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4TH BODY-INDUCED SECONDARY RESONANCE OVERLAPPING
INSIDE UNSTABLE RESONANT ORBIT FAMILIES: A
JUPITER-GANYMEDE 4:3 + EUROPA CASE STUDY

Bhanu Kumar*, Rodney L. Anderson†, and Rafael de la Llave‡

The overlapping of mean-motion resonances is useful for low or zero-propellant space mis-
sion design, but while most related prior work uses a planar CRTBP model, tours of multi-
moon systems require using resonances affected by two moons. In this case study, we investi-
gate Jupiter-Ganymede unstable 4:3 resonant orbits in a concentric circular restricted 4-body
Jupiter-Europa-Ganymede model. We show that despite their high order, secondary reso-
nances between the 4:3 orbits and Europa have a large effect, including 11/34, 12/37, 23/71,
and 25/77. Computing newly generated objects inside the secondary resonances definitively
confirms their overlap, which causes a complete structural change of the higher-energy un-
stable 4:3 orbits whose manifolds are most useful for low-TOF orbit transfers. We believe
this phenomenon is general, with major implications for resonant orbit use in tour design.

INTRODUCTION

In the planar circular restricted 3-body problem (PCRTBP), each mean motion resonance contains families
of stable and unstable resonant periodic orbits across a range of energy levels. The unstable ones in par-
ticular are of special interest due to their attached stable/unstable manifolds; indeed, owing to the Chirikov
resonance-overlap criterion,1 it is the intersection of manifolds from different resonances that generates global
chaos and enables large-scale natural transport across the system phase space. This instability in turn can be
profitably leveraged for low or zero-propellant space mission trajectory design in multi-body systems, includ-
ing multi-moon tours. For example, Anderson and Lo2–4 designed trajectories for hypothetical Europa mis-
sions using heteroclinics between Jupiter-Europa unstable resonant orbits. Vaquero and Howell5 conducted
a similar investigation in the Saturn system, using Saturn-Titan PCRTBP resonant periodic orbit manifolds
for a theoretical mission to Hyperion. And more recently, the endgame mission design for the Europa Lan-
der mission concept leveraged similar phenomena in its approach to the surface of Europa.6 See Anderson,
Campagnola, and Lantoine7 for examples of many other PCRTBP-based applications of resonant orbits.

Given the fundamental importance of unstable mean motion resonant orbits for tour design, an under-
standing of their properties is critical. In most prior work, the model used is the PCRTBP, which takes only
the gravitation of one moon into account. Thus, the search for connections was carried out between orbits
which were all resonant with the same moon. However, when designing tours of multi-moon systems, one
must transition from orbits resonant with one moon to those resonant with a different moon; at some point,
this necessitates finding a “switching orbit”8 which allows the spacecraft to transition from resonances of
one moon to those of another. The resonances which could play such a switching role will be contained
in phase space regions which are significantly affected by both moons’ gravity. Thus, at least a restricted
4-body model (R4BP) is needed to study these resonant orbits and any resulting transfers accurately. One
such model, which we will use in this study, is the concentric circular restricted 4-body problem9 (CCR4BP),
where a third large body m3, revolving in a circle around the largest mass m1, is added to the PCRTBP.
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In this paper, we will demonstrate the importance of using an R4BP when studying unstable resonant orbits
in such phase space regions by showing how the addition of m3 can completely change the fundamental
structure of the orbits being studied, compared to the PCRTBP. This will be accomplished through a case
study on the effect of Europa on the unstable Jupiter-Ganymede 4:3 resonant orbit family. The dynamical
mechanism by which this structural change occurs is the generation of secondary resonances between the
periods of the PCRTBP unstable resonant periodic orbits and the synodic period of the forcing from m3,
which can undergo Chirikov overlapping inside the unstable resonant orbit family if the forcing from m3 is
strong enough; we find this to indeed be the case for the Jupiter-Europa-Ganymede 4:3 orbits. As secondary
resonances create entirely new types of orbits, their overlap has major implications for the kinds of resonant
orbits which should be analyzed in such multi-moon systems. Furthermore, these new orbits take the place of
precisely the higher-energy, closer moon-flyby, more highly-unstable resonant orbits whose stable/unstable
manifolds are the most useful ones for practical, lower time-of-flight (TOF) trajectories. While secondary
resonance overlapping has been studied in the context of families of stable, maximal-dimensional librational
tori inside mean motion10–12 or spin-orbit13 resonances in celestial systems, to our knowledge this study is the
first demonstration of such phenomena for unstable, non-maximal dimensional mean motion resonant orbits.

In this paper, we start with a summary of the CCR4BP model and its stroboscopic map, followed by an
overview of some of the mathematical concepts which will be needed, namely normally hyperbolic invariant
manifolds and Chirikov resonance overlapping. We next discuss the computational tools used in this study
for computing various types of invariant objects. After reviewing some related preliminary observations
from our prior study,14 we then present the methodology and results of a non-resonant torus-continuation
based investigation of the growth of Europa-induced secondary resonances inside the 4:3 Jupiter-Ganymede
unstable orbit family. Finding very strong evidence of these secondary resonances growing large enough to
overlap, we next directly compute the most important dynamical structures contained inside the secondary
resonances themselves in the full Jupiter-Europa-Ganymede CCR4BP, which yields definitive confirmation
of the overlap. We conclude with a discussion on the implications of this secondary resonance overlap for
studies involving unstable mean motion resonances in multi-moon systems, as well as for tour design.

PLANAR CONCENTRIC CIRCULAR RESTRICTED 4BP

The planar concentric circular restricted 4-body problem9 (CCR4BP) describes the motion of a spacecraft
influenced by the gravity of three large masses m1, m2, and m3 with m1 >> m2,m3. m2 and m3 are
assumed to revolve around m1 in coplanar, concentric circles of radii r12 and r13, where m2 has no effect on
the motion of m3 nor vice versa. Indeed, taking m1, m2, and m3 to be Jupiter, Ganymede, and Europa, the
motion of m1, m2, and m3 just described does not satisfy the full 3-body problem, but nevertheless approxi-
mates the true physical system very well. Due to Kepler’s third law, the angular velocities Ω2 and Ω3 of the

revolution of m2 and m3 around m1 depend on the masses and the orbital radii, as Ωi =
√

G(m1 +mi)r
−3
1i

for i = 2, 3 where G denotes the universal gravitational constant. In the planar CCR4BP, the circular orbits
of m2 and m3 as well as the spacecraft trajectory are assumed to all lie in the same plane.

