
AAS 24-307

NONLINEAR ESTIMATION WITH INTRUSIVE POLYNOMIAL CHAOS AND
MULTI-FIDELITY METHODS

Zee R. Toler∗ and Brandon A. Jones†

Linear filtering methods cannot always provide consistent estimates for systems
with nonlinear dynamics and measurement models. This has led to the application
of nonlinear uncertainty quantification (UQ) and filtering to current orbit determi-
nation challenges. Polynomial Chaos Expansions (PCEs) are capable of modeling
non-Gaussian uncertainty under sparse measurements and long propagation times.
Multi-fidelity methods, where a low number of high-fidelity samples are used to
correct a lower fidelity solution, have also seen use in UQ to balance efficiency and
accuracy. This work improves upon the authors’ nonlinear intrusive PCE-based
filter with a multi-fidelity time update applied to the perturbed orbits problem.

INTRODUCTION

Orbit determination, navigation, and orbital rendezvous are problems with well defined solution
spaces in near-Earth orbit for traditional applications, but techniques frequently applied in two-body
dynamic systems may not perform as well (or may fail outright) in the more general 𝑛-body case.
Many state of the art techniques are prone to failure when applied to three-body systems or to
two-body orbits prone to rapid growth in uncertainty due to dynamic nonlinearities (exacerbated in
eccentric orbits with close periapse passage, as in the case of the Molniya orbit).1–3 Measurement
sparsity is another challenge that leads to non-Gaussian probability distribution functions (PDFs)
due to long propagation times and limited information. Common linear filtering techniques, even
those like the Unscented Kalman Filter (UKF), which calculates the posterior mean and covariance
using higher order information through the unscented transform,4 struggle in cases where the ability
to model non-Gaussian probability is required. While work has been underway, especially during the
past few years, to apply current state of the art algorithms to these orbital regimes, reliable solutions
for orbit determination outside of sampling or particle-based solutions are still needed.3,5–8 As
method complexity increases, however, so typically does computational demand. For applications
like live orbit determination for mission operations, spacecraft navigation, or collision probability
estimation, a solution able to model non-Gaussian probability with a low runtime may be desired.
Polynomial chaos expansions (PCEs) and multi-fidelity methods, two techniques commonly em-
ployed by the uncertainty quantification (UQ) community, both have attractive characteristics when
considering potential solutions to these challenges; PCEs may be used to characterize non-Gaussian
uncertainty and model high-fidelity systems at a cost lower than what is typical of pure high-fidelity
sampling methods, and multi-fidelity methods may be employed to further reduce the implementa-
tion challenges of this technique when considering more dynamically complex systems. This work
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presents an approach to nonlinear filtering that leverages PCEs with multi-fidelity propagation to
achieve a filter robust to perturbed dynamic systems, long propagation time between measurements,
and accurate estimation of non-Gaussian PDFs.

Polynomial chaos expansions are situated at a convenient intersection of accuracy and efficiency,
given that they are less expensive than Monte Carlo and other sampling methods and their nature as
a surrogate method — a type of technique that provides a an analytical representation of a solution
rather than of a series of points.9 PCEs also provide analytic solutions to the moments of the PDF
of our quantities of interest.10–12 PCEs are a well established technique in the UQ community,
and have more recently gathered attention for astrodynamics applications. Jones et al. used non-
intrusive Polynomial Chaos Expansions (niPCEs) for applications such as conjunction assessment,
and demonstrated a marked improvement in computational efficiency with an acceptable loss of
accuracy compared to Monte-Carlo sampling.13–15 These efforts considered niPCEs, yet intrusive
methods could hold advantages in runtime and extensibility over non-intrusive chaos.16,17 Note that
several filtering methods that use PCEs exist in the literature due to their appealing qualities as a
surrogate; however, these models either rely on non-intrusive chaos to accomplish the prediction
step, or do not fully utilize a nonlinear, higher order measurement update.18–20 Additional efforts
in PCE-based uncertainty quantification and filtering endeavors continue to reach the field of orbital
mechanics, with PC Kringing garnering attention for showing performance better than or roughly
equal to that of each method considered individually.21,22 While this method shows clear success at
approximating the non-Gaussianity of orbit determination solutions, it does not provide an analytic
solution to the probability moments or the Sobol indices, which are two advantages to the filtering
approach this paper describes.

Multi-fidelity methods are a common technique in UQ to reduce runtime while retaining sim-
ulation accuracy.23,24 Multi-fidelity methods are a class of techniques that typically rely on an
expensive, high fidelity model in combination with a cheaper, low fidelity model. By applying
corrections to the lower fidelity solution based on knowledge obtained from a smaller number of
high fidelity computations, the accuracy of a solution can be bolstered without sacrificing all the
runtime efficiency of the lower fidelity model. These methods have continued to gain attention in
the astrodynamics community over the last five years as a way to preserve knowledge of highly
perturbed, dynamically complex systems to achieve accurate orbit determination and navigation
solutions at lower cost.25,26 In the broader UQ community, multi-fidelity work has been published
on niPCE ensemble Kalman filtering algorithms in the past27,28 as well as on the combination of
Taylor polynomials and differential algebra with multi-fidelity methods.29,30

The PCE filtering algorithm presented here was initially demonstrated in reference 31,31 where
the Intrusive Polynomial Chaos Filter (IPCF) was tested in a Sun-synchronous orbit and showed
convergent behavior in cases where the UKF was unable to produce a consistent solution. The
primary technical additions provided by this paper are a multi-fidelity augmentation to the filter’s
propagation step and the consideration of perturbed dynamics models.

This paper provides the necessary background information to understand intrusive PCEs, the
construction of a polynomial-based quadratic estimator, and the relevant introductory information
to understand the use of multi-fidelity propagation in the filter. By including a small number of
point-propagated high fidelity samples, the propagated prior PCE may be corrected for perturbations
present in the dynamic system that are challenging to include in the intrusive polynomial chaos
propagator. Current results show that multi-fidelity dynamics are able to successfully compensate
for drag, solar radiation, third body, and gravity gradient perturbations in a two-body system. Two
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tests cases are considered to provide these results, both utilizing range measurements from three
simulated Geosynchronous spacecraft. The first test case considers a low-Earth orbit (LEO) modified
from the original Sun-synchronous case that includes a 𝐽2 gravity gradient perturbation only; the
latter considers a Molniya orbit with gravity gradient, drag, third body, and solar radiation pressure
perturbations to demonstrate the multi-fidelity augmentation of the IPCF.

