a maximum step amount Mmax is prescribed along with a minimum step size ε. For the ℓth

GMM component, the step size at instance m is computed via

s(ℓ)m =

(
∥Svv∥
∥S(ℓ,m)

hh ∥

)2

, (14)

so as to enforce that ∥S(ℓ,i)
hh ∥ and ∥Svv/

√
s
(ℓ)
i ∥ are identical. The norm ∥·∥ is taken to be the spectral

norm. As the inference phase progresses, the cumulative step amount taken s̄ is also tracked where
s̄ = 0 at m = 1. Steps given by Equation (14) are taken unless (i) the computed value for s(ℓ)m

is greater than 1 − s̄, then s
(ℓ)
m = 1 − s̄, (ii) the maximum number of steps is reached, or (iii)

the computed value for s(ℓ)i is less than ε, then s
(ℓ)
m = ε. Pseudocode for the adaptive inference

phase is illustrated through Algorithim 1. A GMM filter implementation which uses this method for
increments is denoted as an ADPF-GMF.

Algorithm 1 ADPF-GMF Step Selection

Require: S
(ℓ,i)
hh , Svv, Mmax, ε

1: Initialize: s̄ = 0, m = 1
2: while s̄ < 1 and m < Mmax do
3: s

(ℓ)
m ← Equation 14

4: if s(ℓ)m ≥ 1− s̄ then
5: s

(ℓ)
m ← 1− s̄

6: else if s < ε then
7: s← ε
8: end if
9: if s(ℓ)m < 1− s̄ and m = Mmax then

10: s
(ℓ)
m ← 1− s̄

11: end if
12: Update using Equations (13)
13: m++ and s̄ = s̄+ s

(ℓ)
m

14: end while
15: Repeat for all GMM components

DEMONSTRATION

To demonstrate the capability of the discrete parameter flow filter, a simplified two-dimensional
Monte Carlo analysis is presented. A GMM pdf representing the true prior p(xk) is constructed
for a state x = [x, y]T and illustrated in Figure 1. A set of 1,000 precise, highly-informative
measurements is generated from a tail sample at xtail = [44, 10]T of the GMM prior, which is also
shown in Figure 1. The units for x are taken to be generic distance units. The measurement includes
range and bearing modeled as z = [∥x∥ , tan−1(y/x)]T + v where v is zero-mean, Gaussian with
covariance Pvv = diag([2.5× 10−5 , 0.52 arcsec2]).

The objective is to compare various filter correctors on a dispersion of precise measurements with
low probability. The performance of the different correctors considered in this analysis is analyzed
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Figure 1. Prior pdf with truth sample at the tail ( )

using the norm of the posterior estimation error, e+x ,

∥e+x ∥ = ∥x−m+
x ∥ ,

and the normalized estimation error squared (NEES),

d =
1

n
(x−m+

x )
T (P+

xx)
−1(x−m+

x ) ,

where n = 2 is the state dimension, m+
x is the posterior mean (the estimate), and P+

xx is the
posterior covariance. A well-behaved filter corrector produces an accurate posterior (i.e., the error
norm is near zero) and is statistically consistent (i.e., the mean NEES is near one). Six filters
are compared and are binned into two groups of three: one group uses Taylor series linearization to
approximate Equations (9) (i.e., “extended” filters) and the other group uses the unscented transform
quadrature rule (i.e., “unscented” filters) with parameters α = 0.1, β = 2, and κ = 116. Within each
group, the three filters are (i) a Kalman filter (EKF/UKF) with Gaussian prior consisting of mean
and covariance matched to the true prior, (ii) a Gaussian mixture filter (EGMF/UGMF) with prior
matching the truth, and (iii) a discrete parameter flow Gaussian mixture filter (DPF-EGMF/DPF-
UGMF) with prior matching the truth. For the discrete parameter flow filters, a set of M = 40 steps
in pseudotime is applied via a cubic rule. Importantly, the EKF/UKF filters are given the ability to
underweight the measurements by a factor of p = 0.7 for added robustness17.

