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SMALL BODY SLAM WITH SILHOUETTE-BASED GAUSSIAN
PROCESS BATCH FILTERING

Quinn P. Moon*, Brandon A. Jones†, Ryan P. Russell‡, Courtney Hollenberg§,
Daniel P. Lubey§, Shyam Bhaskaran§

Recent small body missions have successfully utilized Stereo-Photoclinometry
(SPC) to model the shape of small bodies for landmark-relative navigation. To
simplify estimation for onboard, autonomous implementation, the small body’s
shape is modeled using a Gaussian Process (GP), where multiple basis nodes and
basis radii are used to predict the entire shape. The GP methodology was previ-
ously implemented into an Iterative Extended Kalman Filter (IEKF) for Simulta-
neous Localization and Mapping (SLAM) of the small body Eros. The IEKF was
proven to be successful, yet sensitive to initial state estimates and errors. Thus a
maximum-likelihood, GP batch least-squares algorithm is developed where con-
servative initial conditions are utilized. Simulated images of Eros are processed to
extract the visible horizon and associated to a truth and estimated GP shape model.
Through multiple batch iterations with a declining measurement under-weighting
scheme, the GP batch algorithm estimates the body’s shape to within meters of
error, while also estimating the body’s orientation, the body’s spin rate, and the
satellite’s position and velocity. The GP batch algorithm is tested on a circular
orbit and a hyperbolic approach trajectory for various small bodies. The GP batch
implementation itself is a powerful tool for small body mapping and navigation,
but subsequent work will focus on using the final state estimate and covariance
from the batch filter as initial conditions for perturbing the truth states within a
Monte Carlo study of the IEKF.

INTRODUCTION

The process of modeling a small body’s shape and terrain through shadowed images, or Stereo-
Photoclinometry (SPC), is a proven method for mapping and relative terrain navigation1, 2 in a vari-
ety of missions, including the Dawn mission to Ceres and Vesta3, 4 and the OSIRIS-REx mission to
Bennu.5 However, SPC is computationally intensive and requires considerable human interaction,
and thus not well suited as an onboard capability. Autonomous algorithms are desired such that a
spacecraft can approach a small body and through Simultaneous Localization and Mapping (SLAM)
navigate and shape the body without relying on ground support. Silhouette-based measurements are
readily produced by onboard visible spectrum cameras and are a cheap source of direct measure-
ments of the central body’s shape, ideal for autonomous SLAM applications. Additional work to
advance the field of autonomous SLAM applications has been done through LIDAR imagery to
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track landmarks on Eros,6 flash LIDAR imagery about Itokawa,7 infrared imagery of Bennu,8 and
light-curve inversion.9, 10

Recent work implemented a Gaussian Process (GP) to model a small body’s shape with basis
nodes and radii. Through GP regression, a tractable set of basis nodes and radii predicts the radius
across the entire body. More basis nodes and radii used yield higher fidelity shape models, as
depicted in illustration show in Fig. 1.

Figure 1: Shape Modeling with Gaussian Regression

Wahlstrom and Ozkan introduced a sequential GP estimation filter for target tracking,11 and re-
searchers from JPL and the University of Texas at Austin implemented the GP technique for small
body mission analysis using silhouette-based measurements. An Iterative Extended Kalman Filter
(IEKF) was developed to model the shape and pole of Eros,12, 13 and later successfully implemented
in an IEKF SLAM algorithm to include the estimation of the spacecraft’s position and velocity.14

A crucial aspect of an Extended Kalman Filter is validating the implementation and simulation
model with a Monte Carlo study.15 A proper Monte Carlo analysis requires the truth to be perturbed
based on statistically consistent initial conditions. Particularly challenging for SLAM applications
is perturbing the truth shape. The truth GP shape has sensitive spatial correlations defined by a
covariance function, or kernel function, where points along the surface that are closer together are
correlated more strongly. Furthermore, perturbations to the asteroid’s radii are naturally bounded
below, as the radii cannot be less than zero. Thus, the shape must be perturbed in a matter that is
consistent with its radii, while also accounting for the spatial correlations.