PROBLEM DEFINITION

In this paper, we seek to solve the orbit determination problem in a way that is robust to non-
Gaussian uncertainty. Typically, this requires the modeling of two important processes; the propa-
gation of the state and the modeling of some measurement data. Here, we define the propagation
problem as

x𝑘 = f (x𝑘−1, 𝜽𝑘−1) , (1)

where x𝑘 is x(𝑡) at some time 𝑡 = 𝑡𝑘 , x𝑘−1 represents the previous state, and 𝜽𝑘−1 is some process noise
sample assumed to be additive to the accelerative state. Finally, the dynamics model propagating
the previous state to the current prediction is denoted as f (x𝑘−1). A process to compute a predicted
measurement to model data being received is also necessary. We define

z𝑘 = h (x𝑘) + 𝝐 𝑘 , (2)

where z𝑘 represents the computed measurement at 𝑡 = 𝑘 , 𝝐 𝑘 represents some additive measurement
noise, and h (x𝑘) is a model that computes a predicted measurement from the current state prediction.
More traditional attempts at solving the dynamic estimation problem consider x (𝑡) as a random
variable and subsequently derive estimators through minimizing or maximizing specific performance
metrics, such as the minimum mean square error. Here, we seek to solve the estimation problem
representing the estimate in the form of a random variable, X̂ (𝑡, 𝝃), that is a function of both time
and some random inputs, 𝝃.

To define these random inputs, we take (𝛺, F ,P) as a probability space, where 𝛺 represents the
sample space and P is the probability, or measure, on the 𝜎-field F satisfying the three axioms of
probability over 𝛺. Then, we define 𝝃 as a random variable on (𝛺, F ,P) where 𝝃 : 𝛺 → Γ𝑑 ⊆ R𝑑 .
In other words, 𝝃 is a mapping from the sample space to the dimension 𝑑 state space of independent,
identically distributed random variables representing the input uncertainties to the problem. For our
case, we consider all random inputs to be Gaussian distributed with zero mean and unit variance, or
𝝃 ∼ N(0, 𝐼𝑑x𝑑).

The remainder of this paper seeks to present a filtering algorithm considering a PCE surrogate,
�̂� (𝑡, 𝝃), as the estimate, rather than performing the derivation of an estimator via a simple random
variable only depending on time, x̂ (𝑡). The arithmetic details necessary for PCE manipulation are
described at length, as is the construction of a polynomial based filter using the surrogate to describe
the solution estimate. While describing Eqs. 1 and 2 using a PCE demonstrates marked advantages,
it also necessitates a more difficult implementation due to these arithmetic considerations, which is
why multi-fidelity augmentation lends itself to inclusion in the IPCF.

POLYNOMIAL CHAOS

A PCE is an expansion of an orthogonal polynomial basis as a function of the random inputs of
the stochastic system; the coefficients of the PCE are the projection of the modeled function onto
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the basis. The PCE solution is a sum of the products of coefficients and evaluated polynomials,
represented via

�̂� (𝑡, 𝜉) =
𝑃∑︁

k=0
𝒄k(𝑡)𝜓k(𝝃), (3)

where the variables �̂� (𝑡, 𝝃), 𝒄𝒌 (𝑡), and 𝜓𝒌 (𝝃) denote the estimated solution given by the PCE, the
kth coefficient of the PCE, and the kth basis function evaluated at a random input 𝝃. If we assume
some true solution 𝑿 (𝑡) to be a function of the time of interest, 𝑡 ∈

[
0, 𝑡 𝑓

]
, then the PCE is a

surrogate, denoted as �̂� (𝑡, 𝝃), that represents the solution’s projection onto the basis of orthonormal
polynomials as functions of 𝝃. The degree, 𝑝, combined with the stochastic dimension, 𝑑, dictate
the number of PCE terms,

𝑃 :=
(𝑝 + 𝑑)!
𝑝!𝑑!

. (4)

Note that these methods are subject to the curse of dimensionally, as when 𝑑 and 𝑝 increase, the
corresponding increase in 𝑃 is nonlinear. A higher system degree implies the generation of a more
capable surrogate, usually resulting in a better approximation of the PDF of the quantities of interest
(QoI).

For the PCE basis functions in this work, the authors have selected Hermite polynomials due
to their relationship to the PDF of the Gaussian distribution. Recall that classically orthogonal
polynomials are defined using the inner product with respect to a weighting function,

〈𝜓𝑚(𝜉), 𝜓𝑛 (𝜉)〉 =
∫ ∞

−∞
𝜓𝑚(𝜉)𝜓𝑛 (𝜉)𝑤(𝜉)𝑑𝜉 = 0 ∀𝑚 ≠ 𝑛, 𝑤(𝜉) = 𝑒−

𝜉2
2 , (5)

where 𝑤(𝜉) is the scaled Gaussian probability distribution function for Hermite polynomials. This
relationship is advantageous relative to Taylor expansions in that PCEs have no radius of convergence
and may accurately describe distribution tails without truncation (subject to the accuracy of the
expansion coefficients). Although they are not considered here, it should be noted that other random
inputs, and thus polynomial types, may also be used in the construction of a PCE.12

The indexing variable k in Eq. 3 represents the expansion as a sum over one index. While this
is a convenient notation for many computational operations, each element in the expansion is better
described as a multi-index. In this case, each index contains multiple values with each element
corresponding to the orthogonal polynomials multiplied together to create that particular element of
the basis. Just as written in Eq. 3, the maximum number of terms is still a function of 𝑝 and 𝑑. Then
each multi-index k can be unpacked to define an element of the basis as

𝜓k(𝝃) = 𝜙𝑛1 (𝜉1) 𝜙𝑛2 (𝜉2) · · · 𝜙𝑛𝑑 (𝜉𝑑) ∀ 𝒏 3
𝑑∑︁
𝑖=1

𝑛𝑖 ≤ 𝑝, 0 ≤ 𝑛𝑖 ≤ 𝑑, (6)

and would be composed of 𝑑 values of 𝑛𝑖 , and a k would then exist for each possible product of the
basis functions according to Eq. 6. These polynomials, 𝜙(𝜉), are univariate functions of the random
inputs to the system and represent orthogonal polynomials of choice.