The norm of the posterior estimation errors and the NEES values for the six filters are illustrated
in Figures 2-5 as box plots. The box plot includes the median of the data as the red mark within
the box. The box itself depicts data residing within the 25th and 75th percentiles. The dashed lines
extending from the box illustrate the extent of the most extreme data points. The Gaussian filters
(EKF/UKF) produce ill-behaved posteriors for all MC trials, even with underweighting applied.
This is primarily due to a poor representation of the prior pdf in the inference procedure, reiterating
the need for enhanced uncertainty realism. Despite applying an underweighting factor of p = 0.7,
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the EKF/UKF posteriors possess poor statistical consistency. The EGMF/UGMF filters present
an improvement over the Kalman filters; however, they suffer from significant overconfidence as
indicated by median NEES values greater than two (see Figure 5). Trials that produce the most
overconfident posteriors reach a NEES of nearly seven for the EGMF. Although the EGMF/UGMF
start out with a perfect prior pdf, there are many components in the GMM that perform a large
single-step update—resulting in inconsistency.
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Figure 2. Norm of posterior estimation errors
from demonstration example.
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Figure 3. Norm of posterior estimation errors
from demonstration example (zoomed).
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mates.
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Figure 5. NEES measure for posterior estimates
(zoomed).

In contrast, the DPF-EGMF/DPF-UGMF filters illustrate a well-behaved inference procedure,
with a 50% decrease in worst-case error and a median NEES near one. The most overconfident
posteriors from discrete parameter flow are half as overconfident as their single-step counterparts
(see Figure 5). An interesting result is that, for this demonstration, the discrete parameter flow filters
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have negligible differences in norm error and NEES values despite their difference in method for
approximating Equations (9). Since M = 40 steps are taken, it is likely that the steps are small
enough such that statistical and analytical linearization yield nearly identical performance.

CISLUNAR SPACE OBJECT TRACKING

The goal for any sequential filter is to produce accurate and statistically consistent estimates
over time. Moreover, in the context of space object tracking, the filter must maximize information
extraction from potentially sparse measurement sets. To that end, this section demonstrates the
statistical estimation performance of discrete parameter flow via Monte Carlo (MC) analysis for a
cislunar orbit.

Simulation and Filtering Description

Three filters with configurations described in Table 1 are used to process measurements for an
object in an Elliptical Lunar Frozen Orbit (ELFO). The initial conditions for the ELFO are detailed
in Table 2 with a single period of the ELFO illustrated in Figure 6. All filters have a state vector
comprised of the satellite’s position r and velocity v expressed in the Earth-centered J2000 inertial
frame.21

0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04x [ND] 0.04
0.03

0.02
0.01
0.00

0.01
0.02
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0.04
0.05

y [
ND

]

0.05

0.04
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0.02

0.01

0.00

0.01

z [
ND

]

Truth Trajectory
IC
Moon

Figure 6. Single period of the ELFO in the Earth-Moon rotating frame with ND = 384,487 km. One
period is about 1.3 days.
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Table 1. Filter configurations. All filters use the linearized, square-root factor implementation.

Name Step Size Method
EGMF Single Step

DPF-EGMF Linear Steps M = 30
ADPF-EGMF Adaptive Steps Mmax = 30

Table 2. ELFO initial states and covariance SRF for epoch Jan 6 2027. Units are given in km and km/s.
blkdiag denotes a block diagonal concatenation.

m0 S0

[-58957, -355755, -184811, 2.081, -0.872, 2.132]T blkdiag(0.1 · I3, 10−6 · I3)

Dynamics Modeling The dynamics model used by both the truth and within the filters is a point-
mass, ephemeris model given by

ṙ = v

v̇ = ag +
I∑

i=1

a3rd,i ,

where ag is the central body (Earth) gravity and a3rd,i is the third-body gravity perturbation for
the ith mass21. The two third-body masses used in this analysis are the Moon and Sun—with their
positions determined using SPICE22. Letting f = [ṙT v̇T ]T , each GMM component mean m