Now, let µ = m2

m1+m2
and µ3 = m3

m1+m2
be the mass ratios. As in the PCRTBP, one can normalize mass,

length, and time units so that G(m1 + m2), r12, and Ω2 are all 1. Then, the planar CCR4BP equations of
motion can be written in the same synodic coordinate system usually used for the CRTBP; m1 and m2 lie
on the synodic frame x-axis, and the m1-m2 barycenter is taken as the frame origin. With these units and
coordinate frame, the angle between the position of m3 and the x-axis at time t will be θ3(t) = (Ω3 − 1)t+
θ3,0; the position of m3 thus is (x3(t), y3(t)) = (−µ+r13 cos(θ3), r13 sin(θ3)). The equations of motion can
then be written in position-momentum space (x, y, px, py) as (see Blazevski and Ocampo9 for a derivation)

ẋ = px + y ẏ = py − x

ṗx = py − (1− µ)
x+ µ

r31
− µ

x− (1− µ)

r32
− µ3

x− x3

r33
− µ3

cos θ3
r213

ṗy = −px − (1− µ)
y

r31
− µ

y

r32
− µ3

y − y3
r33

− µ3
sin θ3
r213

(1)
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where r1 =
√
(x+ µ)2 + y2, r2 =

√
(x− 1 + µ)2 + y2, and r3 =

√
(x− x3)2 + (y − y3)2 are the dis-

tances from the spacecraft to m1, m2, and m3, respectively. Note that when µ3 = 0, Eq. (1) is just the
m1-m2 PCRTBP. The equations of motion Eq. (1) are Hamiltonian, with time-periodic Hamiltonian function

Hµ3
(x, y, px, py, θ3) =

p2x + p2y
2

+ pxy − pyx− 1− µ

r1
− µ

r2
− µ3

r3
+ µ3

x cos θ3
r213

+ µ3
y sin θ3
r213

(2)

In Eq. (1), the CCR4BP equations of motion are written in the synodic m1-m2 frame, with units defined
to make r12 = G(m1 + m2) = Ω2 = 1. One can also write the CCR4BP equations of motion in an
m1-m3 synodic frame centered at the m1-m3 barycenter, however, with units normalized such that r13 =
G(m1 +m3) = Ω3 = 1. The m1-m3 frame equations of motion maintain the same form as Eq. (1), but with
all subscripts 2 and 3 swapped, new perturbation phase θ2 = −θ3, and new mass ratios µ̄ = m3

m1+m3
and

µ̄2 = m2

m1+m3
replacing µ and µ3, respectively; see Kumar et al15 for the full equations of motion in this case.

Similar to the m1-m2 frame, setting µ̄2 = 0 in this frame yields the m1-m3 PCRTBP equations of motion.

Stroboscopic Maps

The CCR4BP flow is defined on a 5D extended phase space, (x, y, px, py, θ3) ∈ R4 × T in the m1-m2

frame CCR4BP or similarly (x̄, ȳ, p̄x, p̄y, θ2) ∈ R4×T in the m1-m3 frame. The perturbation phase angle θ3
or θ2 increases the phase space dimension by 1 compared to the 4D phase space of the PCRTBP (x, y, px, py).
However, one can instead use a stroboscopic map which reduces the dimension of the CCR4BP back to 4D,
which has a number of benefits both for computations as well as for comparisons with the PCRTBP.

Let p = 3 or 2 be such that θp is the perturbation phase angle of the frame being used. Now, define the
stroboscopic map F : R4 × T → R4 × T as the time- 2π

|Ωp−1| mapping of extended phase space points by the

CCR4BP equations of motion. Since θ̇p = Ωp − 1, in time- 2π
|Ωp−1| , the angle θp will revolve by exactly 2π.

Thus, the θp component of F (x, y, px, py, θp,f ) will simply be θp,f again, for any (x, y, px, py) ∈ R4. As
the θp state component is F -invariant, one can fix its value to any θp,f (we take θp,f = 0) and consider the
dynamics of F on the 4D subspace (x, y, px, py; θp,f ) instead of the CCR4BP flow on its 5D phase space.

The stroboscopic map preserves all the dynamical properties of the CCR4BP, including invariant sets and
manifolds; each CCR4BP orbit has a stroboscopic map counterpart and vice versa. From this point onwards,
we make a slight abuse of notation and consider F : R4 → R4. Usually we will use a subscript, such as Fµ3

,
to signify the dependence of F on the CCR4BP mass parameter. Note that the stroboscopic map definition is
valid even for µ3 = 0 or for µ̄2 = 0, which are just the m1-m2 and m1-m3 PCRTBP respectively.

NORMALLY HYPERBOLIC INVARIANT MANIFOLDS

The PCRTBP contains many families of unstable periodic orbits, including planar Lyapunov orbits at L1
and L2 as well as unstable resonant periodic orbits. Each of these unstable orbit families can be parameter-
ized by a single parameter, oftentimes taken as the orbit Jacobi constant (or equivalently, its energy). Now,
consider such an unstable periodic orbit family which has one orbit per value of energy E over some range of
energy values [Emin, Emax]. Each orbit in the family is topologically equivalent to a circle T, so if one takes
the set of all the periodic orbits over all values of E ∈ [Emin, Emax], the resulting set Ξ will be a 2D invariant
manifold topologically equivalent to the cylinder T × [0, 1] in the 4D PCRTBP phase space. Moreover, as
the unstable periodic orbits which foliate Ξ have stable and unstable eigenvectors, at each point of Ξ these
eigenvectors will represent stable and unstable directions transverse to (i.e. not tangent to) the manifold Ξ.

Now, at any point of Ξ, taking the 2D tangent vector space of Ξ together with the stable and unstable
directions at that point gives a set of vectors spanning the entire 4D phase space. Thus, each point of Ξ has a
vector basis for the entire phase space where the effect of the PCRTBP state transition matrix causes all basis
vectors transverse to Ξ to exponentially contract (the stable direction) or expand (the unstable direction) over
time, at rates much stronger than those of any such contraction/expansion in the basis directions tangent to Ξ.
This is the fundamental property which defines a normally hyperbolic invariant manifold, or NHIM for short.
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For a rigorous definition of NHIMs, see Fenichel.16 Note that Ξ as defined above is not only a NHIM for the
PCRTBP flow, but also for the corresponding stroboscopic map Fµ3=0 defined in the previous section.

The key property of NHIMs which will be important is that they persist under sufficiently small perturba-
tions of the original dynamical system into the new system.16, 17 In fact, as long as the previously mentioned
conditions on rates of transverse versus tangent expansion/contraction hold, then the size of the perturbation
under which the NHIM persists can even be rather large in practice. The perturbed NHIM may deform in
phase space, but it will remain topologically equivalent to the NHIM from the unperturbed system. Thus, the
cylindrical 2D NHIM Ξµ3=0 = Ξ formed by any PCRTBP unstable periodic orbit family can be expected to
persist into the CCR4BP stroboscopic map Fµ3 system when µ3 > 0 as well, in the form of a cylindrical 2D
NHIM Ξµ3 (here it is key that the CCR4BP stroboscopic map is defined on the same phase space R4 as the
PCRTBP map Fµ3=0, which is required in order to apply the persistence theorems for NHIMs).

However, though the NHIM as a whole may persist into a perturbed system, there is no guarantee that the
dynamical objects inside the NHIM do the same. Indeed, the PCRTBP NHIM Ξµ3=0 was entirely foliated
by flow-periodic orbits, which are invariant circles (1D tori) of the stroboscopic map Fµ3=0. These tori will
have a range of rotation numbers ω, some of which will be resonant. From KAM theory,18 we know that
for sufficiently small perturbations, tori at “sufficiently irrational” ω

2π will persist inside the CCR4BP NHIM
Ξµ3 , while resonant circles (at rational ω

2π ) will disappear as soon as µ3 > 0. However, as will be seen in this
paper, the persistence of tori predicted by KAM theory is less robust than the persistence of NHIMs; that is, a
perturbation which is “sufficiently small” for NHIM persistence may not be small enough for the persistence
of invariant tori, even at irrational ω. Thus, the dynamics inside a NHIM may still change drastically with µ3.