To obtain the initial mean and covariance for future Monte Carlo studies, a maximum likelihood,
batch least-squares algorithm is developed with the GP framework. The GP batch filter is derived
and implemented to simultaneously estimate the spacecraft’s position and velocity, and the central
body’s orientation, spin, and shape with only silhouette-based imagery. The details of the GP batch
filter, the measurement equations, and data association process are provided. The GP batch filter is
tested on a variety of mission scenarios, including for different asteroids and trajectories. The batch
is specifically tested for a hyperbolic approach and a circular orbit about the asteroids Lutetia, Eros,
Toutatis, and Bennu.

2



GAUSSIAN PROCESSES FOR ASTEROID SHAPE MODELING

The GP batch filter estimates the state vector

x =
[
rT vT α δ θ̇ θ0 f ′T

]T
, (1)

where r and v denote the spacecraft’s position and velocity with respect to the asteroid, α and δ the
right ascension and declination of the asteroid axis of rotation, θ̇ the asteroid’s spin about the prime
meridian θ0, and f ′ the basis radii of the asteroid at predetermined basis nodes ê′. The basis nodes
and radii are marked with a prime to distinguish between a measured radii and a basis radii.

The pole elements map the inertial frame to the asteroid frame using Euler angles according to
the direction cosine matrix

T I
A = T 3(θ̇t+ θ0)T 1(

π
2 − δ)T 3(

π
2 + α), (2)

where T 1 and T 3 with arbitrary input ϕ are:

T1(ϕ) =

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 ,T3(ϕ) =

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 . (3)

A GP is implemented as a regression technique to predict the asteroid’s radii f at a measured
node ê with a basis set. The basis set consists of unit nodes ê′ and their associated radii f ′. Note
that basis nodes and radii are distinguished from measured nodes and radii with a prime. From the
basis set, the radii at any measured node ê is predicted according to the GP prediction equation:16

f(ê) = C(ê, ê′)C−1(ê′, ê′)f(ê′). (4)

A significant benefit of GP regression lies in its ability to model and interpolate along the small
body with a limited, discrete set of nodes. The entire shape of a small body can be encapsulated
with just a few nodes and their kernel function, making it ideal for autonomous navigation. The
“kernel trick” allows for complicated, multi-dimensional data to be represented more simply.16 For
shape modeling, the covariance function (kernel) correlates nodes through their angular distance
according to

C(ê, ê′) = σ2
f exp

(
−arccos(êT ê′)

l2

)
, (5)

where correlation decays with increasing angular distance between two nodes. The kernel function
takes two inputs, where each input can be either a measured node ê or a basis node ê′. Nodes closer
to each other have a stronger correlation, and nodes that are farther apart have a weaker correlation.
The scaling factor l adjusts the strength of the spatial correlation, and σ2

f is an additional parameter,
but here is set to unity.

Thus, the shape of an asteroid can be captured by a discrete set of nodes and radii. More nodes
in the basis set increases the shape model fidelity, but slows down the filter as the number of state
elements increases. Furthermore, a point of diminishing returns is quickly achieved when increasing
the number of nodes, due primarily to fundamental observability limits associated to the nature of
the silhouette-only measurements. All truth shape models implemented in the filter have 312 nodes
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obtained by performing a GP regression with a higher fidelity model as the basis set. The high
fidelity shape models are obtained from NASA’s Planetary Data System, pulled from Clark17 and
Hergenrother18 for Bennu, Hudson19 for Toutatis, Gaskell20 for Eros, and Gaskell and Carry21 for
Lutetia.

There is a small yet crucial difference between the real shape of an asteroid and the GP filter truth
shape. A useful comparison to understand this difference is through spherical harmonic gravity
models. In a real-time mission, the gravitational acceleration is due to a complicated, high degree
spherical harmonic model. The GRAIL mission estimated the gravity field of the Moon with thou-
sands of Stokes’ coefficients,22 yet the gravity experienced in real time was due to, in theory, an
infinite degree gravity model. Similarly, the shape of an asteroid can be thought of a GP shape with
infinite basis nodes, converging to the truth shape of an asteroid.