(ℓ)
x and

state transition matrix Φ
(ℓ)
x is propagated from the previous measurement to the next one according

to

ṁ(ℓ)
x = f(m(ℓ)

x )

Φ̇(ℓ)
x = F (m(ℓ)

x )Φ(ℓ)
x ,

where F (m
(ℓ)
x ) is the Jacobian of f(·) evaluated at the component mean m

(ℓ)
x , and the initial

conditions are m
(ℓ)
x (tk−1) = m

(ℓ)
x,k−1 and Φ

(ℓ)
x (tk−1) = In. The result of integrating the previous

ODEs is an a priori mean m
(ℓ)
x,k and state transition matrix Φ

(ℓ)
x,k. The GMM component covariance

SRF S
(ℓ)
xx is then propagated via

S
(ℓ)
xx,k = Φ

(ℓ)
x,kS

(ℓ)
xx,k−1 .

Moon-based Line-of-Sight The Moon-based line-of-sight (LOS) measurements are generated by
an observer fixed to the center of the Moon. A center-Moon observer is chosen to avoid fixed frame
transformations. The values for the Moon observer are identical to the Moon positions generated
from SPICE for the dynamics modeling. The model used for both the true measurements and the
filter inference phase is

z =

[
α
β

]
=

[
tan−1( yx)

tan−1(z/
√
x2 + y2)

]
+ v ,
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where x, y, and z are the components of the vector r − robs and v is a zero-mean, uncorrelated,
Gaussian noise with standard deviations of 3 arcseconds for α and β.

Filtering Description The three filters compared in this scenario—outlined in Table 1—all use
the same GMM for the initial state PDF. The GMM is created using an optimized splitting library23

that approximates the initial Gaussian for each orbit defined using L = 27 GMM components.
These components are generated by splitting the initial Gaussian recursively among each velocity
component. Each filter is given identical measurement sets across all times for consistency. The
DPF-EGMF uses linear steps for inference, meaning that each consecutive step increases linearly.
The ADPF-EGMF uses Algorithm 1 for computing its steps, with a maximum number of allowable
steps equal to the DPF-EGMF step configuration.

Results and Discussion

The 27-component GMM is propagated from the initial epoch to one, two, and three orbital
periods. A single period of the ELFO is shown in Figure 6. At each orbital period, 1000 samples are
generated from the GMM to compute a set of line-of-sight measurements. Each filter configuration
then processes this same set of measurements to create 1000 posterior GMMs. This is repeated for
two and three orbital periods prior to measurement generation. The truth samples are generated
from the propagated GMM in order to isolate the inference phase from the uncertainty propagation
phase.

The statistical performance of all three filter implementations after propagating one orbital period
and processing a single line-of-sight measurement is given in Figures 7-9 for the x-y position states.
The average filter ±3σ corresponds to the 99.5% intervals of the average posterior pdf covariance.
The single step EGMF fails to provide an unbiased solution, as seen by the nonzero average error
from the trial ensemble. Further, the average filter uncertainty markedly fails to capture the distribu-
tion of the error ensemble in both size and shape. In contrast, the DPF-EGMF and ADPF-EGMF in
Figures 8 and 9 result in statistically unbiased performance with an accurate characterization of the
true underlying error distribution (the average filter ±3σ aligns with that approximated by Monte
Carlo). Note that the axes scaling is identical in Figures 7-9, highlighting the ability of the multi-
step inference procedure to produce precise posteriors. Importantly, though the DPF-EGMF and
ADPF-EGMF yield nearly identical statistical performance, the ADPF-EGMF uses almost half of
the steps as its pre-determined steps counterpart (16 instead of 30). Similar estimation performance
occurs for the other spacecraft states and is omitted here for brevity.