The PCE coefficients may be used to analytically calculate the moments of a PDF; using the
notation in Eq. 3, c0 would correspond to the mean,

𝜇 𝑓 (𝑡) , E
[
�̂� (𝑡, 𝝃)

]
= E

[
𝑃∑︁
𝑘=0

𝒄𝒌 (𝑡)𝜓𝒌 (𝝃)
]
= c0(𝑡), (7)
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and the covariance can be expressed algebraically as

𝚺𝑿𝑿 (𝑡) = E
[
( �̂� (𝑡, 𝝃) − 𝑿 (𝑡, ·)) ( �̂� (𝑡, 𝝃) − 𝑿 (𝑡, ·))𝑇

]
, (8)

or simply as the sum of squares of the non-0th order terms of the expansion, where each term in the
resultant covariance matrix is calculated as

Σ𝑖 𝑗 =

𝑃∑︁
𝑘=1

𝑐𝑖,𝑘𝑐 𝑗 ,𝑘 𝑖, 𝑗 ∈ [0, 𝑑], (9)

where 𝑘 is the index of each term in the expansion and 𝑖 and 𝑗 denote the indexing for the expansion’s
stochastic dimension. Note that here, 𝑘 is a scalar representation of the aforementioned multi-index,
k, with terms having index values from 0 to 𝑃. For two different multivariate PCEs, �̂� (𝑡, 𝜼) and
�̂� (𝑡, 𝝃) having coefficients b and c, each term of their cross covariance matrix would be equal to

Σ𝑖 𝑗 =

𝑃∑︁
𝑘=1

𝑐𝑖,𝑘𝑏 𝑗 ,𝑘 𝑖 ∈
[
0, 𝑑�̂�

]
𝑗 ∈

[
0, 𝑑�̂�

]
, (10)

where Σ𝑖 𝑗 is an element of 𝚺XY, a matrix of shape 𝑑�̂� by 𝑑�̂� . Terms 𝑐𝑖 and 𝑏 𝑗 represent the 𝑖th

or 𝑗 th coefficient vector for the corresponding multivariate PCE. Higher order probability moments
may also be calculated from the PCE coefficients if desired. The ability to analytically produce the
moments of the PCE is one advantage of this work. Additionally, because the moments have an
analytic relationship to the surrogate, a PCE can be created using a mean and covariance without the
use of sampling techniques. This extends to other uncertainty quantification measures as well, such
as the Sobol indices, which may also be computed as an analytic function of the PCE coefficients
using knowledge of the PCE multi index.32

Random sampling is one approach to solve for the coefficients in cases where analytic solutions
become burdensome, such as when a solution is non-Gaussian and would require more tedious
calculation. By evaluating 𝝍, some polynomial basis belonging to a PCE, 𝒀 (𝑡, 𝝃), at instances of
the random inputs, 𝝃, the data matrix 𝐻 may be computed. These same random inputs are then used
to generate random samples from the surrogate, which have the relationship

𝜓0 (𝜉1) · · · 𝜓𝑃 (𝜉1)
𝜓0 (𝜉2) · · · 𝜓𝑃 (𝜉2)

...
. . .

...

𝜓0 (𝜉𝑁 ) · · · 𝜓𝑃 (𝜉𝑁 )

︸                                ︷︷                                ︸
𝑯


𝒄𝑇0

(
𝑡 𝑓
)

𝒄𝑇1
(
𝑡 𝑓
)

...

𝒄𝑇
𝑃

(
𝑡 𝑓
)
︸        ︷︷        ︸

𝑪

=


𝒀𝑇

(
𝑡 𝑓 , 𝝃1

)
𝒀𝑇

(
𝑡 𝑓 , 𝝃2

)
...

𝒀𝑇
(
𝑡 𝑓 , 𝝃𝑁

)
︸               ︷︷               ︸

𝒀

, (11)

or, in matrix notation,
𝑯𝑪 = 𝒀 , (12)

which may be solved to produce estimated coefficients, �̂�, for 𝒀 (𝑡, 𝝃) using the normal solution to
the least squares problem,

�̂� =

(
𝑯𝑇 𝑯

)−1
𝑯𝑇𝒀 . (13)

A least squares approach with random sampling makes the most sense in the context of non-
intrusive polynomial chaos, or when refitting one PCE to a PCE having a different basis. When
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utilizing a sampling approach, non-intrusive work often attempts to leverage coefficient sparsity or
specific techniques to ensure fast evaluation.33–35 These techniques are described as non-intrusive
because they leave the dynamics or particulars of the stochastic system as a black box, meaning
no alterations to the equations of motion or model of interest are required to produce a surrogate.
Rather, random samples drawn from the input distribution, 𝝃, and are scaled and evaluated using
the model of interest to produce realizations of �̂� (𝑡, 𝜉). After evaluating the data matrix 𝐻 with
these random input samples, a least squares estimate of the coefficients may be computed using the
surrogate realizations according to Eq. 13.

The Galerkin Method

Rather than use more common non-intrusive methods, we use intrusive chaos to develop the
filtering algorithm presented here. This is because intrusive chaos provides an analytic solution to
the PCE coefficient derivatives, which may then be integrated over time without reliance on random
samples and point propagation. This work uses the Galerkin method, a spectral projection technique
able to prevent secular growth in the terms of the PCE basis after continued algebraic operations,
to derive differential equations for the PCE coefficients. This means that the surrogate may be
propagated forwards and backwards through time analytically without sampling error changing the
filtering result; for two runs using the same data, the exact same result would be produced.11,36 The
differential equations

¤𝑐𝑖 = 𝜑 (𝑖, c (𝑡)) , ∀𝑖 ∈ [0, 𝑃] , (14)

describe the rate of change of the coefficients, c. While the ability to directly propagate the coefficients
is useful, it does come with disadvantages; most notably, for each given test case, 𝜑 must be derived
for each dynamical system (along with some h (𝑖, c (𝑡)) ∀𝑖 ∈ [0, 𝑃] for each measurement model) of
interest. To formulate these equations, the Galerkin projection is utilized to reconstruct the algebraic
operations composing the equations of motion in a way that is suitable for PCEs. While this method
generalizes to PCEs that have different bases from one another, for the sake of clarity this paper
assumes the projection is performed between two identical bases onto a third, also identical basis.
To begin discussion, we take a simple product operation between two random variables, 𝑢 and 𝑣,
such that

𝑠 = 𝑢𝑣. (15)

The function of this projection method is encapsulated well by investigation of this simple nonlinear
operation utilizing PCEs. So, to define the Galerkin product, we begin with two different PCEs,

𝑢(𝜉) =
𝑃∑︁
𝑘=0

𝑢𝑘𝜓𝑘 (𝜉), and 𝑣(𝜉) =
𝑃∑︁
𝑘=0

𝑣𝑘𝜓𝑘 (𝜉). (16)

Here, we want to multiply the expansions 𝑢 (𝜉) and 𝑣 (𝜉). Attempting this multiplication naively
results in a double sum over the product of each element,