The GP filter truth shape is modeled using 312 nodes, yet the images are captured from the real
central body. Thus a data association procedure is run to convert the real-time image data to be
representative of the 312 node shape model. Just as a real-time mission undergoes acceleration due
to an infinite degree gravity model yet models the truth with a finite set of Stokes’ coefficients.
Figure 2 depicts a high fidelity polyhedral model of Eros and the GP filter truth shape. Note that the
filter truth shape differs slightly from the polyhedral model, particularly on the extreme ends.

Figure 2: 312 Node Eros Truth Shape Models

Gaussian Process Batch Filter

The filter itself is derived from nonlinear maximum likelihood estimation. An arbitrary measure-
ment function is expressed as

z = h(f) + ϵ, (6)

δz = Hfδf + δϵ, (7)

where Hf = ∂h
∂f , and ϵ represents measurement noise. The augmented state is normally distributed

according to:14, 16[
z
f

]
∼ N

([
C(ê, ê′)C−1(ê′, ê′)f(ê′)

f(ê′)

]
,

[
HfC(ê, ê)Hf

T + σ2
ϵ I HfC(ê, ê′)

C(ê′, ê)Hf
T C(ê′, ê′)

])
. (8)
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The covariance of z conditioned on f is15

Pz|f = Hf

(
C(ê, ê)−C(ê, ê′)C−1(ê′, ê′)C(ê′, ê)

)
Hf

T + σ2
ϵ I. (9)

The GP batch algorithm is setup according to traditional batch least-squares algorithms,23 estimating
the state at the final time, with the GP components as derived by Wahlstrom and Ozkan.11 The
information matrix and state residuals are propagated forward and updated according to:

I(tk+1) = ΦT (tk, tk+1)I(tk)Φ(tk, tk+1) +HT (tk+1)W (tk+1)H(tk+1), (10)

δy(tk+1) = ΦT (tk, tk+1)δy(tk) +HT (tk+1)W (tk+1) [z(tk+1)− ẑ(tk+1)] , (11)

where the State Transition Matrix (STM) Φ is propagated forwards along the reference trajectory
and inverted using the symplectic properties of the STM.24 The state and STM are propagated using
2-body relative gravitational motion. The measurement partial H with respect to all state elements
is computed at the reference state and contains the sub-elements

H =
[
Hr Hv Hα Hδ H θ̇ Hθ0 Hf ′

]
. (12)

Note that H contains partials evaluated at the basis nodes ∂h
∂f ′ , whereas Eq. 9 requires the mea-

surement partials evaluated at the measured nodes. The weighting matrix W is calculated from the
conditional covariance derived in Eq. 9 with measurement noise

W =
(
P z|f +R

)−1
. (13)

The truth measurements z remain constant over batch iterations, whereas the estimated measure-
ments ẑ change over batch iterations. The final state update is calculated according to

δx(tkf ) = I−1(tkf )δy(tkf ), (14)

and added to the estimate of the previous batch iteration, such that over batch iterations (denoted
with subscript i) the final state estimate x̂(tkf ) converges to the truth

x̂i+1(tkf ) = x̂i(tkf ) + δxi+1(tkf ). (15)

All matrix inverse operations are performed on positive definite matrices. As such, the Cholesky
factorization is used for numerical accuracy.

The batch filter runs through multiple iterations on the same set of truth measurements. With
more batch iterations, the estimated state converges to the truth state provided that the estimates are
approximately within the linearized region. The initial information matrix is ideally set to the zero
matrix, simulating a valid maximum likelihood scenario. However, due to numerical instability, the
initial information is set to I(tk) = 1× 10−12I .
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SILHOUETTE-BASED MEASUREMENTS

Silhouette-based measurements (or horizon-based measurements) are generated by extracting
points along the visible edge of an illuminated surface. Consider the Blender25 simulated image
of Eros in Fig. 3a.