The above discussion was done for the NHIM Ξµ3=0 being any family of PCRTBP unstable periodic orbits,
but for the remainder of this paper, we will let Ξµ3=0 represent the Jupiter-Ganymede PCRTBP 4:3 internal
unstable resonant orbit family, with Ξµ3

being its persisting counterpart under the CCR4BP stroboscopic
map. To analyze the dynamics inside the aforementioned NHIM Ξµ3 , it is useful to recall that Ξµ3 is just a
2D cylinder. Thus, Fµ3 restricted to Ξµ3 is effectively a 2D symplectic18 map from T× [0, 1] into itself. So,
for visualization and understanding of the NHIM’s internal dynamics, a 2D plot gives complete information.
In addition, since for µ3 = 0 the dynamics inside Ξµ3

are comprised entirely of invariant circles, Fµ3
is not

only symplectic, but also near-integrable inside Ξµ3
for µ3 “small”. Thus, we can use known results for 2D

symplectic, near-integrable maps on cylinders to characterize the dynamics inside the NHIM Ξµ3 . One such
result which will be of fundamental importance in this study is the Chirikov resonance overlap criterion.

RESONANCES AND CHIRIKOV’S OVERLAP CRITERION

The Chirikov resonance overlap criterion, first introduced1 in 1959, is a physical criterion for explaining
the transition from regular motions to chaotic global instability in deterministic, near-integrable Hamiltonian
and symplectic systems. While a fully general explanation is beyond the scope of this paper, an illustrative
example can be seen in the Chirikov standard map, a 2D symplectic map defined on the space (θ, r) ∈ T×R
through the equations rn+1 = rn + K sin(θn), θn+1 = θn + rn+1. For K = 0, r is constant on each
trajectory while θ simply rotates by r each iteration; the entire phase space is foliated by invariant circles
which “circulate”, i.e. wrap across the entire range of θ values from 0 to 2π, as is illustrated in the leftmost
plot of Figure 1. Such a phase space structure, comprised entirely of tori, is called integrability.

For K > 0 small enough, many of the circulating invariant circles present in the K = 0 case persist
under the perturbation, as is visible in the middle plot of Figure 1. However, not all these circles persist; it is
precisely the circulating circles at rotation numbers r = 2πm

n , m,n ∈ Z which disappear first. Such rotation
numbers correspond to resonances; moreover, it is also visible in Figure 1 that each resonance does not only
affect the dynamics exactly at that r value, but also in a region around it. Such resonant “islands” are clearly
visible in the figure at the lower order resonances r/2π = 0/1, 1/3, 1/2, 2/3, and 1/1. The width of each
island in the r direction will be proportional to the square root of the perturbation K;20 thus, as K grows, one
can predict that eventually consecutive resonance islands will grow wide enough that they must overlap each
other in phase space, which is the situation shown in the rightmost plot of Figure 1. The Chirikov resonance
overlap criterion says that this overlapping of resonance islands is exactly where regular circulating dynamics
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Figure 1. Standard map phase space trajectories for K = 0, 0.5, 0.97164 (left to right)19

108 CHAPTER 6. INTERACTIONS AMONG RESONANCES

Figure 6.1: Poincaré sections of two resonances, computed using integrable
single resonance models. When their sizes are small, the resonances are well
separated, and the single resonance approximations are reliable (panel a: left).
Conversely, when their sizes are large, resonances overlap (panel b: right). In
the latter case, the generation of large-scale chaos may be expected.

many KAM tori exist between the two resonances, so that each chaotic region
is locally confined. In particular, it is not possible for the motion to pass from
one resonance to the other.

The situation is completely different when ε is large (Fig. 6.1b). In this
case the domains where the dynamics is strongly influenced by either resonance
overlap each other, and the separatrices of the two resonances, as computed
on the Poincaré section with the corresponding integrable models, appear to
intersect. The approximation that each resonance is isolated therefore breaks:
the global dynamics cannot be studied using the integrable single resonance
models. It is reasonable to expect that in this situation KAM tori do not
exist between the two resonances, so that the chaotic regions associated to the
separatrices of the two resonances are in reality connected, and approximately
extend over all the space occupied by the two resonances. Roughly speaking,
an initial condition in the overlapping region does not know which resonance
it belongs to, and “hesitates” about which guiding trajectory (the curves in
Fig. 6.1b) it should follow. As a result, the evolution of an initial condition
in the chaotic region can freely pass from one resonance to the other one, the
action p1 evolving from 0 to 2π and vice versa and the two resonant angles q1

and q1 − q2 alternatively librating and circulating.

The intersection of the separatrices of different resonances, each computed

Figure 2. Pendulum Phase portrait21 (left), growing and overlapping pendulums20 (right)

ends and large-scale chaotic transport across the phase space becomes possible.

To understand how this resonance overlapping and transition to global chaos occurs, it is instructive to
discuss the dynamics inside each resonance island. In particular, it is known from Hamiltonian perturbation
theory20 that around a resonance, if one uses a coordinate system which rotates with the resonance, the system
phase portrait will resemble that of an undamped pendulum. The pendulum phase portrait is shown on the
left of Figure 2; it contains three key types of motion: circulating invariant circles at the top and bottom
of the plot, librating invariant circles in the middle (which do not go across the x-axis from 0 to 2π), and
separatrices (in red) between the circulating and librating regions. The separatrices are in fact stable and
unstable manifolds of the unstable equilibrium point at (0, 0) = (2π, 0) (since x is an angle, these points are
the same). There is also a stable equilibrium point (π, 0) at the center of the librating invariant circles.

If one does not use a coordinate frame rotating with the resonance, then for a 2D map like the standard map
of Figure 1 and a resonant rotation number 2πm

n with m,n coprime, one essentially ends up with a pendulum-
like phase portrait repeated n times side by side inside that resonant island, except with each iteration of the
map sending the kth pendulum onto the (k +m)th pendulum in the row (modulo n). Only after n iterations
will the map return each pendulum back onto itself. The stable and unstable pendulum equilibrium points of
the previous paragraph will thus be replaced by stable and unstable periodic orbits, each having a period of n
map iterations, and the separatrices of the resonance will just become the stable and unstable manifolds of the
unstable map-periodic orbit. Such a line of pendulums is visible, for example, in the island at r/2π = 1/2 in
Figure 1, where two pendulum-shaped regions are clearly present.