𝑠(𝜉) =
𝑃∑︁
𝑖=0

𝑃∑︁
𝑗=0

𝑢𝑖𝑣 𝑗𝜓𝑖 (𝜉)𝜓 𝑗 (𝜉). (17)

which clearly contains more terms (and terms of a higher order) than those of the bases of both
expansions before this operation has been performed. Instead, the Galerkin projection considers the
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projection of this product, or the PCE 𝑠(𝜉), onto the basis 𝝍. This process results in a product that
can be abbreviated as

𝑠𝑘 =
〈𝑠, 𝜓𝑘〉〈
𝜓2
𝑘

〉 =

P∑︁
𝑖=0

P∑︁
𝑗=0

𝑢𝑖𝑣 𝑗𝐶𝑖 𝑗𝑘 ∀𝑖 ∈ [0, 𝑃] , (18)

with 𝑠𝑘 denoting the 𝑘 th coefficient of 𝑃 for the resultant PCE 𝑠 (𝜉) and 𝐶𝑖 𝑗𝑘 denoting the Galerkin
product tensor, a sparse, three dimensional tensor computed from the normalized inner product of
each basis element.11 The tensor,

𝐶𝑖 𝑗𝑘 ≡
〈
𝜓𝑖𝜓 𝑗𝜓𝑘

〉
〈𝜓𝑘𝜓𝑘〉

, (19)

can then be computed for a known 𝑑, 𝑝, and orthogonal polynomial selection as a one time cost. In
this same fashion, nonlinear operations (inversion, division, and any polynomial formulation) may
be computed pseudo-spectrally without secular growth in the number of terms after each operation.11

Extending Galerkin Operations

The Galerkin method provides the fundamental tools to construct intrusive equations of motion,
measurement models, and other operations, but is not able to replicate non-polynomial functions
without the use of numeric solvers. Even in the case of the square root, numeric intervention is
necessary to produce a result unless the Galerkin method is extended using alternative strategies,
such as those presented here. For the square root operation

√
𝑢(𝜉)

√
𝑢(𝜉) = 𝑢(𝜉), (20)

a numerical solution that minimizes the residual of the matrix equation

©«
∑P

𝑗=0 𝐶 𝑗00
√
𝑢 𝑗 . . .

∑P
𝑗=0 𝐶 𝑗P0

√
𝑢 𝑗

...
. . .

...∑P
𝑗=0 𝐶 𝑗0P

√
𝑢 𝑗 . . .

∑P
𝑗=0 𝐶 𝑗PP

√
𝑢 𝑗

ª®®¬
©«
√
𝑢0
...√
𝑢P

ª®®¬ =
©«
𝑢0
...

𝑢P

ª®®¬ (21)

is necessary to solve for the square root coefficients.11 Computation time, difficulty of implemen-
tation, and lack of function coverage are all notable drawbacks to the Galerkin method. Attempts
to mitigate these drawbacks have led to promising work utilizing finite integration of the function
derivative or a Taylor series-based approach to model functions of interest that the Galerkin method
would not normally support.37 The former is more reliable due to a lack of radius of convergence
seen in the PCE Taylor series, but requires greater effort to implement. Due to the frequent use of
non-polynomial functions in the astrodynamics community (largely due to the prevalence of angle
measurements, such as right ascension and declination), implementing efficient approximations of
these functions is paramount. For the work presented in this paper, the Taylor series approach
has been implemented in the authors’ software, extending the functionality of the IPCF to include
trigonometric functions, their inverses, the square root, and other non-polynomial functions. Recall
that for a function 𝜏 (𝑥) infinitely differentiable at 𝑎, the Taylor series describing the solution is

𝜏 (𝑥) =
∞∑︁
𝑛=0

𝜏 (𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛, (22)
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which can be truncated according to the user’s tolerance requirements. To apply this formulation to
some PCE, 𝑢 (𝜉), undergoing some non-polynomial operation 𝜏, a Taylor series is expanded about
the mean of the input expansion, 𝑢0, and the term exponentiated by 𝑛, (𝑥 − 𝑎), can be described as
the PCE with the mean element subtracted out, or

𝑑 (𝜉) = 𝑢 (𝜉) − 𝑢0 =

𝑃∑︁
𝑖=1

𝑢𝑘𝜓𝑘 , (23)

where higher powers are computed according to the Galerkin product, resulting in the Taylor series,

𝑠 (𝜉) =
∞∑︁
𝑛=0

𝜏 (𝑛) (𝑢0)
𝑛!

𝑑𝑛 (𝜉) , (24)

having radius of convergence of |�̂� − 𝑎0 | < |𝑎0 |.37 When the series is difficult to express compu-
tationally, the derivatives of the function 𝜏 may be computed symbolically and stored as functions
for later use. In Debusschere et al.’s work,37 the error in an expansion having 𝑛 terms is defined as
the mean of the input expansion divided by the maximum term in the 𝑛th series term. A tolerance
value of 10−15 showed good performance in that work, so that same tolerance value was used by the
authors here. Taylor series using PCEs are employed only for purposes of efficiency in this paper to
reduce runtime costs associated with numerically solving the intrusive square root. Care should be
taken only to employ these methods when input distributions are close to Gaussian or the surrogate
degree is high enough to accurately model the input and output distributions.

THE INTRUSIVE POLYNOMIAL CHAOS FILTER

Leveraging the Galerkin method, the authors have developed a filtering algorithm able to estimate
the state of a QoI using a nonlinear polynomial update.31 The IPCF was conceived by leveraging
work by Servadio et al. that demonstrated a quadratic update using Taylor polynomials.38 These
methods are readily extensible to orthogonal polynomial bases. By first using the Galerkin projection
to render a set of differential equations for the PCE coefficients for a given system, a propagated
a priori PCE may be obtained. The filtering algorithm may then render non-Gaussian PDFs by
utilizing a nonlinear (quadratic) measurement update just as in Servadio et al.’s work with Taylor
polynomials.38 This section and the following sub-sections provide details on these components and
their combination to produce the IPCF.

In the case of Taylor polynomials, Isserlis’ theorem must be used to calculate the moments of
the polynomial estimate and each expansion naturally has a radius of convergence and will fail to
accurately model those PDFs with infinite tails (as seen even in a simple Gaussian distribution).
PCEs represent an attractive opportunity to continue this work because of their direct relationship to
user-defined random inputs and their coefficients’ analytic relationship to the moments, as illustrated
in Eqs. 7 and 8.

Mathematical detailings of the filter were previously presented in the authors’ previous work,31 and
the derivation of a nonlinear polynomial update is discussed at length in Servario et al.’s work,38 but
they are reiterated here for clarity. This work’s primary novel addition to the filter is a multi-fidelity
augmentation to the time update, explored in detail below.