(a) Blender Simulated Image (b) MATLAB Simulated Images

For real time image extraction, an image processing tool is run on the image to find the boundary
between illuminated and non-illuminated pixels. The longest continuous boundary corresponds
to the visible edge; breaks in continuity are the result of self-shadowing and do not occur along
the visible edge. A discrete set of points along the visible edge is extracted and incorporated as
measurements. Only points along the visible edge are processed as measurements, as these are
direct measurements of the asteroid’s shape.

Previous work by Zucchelli12 and Hollenberg14 utilized Blender simulated images and extracted
the visible edge with MATLAB’s image processing toolbox. While the current batch filter also
estimates the state successfully using the Blender images, relying on Blender to simulate different
trajectories and asteroids is time consuming. As such, a boundary finding subroutine is utilized
within MATLAB to extract the visible edge from the high fidelity models. The new algorithm
allows for easy image generation based on new trajectories and the asteroid’s orientation, spin, and
shape. Figure 3b depicts the new visible edge finding technique on the same image of Eros depicted
in Fig. 3a. The new boundary finding routine assumes a complete knowledge of the truth is available
to generate the visible edge. Thus, the new boundary finding technique is used only for simulation
purposes as it is a quicker alternative for image generation than the Blender software.

The measurement equation is based on a pinhole camera, where three-dimensional, discrete
points along the visible edge are non-linearly mapped to a two-dimensional image according to: xj

yj
zj

 = s = T I
C

[
TA

I r
A
ej/a

− rIs/a

]
, (16)

h(x) =

[
uj
vj

]
= Mρ(s) = M

 −xj/zj
yj/zj
1

 , (17)

where M denotes a linear mapping corresponding to the pinhole camera, rI
s/a

the relative position
of the spacecraft with respect to the asteroid in the inertial frame, rA

e/a
the position of a visible edge
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point relative to the asteroid in the asteroid fixed frame, T I
C the rotation matrix from the inertial

frame to the camera frame, and T A
I the rotation matrix from the asteroid frame to the inertial frame.

The measurement partials Hr, Hα, Hδ, H θ̇, and Hθ0 in previous work12, 14 were calculated
with complex step numerical differentiation,26 but have since been replaced with analytical terms.
The analytic partials require multiple levels of chain rule implementation, and the exact expressions
are not reported here. The partials with respect to the basis radii Hf ′ are relatively straightforward,
and when analyzed with the chain rule also produce the required Hf term. The partials with respect
to the basis radii are

∂h

∂f ′ =
∂h

∂f

∂f

∂f ′ , (18)

where ∂h
∂f is further broken up such that

∂h
∂f = M ∂ρ

∂s
∂s
∂f , (19)

∂h
∂f = M ∂ρ

∂sT
I
CT

A
I ê

A. (20)

The partial of a measured radii with respect to the basis radii comes from the GP update equation
and is simply

∂f

∂f ′ = C(ê, ê′)C−1(ê′, ê′). (21)

The measurement equation does not depend on velocity, resulting in Hv = 0.

Data Association

As described previously, the data taken directly from the simulated imagery cannot be directly
implemented into the filter. Recall that the GP filter truth shape modeled by the 312 basis nodes is
a low fidelity representation of a real asteroid. As such, measurements extracted from the images
need to be associated to points that correspond to the visible edge of the GP filter truth shape. This
is done to show how real-world data can be associated to data along a lower fidelity filter model, just
as real-time gravitational accelerations are represented with finite spherical harmonic expressions.
Through data association, the truth filter measurements produced are equivalent to hypothetical
image data taken of the low fidelity GP filter truth shape in Fig. 2.

The data association procedure is run on each image data point to generate filter truth measure-
ments. The discrepancy between the image data and the filter truth measurements is caused by
differences in the shapes, not the other state elements (the filter truth states are equivalent to the true
states). As such, the truth filter measurements can be found by searching along the plane defined by
the two unit vectors of (rI

s/a
, rI

ej/s
).