The above characterization of resonant islands indicates the dynamical mechanism by which their overlap
generates global chaos and destroys regular motions. As illustrated on the right of Figure 2, when resonance
islands overlap, their stable and unstable manifold separatrices must intersect, which facilitates transport
from one resonance to the other. The reverse is also true; intersection of stable and unstable separatrices
from different resonances implies resonance overlap. Furthermore, no circulating invariant circle can exist
between two overlapping resonances in such a 2D system, since it would then have to cross at least one of
these intersecting stable/unstable manifold separatrices, which is a contradiction.22
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THE INTERNAL STRUCTURE OF THE 4:3 ORBIT FAMILY NHIM Ξµ3

Though we used the standard map example to illustrate resonances and their overlapping, these phenomena
also apply to other 2D symplectic, near-integrable maps on cylinders. Recall that just like the K = 0 standard
map, the Fµ3=0 (PCRTBP)-induced symplectic dynamics inside the 2D cylindrical NHIM Ξµ3=0 are also
integrable, since Ξµ3=0 is foliated entirely by Fµ3=0-invariant circles. Thus, as long as this NHIM, formed
by the Jupiter-Ganymede 4:3 internal unstable resonant orbit family, persists into the CCR4BP, the previous
discussion on resonances, overlapping, and destruction of circulating invariant circles applies the same to the
dynamics inside the new perturbed Fµ3

-invariant 2D NHIM Ξµ3
for µ3 > 0 as well.

As described earlier, the NHIM Ξµ3=0 in the PCRTBP is foliated entirely by 4:3 Jupiter-Ganymede unsta-
ble PCRTBP flow-periodic orbits, which are also invariant circles of the PCRTBP stroboscopic map Fµ3=0.
Given a point x0 ∈ R4 belonging to a PCRTBP periodic orbit of period T , and letting ϕ(x, t) be the time-t
flow of the point x ∈ R4 by the PCRTBP equations of motion, we can define a function K(θ) = ϕ(x0, T

θ
2π ).

Since K(0) = K(2π) due to the T -periodicity of the point x0, we can consider θ ∈ T. K(θ) is thus a
parameterization of the Fµ3=0-invariant circle satisfying

Fµ3=0(K(θ)) = K(θ + ω) ω = (2π/|Ω3 − 1|)(2π/T ) (3)

where ω is called the rotation number of the invariant circle.

Due to KAM theory,18 the invariant circles inside Ξµ3=0 with ω
2π “sufficiently irrational” persist into the

CCR4BP NHIM Ξµ3
for µ3 > 0 small enough. However, Fµ3=0-invariant circles with rational ω

2π disappear
as soon as µ3 > 0, and are replaced by resonance islands (though an abuse of terminology, we henceforth
refer to such ω as “rational” rotation numbers). As described in the previous section, each island will contain
two Fµ3 -periodic orbits as well as librational tori and separatrices. All these orbits will still be contained
inside the 2D cylindrical NHIM Ξµ3

, and will thus inherit the NHIM’s attached transverse stable and unstable
directions. All objects inside each island are hence unstable when considering Fµ3

on its full phase space
R4. However, if one considers the restriction of the dynamics of Fµ3

to only the 2D NHIM Ξµ3
, then one of

the two periodic orbits will be stable and the other unstable inside the NHIM. We henceforth refer to these as
NHIM-stable and NHIM-unstable periodic orbits. Separatrices will emanate from the latter.

COMPUTING RELEVANT INVARIANT OBJECTS IN THE CCR4BP

In the previous sections, we discussed a variety of invariant objects which are important for understanding
whether regular, circulating invariant circles (1D tori) can exist in a symplectic map on the 2D cylinder.
These include the circulating invariant tori themselves, periodic orbits, and stable and unstable manifold
separatrices emanating from those periodic orbits. Recall that we seek to investigate the dynamics induced
by the CCR4BP stroboscopic map Fµ3

inside the 2D cylindrical NHIM Ξµ3
corresponding to the family of

unstable 4:3 Jupiter-Ganymede resonant orbits. Thus, we must find these various invariant objects inside this
NHIM (assuming the NHIM persists until the desired µ3, which we will show later to be the case). Ξµ3 ,
however, is an unknown 2D cylindrical submanifold of the 4D phase space of Fµ3 . Thus, even if one can
theoretically interpret Fµ3

to be a map restricted to a 2D cylinder, due to the lack of previous knowledge on
Ξµ3

’s location, in practice all the invariant circles, map-periodic orbits, and separatrices inside Ξµ3
must be

computed not in a 2D cylindrical phase space but in the full R4 phase space of the stroboscopic map.

To compute the invariant circles, map-periodic orbits, and stable and unstable separatrices inside the un-
stable 4:3 Jupiter-Ganymede orbit family NHIM for the CCR4BP stroboscopic map, various computational
methods are needed. Some new, improved, and efficient methods for computing invariant circles (1D tori) in
such cases, as well as their stable and unstable manifolds, were developed in our previous work.23 And over
the course of this study, we were also able to extend the aforementioned invariant circle computation methods
to the case of map-periodic orbits, and the torus stable/unstable manifold computation algorithm to the case
of separatrices inside a NHIM. We summarize these three methods in this section, though a full explanation
of our new periodic orbit and separatrix computation methods will require a separate paper24 (in preparation).
Readers more interested in dynamical results than methodology may skip this section without issue.
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Parameterization Methods for Computing Invariant Circles (Tori)

Though Equation (3) was for µ3 = 0, it is in fact also the equation which must be solved to compute those
invariant circles K which persist for µ3 > 0. In this µ3 > 0 case, it takes the form

Fµ3(K(θ)) = K(θ + ω) ω inherited from the corresponding µ3 = 0 torus (4)

In previous work,23 we developed a quasi-Newton method for solving Eq. (4) for unstable tori in periodically-
forced PCRTBP models such as the CCR4BP. The method solves not only for K(θ), but also simultaneously
finds a matrix-valued function P (θ) : T → R4×4 and Λ ∈ R4×4 satisfying

DFµ3
(K(θ))P (θ) = P (θ + ω)Λ (5)

where we mandate Λ to be the unstable torus’ Floquet stability matrix, of form

Λ =


1 T 0 0
0 1 0 0
0 0 λs 0
0 0 0 λu

 (6)

For each θ ∈ T, the four columns of P (θ) are the linearly independent tangent, center, stable, and unstable
directions of the torus at the point K(θ), in that order. T ∈ R is a shear constant and λs, λu ∈ R are the
constant stable/unstable multipliers for the circle (λs < 1, λu > 1). The torus tangent and center directions
will both be tangent to the 2D NHIM Ξµ3

containing the torus.

As it turns out, solving simultaneously for K, P , and Λ not only gives stability information, but actually has
lower computational complexity than more commonly-used methods which solve for K alone.23 The method
converges given a sufficiently accurate initial guess, so one can use it to numerically continue invariant circles
from the PCRTBP (where they are easily computed) to the µ3 > 0 CCR4BP. Once a solution K,P,Λ is
computed at some µ3, it is possible to also compute dK

dµ3
using a Lindstedt method to improve the initial

guess for the next continuation step, as described in Kumar et al.15 During the continuation, due to the
changing µ3 and Kepler’s third law, one must vary r13 in order to keep Ωp and ω constant (which is needed).