Figure 1 contains a high level overview of the software written by the authors to perform the filtering
algorithm outlined by this section. The majority of the filter initialization and filtering architecture
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Figure 1. IPCF: software implementation

runs in Python 3, with limited dependence on Chaospy, a python package for polynomial chaos,
for generation of the Galerkin tensor (currently, this tool is only used to symbolically compute the
inner products of Hermite polynomials required for tensor generation).39 The intrusive propagation
is performed in C++ with a Cython interface providing scripting utility directly from the Python
software.

The filtering algorithm runs in a loop similar to other estimation algorithms, with an intrusive
polynomial chaos propagation step, an optional multi-fidelity addition to this step, a quadratic update
step, creating a posterior PCE 2𝑝𝑝𝑟𝑒𝑑 (where 𝑝𝑝𝑟𝑒𝑑 is the degree of the prediction PCE) in degree,
and finally a polynomial truncation step, mean to reduce the posterior PCE back to 𝑝𝑝𝑟𝑒𝑑 . After
reduction, the PCE is intrusively propagated until the next measurement time and the process repeats.
The filtering process outlined below describes the manipulation of two PCEs, with 𝒙 (...) denoting
the state PCE and 𝒚 (...) denoting the measurement PCE. Note that here the ellipses stand in for
different combinations of random inputs depending on what filter operations have been completed
(for example, the addition of a PCE depending on the process noise random inputs to a PCE depending
on the random inputs to the prior). The measurement noise, 𝝐 (𝜼), is assumed to be additive, and
the process noise PCE, 𝜽 (𝝂), is assumed additive to the accelerative state. Both 𝝐 (𝜼) and 𝜽 (𝝂), are
assumed static, degree one (𝑑 = 1) PCEs, meaning they have a mean and variance only. Both noise
PCEs are assumed to have a zero mean. A + denotes a posterior estimate, − denotes an a priori
estimate, and all PCEs are assumed a function of time, 𝑡, with 𝑘 denoting the current time step.

Filter Initialization

Filter initialization includes allocating random inputs for the problem, referred to here as 𝝃, 𝝂,
and 𝜼 for the state PDF, process noise PDF, and measurement error PDF, respectively. As described
previously, these random inputs are assumed to be uncorrelated and Gaussian distributed with zero
mean and unit variance, hence the PCE basis is comprised of Hermite polynomial products. The
Galerkin tensor must be generated only one time for the same 𝑝 and 𝑑 values, meaning that for the
same PCE degree, the circular restricted problem and the two body problem would utilize the same
tensor. Tensor calculation is completed using Chaospy according to Eq. 18. Using the analytic
relationship between the surrogate and the known PDF moments of the prior distribution, initial
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coefficients are also calculated at this initialization stage.

Propagation Step

Utilizing the Galerkin method described by earlier sections, the propagation step of the filter
utilizes intrusive chaos to propagate an a priori PCE’s coefficients to the time of interest. After
intrusive propagation, the model determining the initial a priori surrogate describing the state,
𝒙−
𝑘−1 (𝝃), may be written as,

x−𝑘 (𝝃, 𝝂) = f (x𝑘−1 (𝝃) , 𝜽 (𝝂)) , (25)
a function of both the state random inputs, 𝝃 and the process noise random inputs, 𝝂, due to the PCE
addition of 𝜽 (𝝂) to the accelerative state during integration.

Previous work described the performance of the propagation step fully, and characterized its
accuracy through moment comparison between Monte-Carlo simulation and lower degree PCEs
(which are more suitable for use in the IPCF algorithm). These results, available in the authors’
previous publication, demonstrate the ability of the PCE surrogate to model non-Gaussian PDFs far
more accurately than what would be seen using the unscented transform.31

Multi-Fidelity Augmentation

The most recent addition to the IPCF is an optional multi-fidelity correction performed after the
propagation step. The addition of a multi-fidelity correction to the filter improves the extensibility of
the filter without incurring high implementation costs; because the Galerkin projection necessitates a
more complex approach when implementing equations of motion, the ability to correct a propagated
surrogate using limited point sampling could improve filter functionality over a variety of dynamic
perturbations, such as solar radiation pressure or drag. To perform the multi-fidelity correction,
some true solution is assumed for the corrected surrogate,

x(𝝃, 𝝂) = x𝐿𝐹 (𝝃, 𝝂) + 𝛿x𝐻𝐹 (𝝃), (26)

where x(𝝃, 𝝂) represents the surrogate and x𝐿𝐹 = x+(𝝃) is the propagated a priori surrogate described
in Eq. 25. 𝛿x𝐻𝐹 represents an correction surrogate equal to the difference between these two values.
The goal of this step is to approximate 𝛿x𝐻𝐹 and recover a surrogate as close to the truth as necessary.

Beginning with x+
𝑘−1(𝝃), the posterior estimate from the previous time step, the filter calculates

x̄ = E
[
x−𝑘−1(𝝃)

]
, P = cov

(
x−𝑘−1(𝝃)

)
, and P = LL>, (27)

Which analytically provides a mean and covariance for sampling. Next, the filter generates 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

realizations of the random input vector 𝝃, referred to as 𝝃 ′. These samples are drawn, scaled, and
propagated, producing

x𝐻𝐹 (𝝃 ′) = f𝐻𝐹 (x̄ + L𝝃 ′) , (28)
i.e. 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 high fidelity points via point propagation of the scaled samples. After propagation,
the algorithm approximates the correction surrogate as a function of the samples 𝝃 ′ to produce
𝛿x𝐻𝐹 (𝝃 ′). To produce this surrogate, both surrogate realizations and evaluations of the polynomial
basis are needed to perform a least squares fit via Eq. 13. First, samples from the low fidelity
surrogate, x𝐿𝐹 (𝝃 ′, 𝝂′), are drawn using the same samples, 𝝃 ′, used to produce the high fidelity
samples along with 𝝂′, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 process noise realizations. By subtracting the low fidelity PCE
realizations from the propagated high fidelity samples, a set of errors in the realizations,

𝛿x𝐻𝐹 (𝝃 ′, 𝝂′) = x𝐻𝐹 (𝝃 ′) − x𝐿𝐹 (𝝃 ′, 𝝂′), (29)
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is produced. Finally, by evaluating the the polynomial basis of composition determined by 𝑑, the
length of the vector 𝝃, and the desired degree of correction PCE, 𝑝𝑐𝑜𝑟𝑟 , at the same random input
realizations, the coefficients

�̂�𝛿X =

(
𝐻𝑇𝐻

)−1
𝐻𝑇 𝛿x𝐻𝐹 (𝝃 ′, 𝝂′), (30)

of the correction surrogate, 𝛿x𝐻𝐹 (𝝃, 𝝂), are estimated. With 𝛿x𝐻𝐹 (𝝃, 𝝂) now known, the multi-
fidelity surrogate is

x(𝝃, 𝝂) ≈ x𝑀𝐹 (𝝃, 𝝂) = x𝐿𝐹 (𝝃, 𝝂) + 𝛿x𝐻𝐹 (𝝃, 𝝂), (31)

and the filter proceeds to the quadratic measurement update with the augmented prior.