The unit vector of rI
s/a

is rotated in the search plane by a rotation angle γ to optimize the objective
function14

J(γ) =
−f(γ)||rIs/a|| sin(γ)√

f2(γ) + ||rIs/a||2 − 2f(γ)||rIs/a|| cos(γ)
. (22)

The resulting position vector is input into Eq. 16 as rA
e/a

. Figure 4 depicts the results of the data
association for the image shown previously in Fig. 3a and Fig. 3b. The data points in red represent
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the visible edge of Eros’ true shape. The data points in blue are those obtained from the data
association. Note the difference is small, as the true shape and the GP filter truth model are similar.
Furthermore, if simulated imagery were available of the GP filter truth shape, the new image data
would yield the same data points in blue. For simulation purposes, new imagery could be generated
and the data association process described could be avoided. However, for potential missions where
real-time images are taken of a central body, the data association procedure outlined is necessary.

Figure 4: Data Association

The GP batch filter now requires a set of estimated measurements. While it is possible to simulate
imagery and obtain the visible edge of the estimated GP shape, each discrete estimated measurement
point must correspond to a specific truth measurement point. As there is no clear way to establish
a correspondence, the estimated measurements are obtained through the same data association pro-
cedure.

The data association procedure is run to generate estimated measurements ẑ using the estimated
state. A new search plane is defined using the unit vector defined by the estimated state and the unit
vector obtained from the image data (r̂I

s/a
, rI

ej/s
). The unit vector of r̂I

s/a
is rotated in the plane to

minimize

J(γ) =
−f̂(γ)||r̂Is/a|| sin(γ)√

f̂2(γ) + ||r̂Is/a||2 − 2f̂(γ)||r̂Is/a|| cos(γ)
. (23)

The only difference between Eq. 22 and Eq. 23 is the use of the estimated state. Thus a discrete set
of estimated measurements ẑ is obtained that corresponds to each truth measurement in z.

The data association limits its optimization to a planar search as described in Eqs. 22 and 23.
The planar assumption is valid for the data association to the GP filter truth in Eq. 22, since the
remaining truth state elements are identical to those used to produce the camera images. The planar
assumption is incorrect for the estimated data association, as the estimated state elements differ
from those used to produce the camera images. While this simplification is recognized as a source
of error within the filter, the data association is shown to be sufficient for state convergence provided
the estimated state does not differ drastically from the truth state. Future work will account for data
association error by considering the input nodes with random disturbances.27, 28
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SIMULATION DESIGN AND FILTER SETUP

The GP batch filter is run on four asteroids: Lutetia, Eros, Toutatis, and Bennu. These four are
selected based on their interesting shapes and varying masses. For each asteroid, the GP batch
filter is run on a hyperbolic approach trajectory and a circular orbit. Each trajectory processes an
image of the central body at 30 minute intervals, and takes a total of 104 images. The size of the
circular orbits are designed such that the measurement set corresponds to one complete revolution.
The hyperbolic trajectories have the same number of measurements, with their end intersecting the
circular orbits. Figure 5 depicts the hyperbolic approach and the circular orbit used for Eros in the
Body-Fixed frame.

(a) Hyperbolic Approach to Eros (b) Circular Orbit about Eros

Figure 5: Body Fixed Trajectories

Table 1 depicts the gravitational parameter, spin, and pole orientation values used as the truth
in the batch filter. The gravitational parameters and spin rate are obtained from NASA’s Planetary
Data System,29 whereas the pole values are all the same as those used by Hollenberg.14 The spin is
assumed to be about a single axis starting at the prime meridian.19

Table 1: Asteroid Truth Simulation Data

Asteroid µ
[

km3

s2

]
θ̇
[

deg
hr

]
α [deg] δ [deg] θ0 [deg]

Lutetia 1.1339× 10−1 44.07 0 60 -27
Eros 3.9206× 10−4 68.31 0 60 -27
Toutatis 1.2673× 10−6 116.15* 0 60 -27
Bennu 4.8691× 10−9 84.19 0 60 -27

Toutatis’ spin is actually 2.77 degrees per hour according NASA,29 but for this study is modeled at 116.15.
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The primary complication of the batch filter is that all measurements are weighted equally over
time. In reality, later measurements are taken when the estimate deviates more from the truth and
has potentially left the region of linearization. With no prior information, adaptive measurement
weighting effective in a sequential filter, such as Lear’s method,14, 30, 31 is not applicable.