Finally, we note that CCR4BP stroboscopic map Fµ3
-invariant circles correspond to 2D tori of the CCR4BP

flow. Any such 2D torus can be parameterized in the CCR4BP flow’s 5D phase space as a function of 2 an-
gles, K2(θ, θp) : T2 → R4×T, where θp is the perturbation phase angle from the CCR4BP flow phase space.
Recall that the map Fµ3 was defined by fixing θp = θp,f ; thus, the Fµ3 -invariant circle K(θ) is related to its
flow-invariant counterpart through the equation K(θ) = K2(θ, θp,f ). At times, however, it can be beneficial
to fix θ = θf and then compute KP (θp) = K2(θf , θp) : T → R4 ×T instead. In Kumar et al,14 we extended
the quasi-Newton method for computing stroboscopic map-invariant K to the computation of KP as well.

Computing Long Periodic Orbits

As explained earlier, separatrices attached to the NHIM-unstable Fµ3 -periodic orbits drive resonance over-
lapping and destruction of invariant circles. Computing separatrices, however, first requires finding the
NHIM-unstable periodic orbits from which they emanate. For a resonance at rational ω = 2πm

n , m,n ∈ Z
coprime, the period of its periodic orbit will be n iterations of Fµ3

. But if n is large, as is the case for the
orbits we study later, the resulting n-periodic orbit will be very difficult to compute using single-shooting.
Thus, a multiple shooting algorithm is required. For an n-periodic orbit, we will find n multiple shooting
points X(k) ∈ R4, k = 0, 1, . . . , n− 1, satisfying

Fµ3
(X(k)) = X(k +m mod n) (7)

This is equivalent to the slightly different equation Fµ3
(X(k)) = X(k + 1 mod n) often seen in the lit-

erature;25 only the ordering of the solution points X(k) will be different. We choose the ordering of X(k)
induced by Equation (7) because for the resonant island at ω

2π = m
n , points of its solution X(k) at consecutive

k will then also lie physically next to each other inside the NHIM Ξµ3
.
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Multiple-shooting algorithms to solve Equation (7) have been developed and used previously25 in many
astrodynamics applications; those algorithms however involve using Newton’s method to solve for a vector
containing all of the X(k) components for all k-values, which requires solving a large-dimensional linear
system of equations in each Newton step. However, in this study, we developed a new multiple-shooting
quasi-Newton method that avoids solving large linear systems. To do this, we augment Equation 7 with
another equation to be solved simultaneously for P (k) : {0, 1, . . . , n− 1} → R4×4 and Λ ∈ R4×4 satisfying

DFµ3
(X(k))P (k) = P (k +m mod n)Λ (8)

For µ3 = 0, Λ is mandated to have the form given in Equation (6), while the columns of P will be as
described in the previous section on tori. However, for µ3 > 0, Λ is required to instead be diagonal with
entries λ1, λ2, λs, and λu; if X(k) is a NHIM-unstable orbit, the third and fourth columns of P will continue
to be its stable and unstable directions transverse to the NHIM, but the first and second columns will be
the new stable and unstable directions tangent to the NHIM which are generated by the appearance of the
resonant island. In this case, λ1 < 1 and λ2 > 1 will both be close to 1, while λs < 1 and λu > 1 will be
further from unity. As is explained in our torus quasi-Newton method paper,23 that method uses P and Λ to
make each torus quasi-Newton step upper triangular (in fact, almost diagonal); the exact same is also possible
using P and Λ in the multiple-shooting periodic orbit quasi-Newton method.

Though the multiple-shooting algorithm is inspired by our torus computation method, some modifications
to the torus algorithm were required to make it work for periodic orbits. Though we refer the reader to our
upcoming paper24 for the full details, we will briefly mention one important change, which is in the solution
of cohomological equations. For the torus case, these equations were of form λaa(θ)− λba(θ + ω) = b(θ),
with λa, λb, and b : T → R known; each torus quasi-Newton step requires solving 16 such equations, which
can be done using Fourier series or fixed-point iteration.23 However, in the periodic orbit case, the equations
become λaa(k) − λba(k +m mod n) = b(k). If λa

λb
is not extremely close to 1, then the same fixed point

iteration from the torus case23 still works. Otherwise, if λa and λb are nearly but not exactly equal, then
one can instead derive an explicit formula for a(k) by taking advantage of the periodicity of the index k. If
λa = λb, then given any solution a(k), a(k) + C is also a solution for any C ∈ R; thus, we can arbitrarily
set a(0) = 0 and use the relation a(k +m mod n) = a(k)− b(k)/λa to determine all the other a(k).

Computing Separatrices

Once a solution X,P,Λ to Equations (7)-(8) has been found at a resonance ω = 2πm
n with m,n ∈ Z

coprime, then if X is a NHIM-unstable periodic orbit, we would like to compute the separatrices emanating
from it. These 1D separatrices will be comprised of the stable and unstable manifolds of this periodic orbit
inside the 2D NHIM Ξµ3 . The information given by P (k) and Λ on stable/unstable directions and multipliers
can be used to compute these separatrices; the first and second columns of P (k) give the linear approxima-
tions to the stable and unstable separatrices emanating from each point X(k), while the first two diagonal
entries λ1 < 1 and λ2 > 1 of Λ give their corresponding (weak, near unity) stable and unstable multipliers.

Since these separatrices correspond to weak expansion and contraction inside the NHIM Ξµ3 (as op-
posed to the strong expansion/contraction transverse to the NHIM), globalizing the aforementioned linear
stable/unstable separatrix approximations using numerical integration will lead to large numerical errors;
the separatrices we want are contained inside the NHIM Ξµ3

, but integration will amplify even very small
errors in the linear approximation in the direction of the NHIM’s strong, transverse unstable direction, push-
ing the computed separatrix off of the NHIM. Thus, we instead will use a parameterization method26 to
compute the separatrices as polynomial curves, including nonlinear terms. For this, we find a function
W (k, s) : {0, 1, . . . , n− 1} × R → R4 satisfying

Fµ3
(W (k, s)) = W (k +m mod n, λs) (9)

where λ = λ1 or λ2 depending on which separatrix is sought. Equation (9) can be solved recursively by
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Figure 3. Resonant Gaps Within 4:3 Tori at µ3 = µ3,e (left14), 4:3 J-G Family ω values (right14)

expressing W as a set of n Taylor series depending on the integer k

W (k, s) =

∞∑
i=0

Wi(k)s
i (10)

where W0(k) is the known function X(k) and W1(k) is known from column 1 or 2 of P (k).

The method of computing each Wi is very similar to the corresponding method for stable and unstable
manifolds of tori given in our previous paper.23 Each term Wi(k) for i ≥ 2 can be found, given all the terms
Wj(k) with j < i, by letting Wi(k) = P (k)Vi(k) and solving the equation

ΛVi(k)− λiVi(k +m mod n) = −P (k)−1Ei(k) (11)

where Ei(k) is the si Taylor coefficient of E(k, s) = Fµ3

(∑i−1
j=0 Wj(k)s

j
)
−∑i−1

j=0 Wj(k+m mod n)(λs)j ;
E(k, s) is just the error in Equation (9) when the degree i− 1 truncation of W is substituted in its place. The
coefficient Ei can be computed using jet transport,27 exactly like in the torus case.23 For full details of this
method, we again refer readers to our upcoming paper.24 In practice, these series will be truncated at some
finite degree in s. Also, they are valid only on a finite interval of s values centered at 0, but we will find this
to be enough for our study; this interval can be found by finding the maximum value of |s| for each k such
that Equation (9) is true within some fixed tolerance. In this study, we use a tolerance of 10−5.