Currently, the surrogate addition only matches PCE terms that have a basis element present in both
the correction surrogate and the propagated prior, meaning that for 𝑝𝑐𝑜𝑟𝑟 > 𝑝𝑝𝑟𝑒𝑑 , not every error
term is incorporated into the solution. Despite this, higher degree correction surrogates can still
impart more information than those of the prediction degree, since the added terms are calculated
with additional modeling capability corresponding to their expansion degree.

Quadratic Update

The filter’s quadratic update has been detailed in previous work by the authors and Servadio et al,
but is explained here for clarity.31,38 The quadratic update may be replaced with a polynomial update
of higher order, but this has not been considered for implementation in the IPCF. Starting with a
family of quadratic estimators having constraints a and gain matrices K1 and K2, a cost function

g(y) = a + K1y + K2y[2] , (32)

may be defined. Adding and subtracting constants (mean values for the state, measurement, and
measurement squared) results in a separate estimator family based on the measurement residual,
y − E{y}, the squared residual, y[2] − E{y[2]}, and the mean of the state, E{x},

g(y) = a + E{x} + K∗
1(y − E{y}) + K∗

2

(
y[2] − E{y[2]}

)
, (33)

for which there are two optimal gain values, K∗
1 and K∗

2, and an optimal value for a∗. Utilizing
the orthogonality principle, a linear system of equations may be produced to solve for each optimal
coefficient. The optimal a∗ = 0, and

[
K∗

1 K∗
2
]
=

[
PT
𝑑x𝑑y

PT
𝑑x𝑑y[2]

]T [
P𝑑y𝑑y P𝑑y𝑑y[2]

P𝑑y[2]𝑑y P𝑑y[2]dy[2]

]−1

, (34)

results in the quadratic estimator

x̂ = E{x} + K∗
1𝑑y + K∗

2𝑑y[2] , (35)

for which a more complete derivation may be found in reference 38.38 While the form of the
estimator itself is the same, the implementation must be reworked according to the nature of the
basis functions used. Here, the construction of a quadratic estimator using PCEs is provided in
sequential order. First, the IPCF necessitates the calculation of a PCE for the measurement,

y𝑘 (𝝃, 𝝂, 𝜼) = h
(
x−𝑘 (𝝃, 𝝂)

)
+ 𝝐 (𝜼) , (36)
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a functional of the a priori PCE, x−
𝑘
(𝝃, 𝝂) and the measurement noise PCE 𝝐 (𝜼). With this, it

is possible to compute a squared measurement PCE, y2
𝑘
(𝝃, 𝝂, 𝜼). This is done using a type of

Kronecker vector product,

y2
𝑘 (𝝃, 𝝂, 𝜼) = 𝒚 (𝝃, 𝝂, 𝜼) ⊗ 𝒚 (𝝃, 𝝂, 𝜼) , 𝑦2

𝑘𝜓𝑘 = 𝑦𝑖𝜓𝑖𝑦 𝑗𝜓 𝑗 ,

where 𝑖 ∈ [0, 𝑃] , 𝑗 ∈ [𝑖, 𝑃]
(37)

with no repeating terms. Of particular note is that this process squares the polynomial surrogate,
meaning a PCE of degree 2𝑑𝑝𝑟𝑒𝑑 results from this step, where each individual product making up the
vector product is still computed pseudo-spectrally according to the Galerkin projection. The software
accommodates this by generating Galerkin tensor elements corresponding to the doubled (update)
degree at filter initialization; after the measurement polynomial is squared, the expanded tensor is
used in all Galerkin operations for the remainder of the filtering step. The squared measurement,

ỹ[2]
𝑘

= ỹ𝑘 ⊗ ỹ𝑘 , (38)

is computed in the same way.

For the remainder of this section, ȳ𝑘 denotes the mean of the PCE y𝑘 (𝝃, 𝝂, 𝜼), while ỹ𝑘 denotes
the 𝑘 th measurement currently being processed by the filter update. To complete the update, the
filter must compute the covariance matrices comprising each gain value shown in Eq. 34. The
mean values for the PCEs may be computed trivially according to Eq. 7, producing the propagated a
priori mean x̄−

𝑘
= E

{
x−
𝑘
(𝝃, 𝝂)

}
, the measurement PCE mean ȳ𝑘 = E {y𝑘 (𝝃, 𝝂, 𝜼)}, and the mean of

the squared measurement PCE ȳ[2]
𝑘

= E
{
y[2]
𝑘

(𝝃, 𝝂, 𝜼)
}
. After calculating the expected values, the

covariance and cross covariance matrices necessary for the gains may be computed from the PCE
coefficients according to Eq. 8. Then,

Pyy = E
{
(y𝑘 − ȳ𝑘) (y𝑘 − ȳ𝑘)T} , (39)

the cross-covariance between the measurement and the squared measurement is

Pyy[2] = E

{
(y𝑘+1 − ȳ𝑘)

(
y[2]
𝑘

− ȳ[2]
𝑘

)T
}
, (40)

and the squared measurement covariance matrix is

Py[2]y[2] = E

{(
y[2]
𝑘

− ȳ[2]
𝑘

) (
y[2]
𝑘

− ȳ[2]
𝑘

)T
}
, (41)

providing the three covariance measures necessary to construct the augmented measurement covari-
ance. This can be expressed as the block matrix

PYY =

[
Pyy Pyy[2]

Pyy[2] Py[2]y[2]

]
, (42)

and the cross-covariance of the measurement and squared measurement with the state is then

PxY =
[
Pxy Pxy[2]

]
, (43)

which is computed in the same way as the augmented measurement covariance matrix as expressed
in Eq. 10. Now that both gain matrices have been computed per Eq. 34, K∗

1 and K∗
2 are blocked

K =
[

K∗
1 K∗

2
]
= PxYP−1

YY . (44)
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to compose an augmented gain matrix for use with the measurement residual and the squared
measurement residual — the differences between the measurement and measurement polynomial
and between the squared measurement and squared measurement polynomial. The full posterior
PCE surrogate solution is then

x+𝑘 (𝝃, 𝝂, 𝜼) = x−𝑘 (𝝃, 𝝂) + K
[

ỹ𝑘 − y𝑘 (𝝃, 𝝂, 𝜼)
ỹ[2]
𝑘

− y[2]
𝑘

(𝝃, 𝝂, 𝜼)

]
, (45)

the posterior mean is

x̄+𝑘 = E
{
x+𝑘

}
= x̄−𝑘 + K

[
ỹ𝑘 − ȳ𝑘

ỹ[2]
𝑘

− ȳ[2]
𝑘

]
, (46)

and the posterior covariance is

Pxx,𝑘 = E
{(

x+𝑘 − x̄+𝑘
) (

x+𝑘 − x̄+𝑘
)T}

, (47)

with both moments calculated according to equations 7 and 8.