To ensure early batch iterations do not update the state beyond reason and negatively impact later
iterations, an alternative measurement underweighting scheme is introduced in the form of an ad-
justing measurement noise strength.31 Earlier batch iterations have artificially inflated measurement
covariances, effectively adjusting the sensitivity of the batch. This measurement under-weighting is
decreased over batch iterations from σϵ = [1 × 108, 1]. Note that the truth measurements are not
perturbed based on these errors, simply the weights applied with Eq. 9. This technique provides
an alternative to other step size control methods32, 33 and ensures that issues with linearization are
minimized as the estimate is forced to approach the truth slowly.

Each simulation has an initial estimate perturbed from the truth such that x̂0(t0) = x(t0) + ∆x,
where ∆x are set values chosen to ensure batch convergence. The values presented for ∆x are
based on the largest converging case from various test cases of the GP batch filter, not instances of
an initial covariance.

Tables 2 and 3 show the initial perturbations for each asteroid on hyperbolic approach and in
circular orbit. Note that the initial perturbations on the initial position and velocity are larger for
more massive asteroids. Also note that while the initial velocity and spin errors are small, the
approach trajectory lasts 52 hours, causing large offsets at the trajectory’s end. Furthermore, the
initial position and velocity perturbations in circular orbit are much smaller than the hyperbolic
approach. On approach, the asteroid is illuminated almost entirely for most of the trajectory; the
lighting conditions for a circular orbit change from fully illuminated to fully eclipsed, resulting in
less data collected while in a circular orbit. The perturbations to θ0 are small, as previous work
indicates that θ0 may not be fully observable with silhouette-based measurements. As such, the
initial perturbations are small to ensure the estimate does not drift to far from the truth.

Table 2: Hyperbolic Approach: Initial State Perturbation

Perturbation Lutetia Eros Toutatis Bennu

∆r 2 km 1 km 250 m 10 m
∆v 2 mm/s 1 mm/s 0.1 mm/s 0.01 mm/s
∆α, ∆δ 5◦ 5◦ 5◦ 5◦

∆θ̇ 0.5◦/hr 0.5◦/hr 0.5◦/hr 0.5◦/hr
∆θ0 0.1◦ 0.1◦ 0.1◦ 0.1◦

Table 3: Circular Orbit: Initial State Perturbation

Perturbation Lutetia Eros Toutatis Bennu

∆r 650 m 100 m 25 m 5 m
∆v 1 mm/s 1 mm/s 0.1 mm/s 0.005 mm/s
∆α, ∆δ 5◦ 5◦ 5◦ 5◦

∆θ̇ 0.5◦/hr 0.5◦/hr 0.5◦/hr 0.5◦/hr
∆θ0 0.1◦ 0.1◦ 0.1◦ 0.1◦
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The initial shape estimate for each asteroid is a large ellipsoid. Ellipsoids were chosen to represent
a fair estimate of the asteroid’s size without representing the finer aspects of the asteroid’s shape.
The initial shape estimates are (60×65×45 km) for Lutetia, (18×9×8 km) for Eros, (1.5×1.5×2.25
km) for Toutatis, and (0.3 × 0.3 × 0.3 km) for Bennu. Figure 6 depicts the truth GP Truth Shape
and the initial GP Estimate for Lutetia.