EVIDENCE OF SECONDARY RESONANCE OVERLAP INSIDE THE 4:3 J-G FAMILY

Given the previous information on the NHIM Ξ3 formed by the Jupiter-Ganymede (J-G) unstable 4:3 reso-
nant orbits, on resonance islands inside Ξ3, and on resonance overlapping, we can now discuss the properties
of the 4:3 J-G family in the CCR4BP. In a previous paper14 on potential transfers from J-G to Jupiter-Europa
resonances, we attempted to compute a variety of unstable J-G 4:3 orbits in the CCR4BP. In that work, the
only method used for this was continuation of orbits by µ3 from the J-G PCRTBP as invariant circles (at ir-
rational ω

2π ) into the Jupiter-Europa-Ganymede (J-E-G) CCR4BP; however, continuation implicitly assumes
that those circles persist until Europa’s physical µ3 = µ3,e ≈ 2.52651× 10−5, which as we will see may not
be the case. Using that methodology, only low-energy J-G 4:3 orbits were successfully continued as tori until
the J-E-G CCR4BP µ3 = µ3,e. Attempts to continue the higher-energy PCRTBP unstable 4:3 orbits, whose
manifolds are more unstable and thus useful for low-TOF transfers, into the CCR4BP stopped before µ3,e.

The lower-energy tori which were successfully continued to the physical system nevertheless showed an
interesting behavior. In particular, between the successfully computed tori, two significant gaps appeared,
both shaped like strings of pendulum phase portraits similar to the left of Figure 2. These tori, with clearly
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visible gaps, are shown on the left of Figure 3. Furthermore, these gaps occur at ω values of 2π 13
40 and 2π 14

43 ,
making it obvious that these gaps are in fact resonant islands inside the unstable 4:3 J-G family NHIM Ξµ3 .
Finding all possible ω values for the unstable 4:3 J-G family, determined using the µ3 = 0 PCRTBP orbit
family and Equation (3), we found that ω ranged from about 2.0485 to 2.028. In this interval, there are four
ω
2π values with denominator less than 50: ω

2π = 14
43 ,

13
40 ,

12
37 , and 11

34 . The right of Figure 3 plots ω versus the
vertical positive x-axis crossing coordinate of each PCRTBP 4:3 J-G orbit, with those rational ω overlaid.

Given the significant resonant islands observed among even the successfully computed tori, the presence of
lower-denominator rational ω values in ω ∈ [2.028, 2.0405] (whose corresponding tori all failed to continue
until µ3 = µ3,e), and the fact that the failed continuation orbits all make closer passes of Europa’s orbit
than those whose continuations succeeded (meaning a stronger perturbative effect from µ3), a reasonable
hypothesis is that the continuation failure could be due to resonant islands in the range ω ∈ [2.028, 2.0405]
overlapping. As discussed earlier, overlapping resonances in a 2D map (such as the internal dynamics of the
4:3 J-G family NHIM Ξµ3

) necessarily destroy all invariant circles between them. To investigate whether this
is the case, we first use a torus continuation based method to study the dynamics inside Ξµ3

.

Before describing the methodology and results of this investigation, we would like to make a note about
terminology. In the previous discussion, we referred to resonant islands inside the unstable 4:3 J-G family
NHIM Ξµ3

at rational ω values. However, note that the 4:3 J-G orbits which comprise Ξµ3
are themselves

all in a mean motion resonance (MMR) with Ganymede, regardless of ω, and are in fact all inside a higher-
dimensional resonance island of the wider phase space R4. Thus, to distinguish from the 4:3 J-G MMR,
the rational rotation numbers ω and their corresponding resonant islands inside Ξµ3

should be referred to as
secondary resonances. To understand the physical meaning of a secondary resonance, one can rearrange the
expression given for ω in Equation (3); namely, one finds that ω

2π = 2π/|Ω3−1|
T . But 2π/|Ω3 − 1| is just the

synodic period of Europa’s revolution with respect to the J-G frame, while T is the period of some 4:3 J-G
unstable resonant periodic orbit from the J-G PCRTBP. Thus, at a secondary resonance where ω

2π is rational,
the period of that J-G periodic orbit is a rational multiple of the J-G-synodic period of Europa’s revolution.

Torus Continuation-Based Secondary Resonance Investigation: Methodology

In reality, µ3 has a fixed value µ3,e for Europa, which is thus the only value of µ3 of practical interest for
real missions. However, studying the behavior of the orbits inside Ξµ3 as a function of µ3 ranging from 0
to µ3,e can help us predict what the orbit family properties will be at µ3 = µ3,e. Our torus continuation-
based investigation operates in this spirit, taking inspiration from Figure 3, where secondary resonant islands
inside Ξµ3

for µ3 = µ3,e became visible through the continuation of the invariant circles surrounding them.
Although no invariant circles with ω ∈ [2.028, 2.0405] persisted until µ3 = µ3,e, we can instead continue
circles to smaller µ3 values, and see if secondary resonant islands appear among the tori which persist at
those µ3 values. Doing the same for a sequence of increasing µ3 values should provide information about
how the size of the islands grows with µ3, which is key to determining if they overlap.

We carry out this procedure starting from a fine grid of higher-energy, 4:3 J-G PCRTBP orbits from the
right plot of Figure 3 lying between x ≈ 0.942, ω ≈ 2.0405 and the plot local minimum at x ≈ 0.965, ω ≈
2.032685; all these orbits failed to continue until µ3,e. Using our quasi-Newton method described earlier, we
try to continue each µ3 = 0 invariant circle from the aforementioned grid to µ3 values of µ3,j = 10−7j for
j = 1, 2, . . . , 253, going as high in µ3 as possible without dropping below a minimum continuation step size.
We start with a continuation step size of 10−7, followed by 10−8 and finally 10−9 as the minimum step size.

The fine grid of 4:3 J-G PCRTBP orbits from which we start the continuation corresponds to a set of
rotation numbers ωk,S ∈ [2.032685, 2.0405]. However, tori at certain ω values will persist longer than others;
in order to avoid misleadingly wide-looking secondary resonant islands between persisting tori, the initial grid
of orbits should be chosen so that they persist until values of µ3 as large as possible. Prior research28 suggests
that tori with noble ω, that is, a continued fraction expansion29 of form [a0, a1, . . . , an, 1, 1, 1, . . . ], ai ∈ Z+

for all i, survive longest. To get a fine grid of noble rotation numbers ωk,S ∈ [2.032685, 2.0405], start with
an evenly spaced grid of ωk ∈ [2.032685, 2.0405], and then:

1. Compute the (finite, since on a computer) continued fraction (CF) expansion of ωk
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Figure 4. 4:3 J-G PCRTBP orbit family for ω ∈ [2.032685, 2.0405] plotted in P2 vs −Q2 coordinates

2. Starting with j = 1, replace the last j CF terms with 1. Convert this CF to a number ωk,j , check if
|ωk,j − ωk| > tol (we use ωk+1−ωk

2 ), and if not, increase j by 1 and repeat this step

3. Once |ωk,j−ωk| > tol, repeatedly increment the jth from last CF term by 1 and recompute the resulting
ωk,j until |ωk,j − ωk| < tol again. The resulting ωk,j is ωk,S .