Polynomial Reduction

The quadratic update produces a polynomial surrogate of degree 2𝑑𝑝𝑟𝑒𝑑 . Without altering the
posterior PCE solution, it is clear that the degree of PCE used in the filter would quickly become
both unsustainable for continued computation and overqualified to efficiently describe most stochastic
systems. This is combated by reducing the degree of the polynomial surrogate to that of the original
prediction degree. In more specific terms, the truncated posterior PCE becomes the prior PCE at
time 𝑡𝑘 for the next filtering step and will have the same degree and basis composition as that of the
previous prior PCE.

Currently, the polynomial truncation step is completed by taking the posterior mean, Eq. 46, and
the posterior covariance, Eq. 47, and computing PCE coefficients for a new, degree 𝑝𝑝𝑟𝑒𝑑 PCE. This
is completed analytically using the relationship between these moments to the coefficients, similar to
equations 7 and 8. This assignment is easy in the Gaussian case, since after performing the Cholesky
decomposition, the multi-index may be used to identify coefficients pertaining to each random input
and assign the elements of the decomposition by Cholesky matrix column to coefficient row with a
multi-index value of 1 for the corresponding random input (where coefficients are stored in a 𝑃 by
𝑑 matrix).

Notably, this method only takes advantage of the Gaussian moments (mean and covariance) of the
posterior in the formation of the new prior, meaning that only coefficients corresponding to a degree
one PCE are filled with nonzero values. A more complex polynomial truncation method currently in
progress would refit the posterior PCE coefficients to a polynomial of degree 𝑝𝑝𝑟𝑒𝑑 more completely
through a least squares fit using Eq. 13. A naive fit can be performed by sampling the posterior PCE
with some number of random input realizations, 𝝃𝑖 ∀𝑖 ∈ 𝑁 , where 𝑁 is a user-determined number
of samples. Then, with the same random inputs, a new PCE basis of degree 𝑝𝑝𝑟𝑒𝑑 is evaluated,
providing the data matrix H. Eq. 13 is then solved to produce coefficients for the degree 𝑝𝑝𝑟𝑒𝑑

surrogate.

In addition to truncating higher-order information, this process is marginalizing the surrogate to
remove dependence on the random inputs for the process and measurement noise, 𝜈 and 𝜂. Because
of this marginalization, the PCE loses information conferred from the coefficients that describe the
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correlative relationship between the process or measurement noise and the prior state, causing the
solution to become overly conservative. Ongoing work seeks to remedy this overly conservative
estimate by matching the covariance of the posterior to the new a priori via a nonlinear programming
solution.

RESULTS

Previous work used the unperturbed two body problem as the dynamics model for both filtering
and propagation tests.31 This work considers two body dynamics with 𝐽2 and 𝐽2 and 𝐽3 perturbed
equations of motion for similar test cases along with drag, solar radiation pressure, and third-body
perturbations. The IPCF performance is contrasted with the performance of the UKF for a low-
Earth orbit (LEO), modified from a Sun-synchronous case to be eccentric and lower altitude, and
a Molniya orbit. A baseline test considering 𝐽2 equations of motion demonstrates the performance
of the two filters for a difficult orbit determination case with sparse measurements and a larger
measurement noise variance to demonstrate the successful implementation of new dynamics models
using the Galerkin method. Following this, another test case with similar characteristics and the same
measurement model shows the performance of the multi-fidelity augmentation to the propagation
step. This section presents Monte-Carlo consistency trials with associated RMSE statistics to explore
filter behavior in each case.

Sat 1ECEF = [ 1.0 0.0 0.0 ]
Sat 2ECEF = [ cos (120◦) sin (120◦) 0.0 ]
Sat 3ECEF = [ cos (240◦) sin (120◦) 0.0 ]

Figure 2. Geosatellite Simulation

This section considers results from a simulation of a spacecraft in a perturbed two-body orbit that
receives range measurements relative to the location of three different Geosynchronous satellites,
each set 120◦ degrees apart from one another. Whichever satellite is closest to the true state of
the spacecraft at 𝑡 = 𝑡𝑘 produces a range measurement for use in the filter. Range measurements
provide a simple measurement framework while also ensuring a nonlinear measurement type, and
the inclusion of three different measurement sources prevent problems with observability in the
state. Each geosynchronous satellite state is propagated using the same dynamics model used for
the true spacecraft state with no process noise (since the positions of the geosynchronous spacecraft
are considered known).

Table 1 provides initial orbital elements for both test cases, a modified Sun-syncchronous orbit and
a Molniya orbit. The gravitational parameter 𝜇 = 398600.4415 km3/s2 , 𝑅𝐸𝑎𝑟𝑡ℎ = 6378.1363 km,
𝐽2 = 0.00108262668, and 𝐽3 = −0.0000025327. An exponential drag model is present in the
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Table 1. Initial Keplarian orbital elements for both test cases

Case a (km) e i (deg) 𝜔 (deg) Ω (deg) 𝜈 (deg)

LEO 6845 0.2 97.7 0.0 0.0 0.0
Molniya 26553 0.737 63.4 0.0 270 0.0

Table 2. LEO Case Statistics

Value Covariance Matrix

𝑷𝑥𝑥 block[ 25 I3𝑥3km2, 2.5 × 10−4 I3𝑥3
km2

s2 ]
𝑸 10−16 I3𝑥3

km2

s4

𝑹 2.5 km2

Table 3. Molniya Case Statistics

Value Covariance Matrix

𝑷𝑥𝑥 block[15 I3𝑥3km2, 1.5 × 10−5 I3𝑥3
km2

s2 ]
𝑸 10−16 I3𝑥3

km2

s4

𝑹 15 km2

full-fidelity dynamics, with 𝐶𝑟 = 1.5 and 𝐴/𝑚 = 10.7m2/kg. Additional full-fidelity perturbations
include an 8× 8 spherical harmonics model and third body perturbations accounting for the Sun and
Moon calculated using JPL DE430 ephemerides.40,41