The root sum-of-squares (RSS) of the position errors for each filter across the three orbital periods
where measurements are processed are shown in Figures 10-12 via box plots. The axes are scaled
identically for each filter for consistent comparison. The multi-step filters have median errors of the
same amount (≈ 120 meters) when processing a single measurement after three orbits as the single-
step filter has for processing a measurement after one orbit. Notably, for processing a measurement
after three orbits, the ADPF-EGMF presents improved worst-case-error behavior due to the ability
to take smaller steps than a designer can a priori optimize. This added robustness also costs less
by measure of number of steps taken compared to the M = 30 steps taken by the DPF-EGMF.
The number of steps taken by each GMM component of the ADPF-EGMF, for each measurement
processing epoch, is depicted in Figure 13. Interestingly, for a given amount of propagation before
the measurement, each GMM component takes the same number of inference steps regardless of
the measurement value.

As important as unbiased performance is statistical consistency of the filter. To evaluate consis-
tency, the NEES measure used in the 2D demonstration is reused here, now with state dimension
n = 6. Recall a NEES above unity indicates an overconfident posterior, while a NEES below unity
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Figure 7. EGMF x-y statisical performance af-
ter one period.
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Figure 8. DPF-EGMF x-y statisical perfor-
mance after one period.
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Figure 9. ADPF-EGMF x-y statisical performance after one period.

indicates a conservative one. The NEES values for the filters are illustrated in Figures 14-16. Even
after just one orbital period of propagation, the median EGMF posterior estimate is statistically
overconfident and grows significantly moreso as the propagation period increases. Conversely, both
the DPF-EGMF and ADPF-EGMF retain a median posterior that is slightly conservative regardless
of the amount of propagation before processing the measurement. The ADPF-EGMF also exhibits
improved consistency in tail (i.e., low probability) cases when propagating three orbit periods before
processing a measurement, as seen in Figure 16. The superior outlier performance of the ADPF-
EGMF is due to the ability to adaptively take small steps in the first partitions of the inference phase.

This specific ELFO analysis, though highly constrained, demonstrates the potential for significant
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Figure 10. EGMF.
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Figure 11. DPF-EGMF.
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Figure 12. ADPF-EGMF
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operational savings enabled by the discrete parameter flow procedure—particularly through its abil-
ity to achieve similar estimation performance to that of a traditional single-step inference method
even with longer period beetween measurements. This capability arises from two key features of
discrete parameter flow. First, by partitioning the measurement update, a fundamentally nonlinear
inference step can be well approximated by a sequence of small linear ones. Second, as a conse-
quence of this partitioning, the tail portions of the prior pdf are preserved more effectively than in
single-step inference, where they are more easily discarded.

CONCLUSIONS

There are numerous challenges faced when conducting recursive Bayesian inference for nonlin-
ear systems—especially when measurement information is sparsely available. Many approaches
attempt to overcome this problem through better uncertainty quantification (e.g., Gaussian mixture
propagation), ad hoc robustness techniques (e.g., underweighting), or by over-observing the system.
Alternatively, this work proposes a discrete homotopic continuation of Bayes’ rule, termed discrete
parameter flow, that partitions the traditional single-step update into multiple incremental updates.
The motivation for this partitioned approach is that approximations made in the inference procedure
are dampened by taking small steps from prior to posterior. Multiple variations of discrete param-
eter flow are presented including a square-root factorized version for increased numerical stability.
Additionally, a novel algorithm for adaptive step size selection is presented. This adaptive step pro-
cedure aims to ameliorate the problem of deciding the best step size profile for any specific filter
implementation.

On a simplified scenario, the approach is shown to provide superior performance when traditional
filtering schemes fail. The simplified scenario highlights how discrete parameter flow can make use
of a highly-informative observation—especially when the prior state uncertainty is large. These
findings are also observed in a cislunar tracking scenario, wherein traditional schemes fail at pro-
cessing a single line-of-sight measurement after one or more orbital periods of uncertainty growth
while discrete parameter flow yields unbiased and statistically consistent posterior estimates. More-
over, the filters leveraging adaptive step size selection for inference achieve similar to improved
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performance but with less steps (half in the analysis herein) taken than their fixed-step counterparts.
This adaptive procedure keeps the filter from taking an unnecessary amount of steps, amounting to
savings in computational runtime.
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