Doing this for all ωk, we get the grid of noble ωk,S values corresponding to the tori from which we should
start the continuation. We take PCRTBP orbits at these ωk,S values and continue them.

To visualize the results, recall from the section on NHIMs that a 2D plot of the persisting tori at each µ3,j

value is enough, since all persisting tori will belong to the 2D cylindrical NHIM Ξµ3,j . Nevertheless, one
can choose a particularly advantageous set of 2D coordinates for plotting by considering the fact these are
unstable 4:3 J-G mean motion resonant orbits. In particular, though the tori are all computed in Cartesian
coordinates, we can first transform the resulting points to Jupiter-centric, J-G synodic Delaunay coordinates30

(L,G, ℓ, g). Here, ℓ is the osculating spacecraft mean anomaly, while g is its osculating J-G synodic argument
of periapse. As g is measured with respect to the synodic J-G frame x-axis, ġ will be approximately -1 times
Ganymede’s mean motion around Jupiter, even though (in fact, since) the spacecraft argument of periapse
remains near-constant in an inertial reference frame. All this becomes exact in the µ = µ3 = 0 case (rotating
Kepler problem). Thus, carrying out the linear canonical transformation

Q1 = 3ℓ+ 4g Q2 = −ℓ− g P1 = −L+G P2 = −4L+ 3G (12)

we have that Q1 is a “slow angle” for the 4:3 J-G MMR, since by definition Q̇1 = 0 inside the 4:3 J-G
resonance in the µ = µ3 = 0 Keplerian case. Q2 on the other hand is a “fast angle” inside the 4:3 J-G MMR,
with Q̇2 < 0 even for µ = µ3 = 0. As it turns out, plotting all the torus points in the 2D space (Q2, P2) leads
to a very simple and useful representation, where in the PCRTBP case (µ3 = 0), all unstable 4:3 J-G orbits
are near-horizontal curves showing clearly circulating invariant circles. This is shown in Figure 4 for the 4:3
J-G PCRTBP orbits with ω ∈ [2.032685, 2.0405].

We briefly explain why these coordinates lead to simple plots. From the perturbation theory of Hamil-
tonian systems,20 in the PCRTBP (since a flow is required for the following), having Q̇2 > 0 near the 4:3
MMR even when µ = 0 means that we can find a near-identity canonical transformation (Q1, Q2, P1, P2) =
χ(Q̄1, Q̄2, P̄1, P̄2), valid around the 4:3 MMR, which essentially averages the Hamiltonian over the fast mo-
tion of Q2. The resulting PCRTBP Hamiltonian is independent of Q̄2, which makes P̄2 an integral of motion
and thus decouples the motion of (Q̄2, P̄2) from (Q̄1, P̄1), which then follow the pendulum phase portrait of
Figure 2. In the averaged coordinates, our unstable 4:3 J-G orbits occur at the unstable equilibrium point in
(Q̄1, P̄1) space, which is not interesting. But in averaged (Q̄2, P̄2) coordinates, each 4:3 orbit will just be a
horizontal circulating invariant torus rotating in the Q̄2 direction, due to the integral of motion P̄2. Since χ
was a near-identity (though complicated) transformation, the orbit plots in non-averaged (Q2, P2) are similar.

Torus Continuation-Based Secondary Resonance Investigation: Results

The results of the continuations of the tori with ω ∈ [2.032685, 2.0405] are displayed in Figures 5-6, for
the µ3,j values listed in the figure captions. The tori higher on the vertical axis have larger ω, with ω mono-
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Figure 5. Persisting CCR4BP 4:3 J-G orbit tori for ω ∈ [2.032685, 2.0405] plotted in
(−Q2, P2) at µ3 × 106 = 1, 3, 5, 8, 10 (from top to bottom)
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tonically decreasing with P2. Although all the 4:3 J-G orbits inside Ξµ3=0 were very simple, near-horizontal
circulating invariant tori for the J-G PCRTBP, as soon as µ3 > 0 we start seeing secondary resonance islands
appear. For even just µ3 = 1 × 10−6 ≈ 0.04µ3,e, very prominent islands are generated by the previously-
mentioned secondary resonances ω

2π = 12
37 and 11

34 ; 12
37 is the large island at the top of that plot, while 11

34 is
the large island at its bottom. However, noticeable islands also appear at higher order secondary resonances
ω
2π = 23

71 and 34
105 , which are expected20 to be weaker (for ω

2π = m
n , the resonance order is defined as m+n).

Increasing µ3 from 1× 10−6 to 3× 10−6 and then 5× 10−6, the previously-seen islands at 12/37, 23/71,
34/105, and 11/34 grow significantly wider, with the tori which formed the bottom edge of the 11/34 island
disappearing. However, yet more higher-order secondary resonant islands appear, at ω

2π = 25
77 and 35

108 . By
µ3 = 8 × 10−6 ≈ 0.317µ3,e, another visibly wide island appears at ω

2π = 37
114 . As is expected, for each

secondary resonance m/n, there are n pendulum-shaped regions appearing side by side within its island.
All of these secondary resonances have order much larger than those generally seen in the context of mean
motion resonances (where both the numerator and denominator are usually less than 10), but nevertheless
their effects are quite prominent, as evidenced by the growing widths of their corresponding islands.

Increasing µ3 further until 1 × 10−5, we see that the strips of tori separating the large upper 12/37 island
from the small 35/108 and 37/114 islands (just below and above 12/37, respectively) have grown very thin.
The strips of tori separating other consecutive islands ( 2577 ,

37
114 ,

12
37 ,

35
108 ,

23
71 ,

34
105 , and 11

34 , in that order from
top to bottom) have also grown much thinner than for smaller µ3 values. As µ3 grows to 1.05, 1.1, 1.2, 1.3,
and 2×10−5, these strips of tori separating consecutive secondary resonant islands grow thinner and thinner,
and then disappear. Apart from a few of the lowest-energy tori near ω = 2.0405, the last circulating invariant
circle in this part of the 4:3 J-G family NHIM Ξµ3

fails to continue past µ3 = 2.05 × 10−5; its ω
2π had a

continued fraction expansion of [0, 3, 11, 3, 1, 1, 3, 1̄], which was one of the “most noble” ωk,S values we
started from (in the sense of having the smallest continued fraction terms before 1̄).

To check if there were any secondary resonant ω which did not have a noticeable effect on these unstable
4:3 J-G tori, we used a Farey sequence31 to help find all rational rotation numbers with denominator < 125
lying in the range [2.032685, 2.0405]. The numbers found were 2π times 11

34 ,
34
105 ,

23
71 ,

35
108 ,

12
37 ,

37
114 , and 25

77 ,
all of which did generate significant secondary resonant islands. For smaller µ3, we can measure the width of
the islands as a function of µ3. This is shown in Figure 7 for the 12/37 secondary resonance, where the width
is measured as the vertical P2 distance at −Q2 = 2π 19

37 from the top edge of the island to the bottom edge
of the island. As predicted by perturbation theory,20 the width scales proportionally with

√
µ3 for smaller µ3

(here, 1.02
√
µ3 provides an excellent fit to the data), further confirming the validity of our methodology.