First, this section establishes a performance baseline for each filter using the LEO test case. A
similar test case was originally used on pervious work to showcase the performance of the filter with
two body dynamics as significantly superior to that of the UKF for sparse measurements.31 This
first test, a comparison of the IPCF and UKF under two body dynamics, was repeated with a 𝐽2
perturbation with results shown in Figure 3. These results demonstrate a divergent UKF solution
compared to a PCE solution that still converges from the set of measurements provided to the filter.
For both filter, one hundred trials were performed, where each trial varied the true solution and
measurement errors, and both filters were provided the same measurement data as one another for
each individual Monte Carlo trial. These results demonstrate that the IPCF remains viable with the
addition of perturbations and serves to replicate earlier results with more complex dynamics. The
RMSE of each filter in Table 4 show this difference in a numeric sense as well. Here, 𝑝𝑝𝑟𝑒𝑑 = 2 and
𝑝𝑢𝑝𝑑𝑎𝑡𝑒 = 4. Measurements are provided to the filter every .8 periods, or every 75.1489 minutes
with 12 measurements total (9.6 orbital periods). Statistics for this trial are provided in Table 2.

(a) IPCF (b) UKF
Figure 3. LEO test results: 𝐽2 dynamics
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Table 4. RMSE for the 𝐽2 LEO Case

Value UKF IPCF

𝑥 km 9.741 × 103 4.069
𝑦 km 2.842 × 103 5.770
𝑧 km 1.214 × 104 9.041
¤𝑥 km/s 6.818 7.882 × 10−3

¤𝑦 km/s 9.089 × 10−1 6.658 × 10−3

¤𝑧 km/s 5.927 7.144 × 10−3

Table 5. RMSE for the multi-fidelity Molniya case

Value UKF IPCF

𝑥 km 4.597 × 101 4.048 × 101

𝑦 km 1.573 × 101 1.380 × 101

𝑧 km 2.414 × 101 1.932 × 101

¤𝑥 km/s 6.018 × 10−3 5.183 × 10−3

¤𝑦 km/s 2.985 × 10−3 2.643 × 10−3

¤𝑧 km/s 5.131 × 10−3 4.357 × 10−3

(a) 𝐽2 and 𝐽3 dynamics (b) Multi-fidelity dynamics
Figure 4. Single filter trial with and without a multi-fidelity correction

The next trial considers the case of an orbit using the full fidelity dynamics described earlier
(includes drag, spherical harmonics, etc). This particular test consists of conditions allowing for
a UKF solution that begins to struggle to converge, but does still remain statistically significant.
Measurements were received by the filtering algorithms every 0.67 orbits, or every 480.845 minutes
with 15 measurements total (for 10 orbital periods). The PCEs utilized in the IPCF had degrees
𝑝𝑝𝑟𝑒𝑑 = 2, 𝑝𝑐𝑜𝑟𝑟 = 3, and 𝑝𝑢𝑝𝑑𝑎𝑡𝑒 = 4. The impact of the multi-fidelity correction to the IPCF
is visualized by a single corrected trial shown in Figure 4. Here, a solution propagated with the 𝐽2
and 𝐽3 perturbations is unable to provide an accurate state estimate that stays within the 3𝜎 filter
boundaries. The solution with the multi-fidelity correction shows a bounded state error. Table 3
contains the statistics that produced measurement samples and truth data for this run.

With the same measurement frequency and the same initial conditions, another 100 trial Monte
Carlo consistency test was run to determine IPCF performance through a consistency trial and in
an RMSE sense with multi-fidelity augmentation. Figure 5 shows the performance of each filter.
The UKF shows a generally convergent solution, but does show edge cases out of the samples
that deviate significantly from the 3𝜎 uncertainty boundaries — the filter estimate is also shown
to be overconfident, meaning it is likely approaching a scenario that would cause failure in the
propagation step as uncertainty or measurement sparsity increased. The IPCF shows a converged,
mostly bounded estimate — the figure shows a few outliers that briefly escape the 3𝜎 boundaries of
the filter, and, at a few points, the estimate is slightly overconfident (at the end of the trial in the 𝑥

direction), but significantly less so than the UKF. This could be due to the random sampling used
for the high fidelity point propagation. The most notable characteristic of the IPCF’s performance is
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(a) IPCF (b) UKF
Figure 5. Molniya orbit test results with multi-fidelity dynamics

the overly conservative 3𝜎 boundary at around 1000 minutes time; this is likely due to a difference
in the propagation strategies between the two methods, because of randomness in the multi-fidelity
sampling selection, or due to the degree of PCE surrogate used to compose the correction PCE;
future work will investigate ways to increase the impact of the error polynomial on the propagated
prior’s covariance. Table 5 shows the RMSE for each filter for the Monte Carlo trial. The RMSE
is significantly less for the IPCF than the UKF indicating that the IPCF is also more accurate in the
mean.

CONCLUSION

The authors’ previous efforts have shown intrusive polynomial chaos to be a promising strategy for
nonlinear, polynomial-based filtering.31 Earlier work centered on two-body dynamics only, without
considering the effects of dynamical perturbations; in this work, 𝐽2 and 𝐽3 equations of motion were
developed using the Galerkin method and used in the propagation step of the IPCF. This development
was combined with the addition of a multi-fidelity augmentation to the propagation step of the filter,
allowing the IPCF to show convergent behavior and superior estimation to the UKF in an RMSE
sense for an orbit under higher fidelity dynamics. More minor adjustments include the use of Taylor
expansion using PCEs to approximate non-polynomial functions; currently, these advancements
have only been used to mitigate the runtime cost of a numerical solution for the Galerkin square root
in the quadratic update.

Future work will consider current advancements applied to additional test cases, measurement
types, and dynamical systems. Chaotic systems like the Lorenz system as well as topical cases
like popular orbital families in the circular restricted problem are both good candidates for use
with the filtering algorithm. Completing angle measurement test cases through the use of already
implemented Taylor expansion tools will also significantly improve the filter’s extensibility. Further
investigation into the multi-fidelity update and fine tuning the approach is also necessary, and could
be done through more representative sample selection techniques and by modifying how the error
and propagated prior PCEs are combined. Finally, additional methods of PCE reduction from the
update degree to the prediction degree will be implemented and their performance characterized.
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