Figure 6: Lutetia (60× 65× 45 km)

It is important here to address the limitations of the GP batch filter and the extent of its testing in
the framework of this research’s objectives. Given the sensitivity to initial errors that the GP batch
filter faces, it would be wise to consider estimating the state on a trajectory with a shorter time, or
subdividing the batch into sub-intervals and implementing a sliding batch. However, the primary
purpose of this work is obtain a covariance matrix with variances and spacial correlations appropri-
ate to perturb the truth in future Monte Carlo studies. As such, longer time trajectories are necessary
to ensure that the entire asteroid is observed and sufficient data collected. Furthermore, the concern
of observability already exists with the entire measurement set, and earlier state estimation may
require a smaller diffuse prior, weakening the maximum likelihood assumption.

It is also recognized that the GP batch filter is tested on a limited set of initial perturbations.
Sensitivity studies where the initial state perturbations ∆x are sampled randomly from an initial
covariance are performed, but with very few individual samples and thus not reported. As the
primary purpose of the batch filter is to obtain initial estimates and covariances for future Monte
Carlo studies, extensive sensitivity studies are not performed.
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FILTER RESULTS

Approach Results

The residuals from the batch filter are recorded at the final time according to x(tf ) − x̂i(tf ).
Note that the residuals for the asteroid shape, pole, and spin are constant through time as they are
static states. For ease of comparison across asteroid scenarios, the relative errors ϵ are recorded for
the position, velocity, and shape at each batch iteration i according to

ϵir(tf ) =
||r(tf )−r̂i(tf )||

r(tf )
, (24)

ϵiv(tf ) =
||v(tf )−v̂i(tf )||

v(tf )
, (25)

ϵi
′
f (tf ) =

||f ′(tf )−f̂
′
i(tf )||

f(tf )
. (26)

All radii are combined into one error metric for simplicity. The pole and spin states are presented
as absolute residuals, as the magnitude of the residuals are comparable between asteroids.

Figure 7a depicts the relative shape errors from the batch filter on approach to the four asteroids.
The results indicate that while each asteroid starts with roughly the same relative error, Bennu
performs the worst and Toutatis performs the best. It is not uncommon for relative errors to increase
slightly, as Toutatis does around iteration 16. These increases are attributed to multi-state estimation
and the adjusting measurement underweighting. For example, one radii estimate may approach
the truth, but the iteration’s correlations between radii are inaccurate, causing nearby radii to drift
away from the truth. Another instance of error increase is seen for Eros at iteration 18. Eros
has large craters on its upper and lower side that are not directly observable with silhouette-based
measurements. Only the spatial correlations help craters converge to the truth. As a result, these
radii have larger estimation variances. The slight upward trend of Eros near the end of the batch
iteration is attributed to the crater estimates changing slightly within their variance bounds.
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Figure 8 depicts the remaining state errors along the approach trajectory towards the four aster-
oids. It is clear that estimation about Bennu is more difficult than the other asteroids; it is hypoth-
esized that the poor estimation performance is due to Bennu’s spherical shape and lack of distin-
guishing geographical features. Also note that the prime meridian does not converge despite having
a small initial perturbation, further indicating the state element may not be observable. Furthermore,
the prime meridian of Bennu diverges rather dramatically compared to the other asteroids.

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-8

10
-6

10
-4

10
-2

10
0

P
o
s
it
io

n
 E

rr
o
r

Position Relative Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-6

10
-4

10
-2

10
0

10
2

V
e
lo

c
it
y
 E

rr
o
r

Velocity Relative Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 E
rr

o
r 

[d
e
g
]

 Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 E
rr

o
r 

[d
e
g
]

 Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

d
o

t E
rr

o
r 

[d
e
g
/h

r]

dot
 Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

0 2 4 6 8 10 12 14 16 18 20

Batch Iterations

10
-3

10
-2

10
-1

0
 E

rr
o
r 

[d
e
g
]

0
 Errors: Approach Trajectories

Lutetia

Eros

Toutatis

Bennu

Figure 8: Approach Trajectory State Errors
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Bennu Shape Alterations

The comparatively poor performance of the filter on approach to Bennu is hypothesized to be
caused by Bennu’s near-spherical shape. To test this hypothesis, an additional batch simulation
is run where two of the truth radii of Bennu are increased by 25%, creating large mountain-like
structures as depicted in Fig. 9

Figure 9: Altered Bennu Shape

Rerunning the filter with measurement data generated on the altered shape yielded in smaller
relative errors in the shape estimation, as seen in Fig. 10a. The new relative shape errors are now
similar with those of Lutetia and Eros.
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Furthermore, the altered shape yielded smaller errors for all states, as seen in Fig. 11. Particular
improvement occurred in position, velocity, spin, and prime meridian errors, with a slight improve-
ment for the right ascension and declination.
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Figure 11: Approach Trajectory State Errors: Altered Bennu
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Circular Orbit Results

Figure 12a depicts the relative shape errors from the batch filter in circular orbit about the four as-
teroids. Note that unlike the approach results, all asteroids do comparatively well. The comparative
performance is most likely due to the circular orbit seeing more geometry of the central body than
the approach trajectory. Furthermore, the initial errors in circular orbit are smaller than approach,
helping the results converge across scenarios.
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Figure 13 depicts the relative position and velocity errors in circular orbit. The results clearly
depict that the position and velocity is best estimated about Eros.
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Figure 13: Circular Orbit: Position and Velocity Relative Errors
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Lastly, Fig. 14 depicts the pole and spin errors in circular orbit. Once again Bennu has the worst
pole and spin estimation, but like the shape errors, is more comparable to the other asteroids. It is
also clear that the prime meridian does not converge to the truth, further pointing to observability
issues.
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Figure 14: Circular Orbit: Pole and Spin Errors

Results Discussion and Shape Covariances

An interesting result is that Eros outperforms the other asteroids in circular orbit, but not on
approach. Eros’ better filter convergence is most likely due to the initial perturbation applied to Eros
being comparatively smaller than the other asteroids, but may be indicative that the spin and shape
of Eros yield better estimation results in circular orbit. Bennu also performed far better in circular
orbit than on approach, again attributed to the significantly smaller initial perturbation (specifically
velocity) applied to Bennu compared to the other asteroids.

Recall that these results are from a single set of initial perturbations. Generalizing these results to
broader conclusions on the comparative performance between asteroids and trajectories should be
done sparingly. As stated, a primary goal of the GP batch filter is to obtain a statistically consistent
covariance of the shape estimate, unbiased by initial information. The covariance from the last
iteration of the approach trajectory to Eros was pulled and used to perturb the truth. Figure 15
depicts a random perturbation pulled normally from the covariance and used to perturb Eros, with
the perturbed shape in red and the original in green.
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Figure 15: Truth Shape Perturbations

The final covariances have been obtained from the batch filter and are ready to be used as initial
shape perturbations for a complete Monte Carlo analysis. The Monte Carlo analyses consist of
running numerous, Gaussian disturbances of the state (position, velocity, pole, spin, and shape) to
formulate new truth states, where an IEKF estimates each new truth. Future work will present the
results of the Monte Carlo analysis and steps taken to improve the IEKF filter. The filter is expected
to improve with a robust measurement rejection scheme34 that ensures the shape estimate does not
deviate too far from the truth. Furthermore, issues with the data association to the estimated shape
are to be mitigated through input noise incorporation as described in Mchutchon27 and Johnson.28

CONCLUSION

Results from the GP batch filter demonstrate its ability to simultaneously estimate the observing
spacecraft’s position and velocity and the central body’s orientation, spin, and shape. The GP batch
filter successfully estimated the augmented state of bodies with various shapes and sizes: Lutetia,
Eros, Toutatis, and Bennu. With the multi-iteration adjusting measurement weight scheme, the filter
is able to take large ellipsoidal initial shape estimates and converge to the truth.

The primary goal of obtaining initial state estimates and covariances for perturbing the truth states
in a Monte Carlo analysis is complete. Future work will focus on large Monte Carlo studies using
an IEKF to study the performance of the sequential GP filter for various SLAM applications. Future
work on the filter itself includes a sliding batch filter, where subsets of the trajectory are analyzed
and state estimates made earlier along the trajectory.
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