In summary, the tori disappear first near lower-order secondary resonances, followed by near higher-order
ones, as expected. The secondary resonant islands grow wider and wider until no tori remain to separate them,
most with widths initially scaling with

√
µ
3
, also as expected. All of the previous evidence thus suggests that

14



the widths of the islands seen in Figures 5-6 are correct. The widths are clearly significant, and they also grow
fast enough with µ3 that they could overlap. This would then provide the mechanism for the disappearance of
tori separating islands (as explained in the section on Chirikov overlapping). Thus, these continuation-based
plots very strongly suggest that the secondary resonances overlap inside this higher-energy portion of Ξµ3

by
the time µ3 reaches µ3,e. However, for final confirmation, we need to compute separatrices.

FINAL CONFIRMATION OF 4:3 J-G FAMILY SECONDARY RESONANCE OVERLAP IN THE
PHYSICAL MASS J-E-G THROUGH SEPARATRIX COMPUTATION

As mentioned in the section on the Chirikov criterion, resonant islands overlap in 2D maps when their
stable and unstable manifold separatrices intersect. Assuming the 2D cylindrical NHIM Ξµ3

of unstable 4:3
J-G orbits persists until µ3 = µ3,e, so that we can restrict attention to Ξµ3

and consider Fµ3
as a 2D map,

this means that we should check if the separatrices of its secondary resonances intersect. If they do intersect,
then this would prove that the circulating invariant circles with ω ∈ [2.032685, 2.0405], continued from the
µ3 = 0 PCRTBP in the previous section, cannot persist into the µ3 = µ3,e physical mass J-E-G CCR4BP.

NHIM-unstable periodic orbit computation and NHIM persistence

Recall from the section on the internal structure of Ξµ3
that each separatrix will emanate from a NHIM-

unstable secondary resonant Fµ3
-periodic orbit. Thus, first these periodic orbits must be computed in the

higher-energy region of interest, followed by their stable and unstable manifold separatrices. For a secondary
resonance at ω

2π = m
n , m,n ∈ Z coprime, the period of its periodic orbit will be n iterations of Fµ3 , with

n discrete points X(k) lying on that orbit. However, for the µ3 = 0 PCRTBP, even secondary resonant ω
have corresponding invariant circles, which are continuous objects, not discrete. This means that the µ3 = 0
invariant circle at a rational ω must contain a (infinite) continuum of Fµ3=0-periodic orbits, all of whose
points taken together form that invariant circle. As soon as µ3 > 0, all of those infinitely many Fµ3=0-
periodic orbits disappear except two, which persist as the NHIM-stable and NHIM-unstable periodic orbits.

The continuation from µ3 = 0 to µ3 = µ3,e of a NHIM-unstable or NHIM-stable secondary resonant
periodic orbit needs to be started from the correct Fµ3=0-periodic orbit. To find which two of the infinite
continuum of such orbits persists for µ3 > 0, note that each plot of Figures 5-6 is symmetric about the
line l + g = π. The symmetry necessitates that for each secondary resonance, either the NHIM-stable or
NHIM-unstable periodic orbit must pass through that line so that its row of pendulums is symmetric. Thus,
for ω

2π = m
n , one of the two persisting secondary resonant Fµ3=0-periodic orbits will be the one containing a

point x0 on l+ g = π. The other one will contain the point found by integrating x0 by the PCRTBP flow for
time T

2n (T being that orbit’s PCRTBP flow period). The CCR4BP flow has a time-reversal symmetry about
the x-axis similar to the PCRTBP, which is valid for our stroboscopic map as well due to the earlier choice of
stroboscopic map phase θp,f = 0. For each 4:3 J-G µ3 = 0 circle, l + g = π corresponds in cartesian space
to the circle’s vertical crossing with the positive x-axis, which causes the symmetry about l + g = π.

As found in the previous section, the secondary resonances 11
34 ,

34
105 ,

23
71 ,

35
108 ,

12
37 ,

37
114 , and 25

77 were the most
important. Using the previous discussion on persisting Fµ3

-periodic orbit locations, we used the multiple-
shooting quasi-Newton method described earlier to successfully continue all of those NHIM-unstable sec-
ondary resonant periodic orbits from µ3 = 0 to the physical µ3,e, except for 37

114 due to a NHIM-stable to
NHIM-unstable bifurcation (we anticipate computing this last one in the near future as well, after some small
extensions to our computer implementation required to handle complex Floquet multipliers). For visualiza-
tion of how and where secondary resonant periodic orbits appear inside islands, in Figure 8 we plot both the
persisting invariant circles as well as the secondary resonant periodic orbit points for the µ3 = 8 × 10−6

CCR4BP. As expected from the pendulum phase portrait of Figure 2, NHIM-unstable orbit points occur at
the “necks” between pendulums, while NHIM-stable ones occur at the centers of their “bulges”. We also
plot all the secondary resonant periodic orbit points for µ3 = µ3,e in Figure 9, as well as a single example
secondary resonant periodic orbit under the continuous-time J-E-G CCR4BP flow in Figure 10.

Each NHIM-unstable Fµ3 -periodic orbit has two stable and two unstable Floquet multipliers, all of which
are found as part of the multiple-shooting quasi-Newton method. One stable/unstable multiplier pair λs =
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Figure 8. Persisting CCR4BP 4:3 J-G tori and secondary resonant periodic orbits for
µ3 = 8× 10−6 (magenta x for unstable, blue o for stable, tori in gray for context)
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Figure 9. µ3 = µ3,e CCR4BP 4:3 J-G secondary resonant periodic orbits (x for
unstable with different colors for different orbits, blue o for stable)

Figure 10. 12:37 Secondary Resonant 4:3 Ganymede Orbit under µ3 = µ3,e J-E-G CCR4BP flow
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Figure 11. µ3 = µ3,e CCR4BP 4:3 J-G separatrices (red for unstable, blue for stable),
plus secondary resonant periodic orbits (various color x for unstable, blue o for stable)
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Figure 12. µ3 = µ3,e CCR4BP 4:3 J-G 12/37 unstable (red) and 35/108 stable (blue) separatrices

λ−1
u corresponds to the stable/unstable directions transverse (not tangent) to the 4:3 J-G orbit NHIM Ξµ3

,
while the other pair λ1 = λ−1

2 will be for the stable/unstable directions tangent to Ξµ3
generated by its

secondary resonance island (assuming that Ξµ3 persists). Recall from the section on NHIMs that the condition
defining a NHIM is that it has transverse directions contracting/expanding more strongly than its tangent
directions; furthermore, this condition is what is also required for it to persist under perturbations such as, in
our case, µ3 > 0. Thus, for the NHIM-unstable orbits computed in the µ3 = µ3,e physical J-E-G CCR4BP,
we can compare the tangent Floquet multiplier pair (λ1, λ2) with the transverse pair (λs, λu). What we found
is that indeed there remains a large difference in the tangent versus transverse contraction/expansion rates.
The strongest tangent λ2 was ≈ 1.035, while the weakest transverse λu among these higher-energy orbits
was ≈ 2.508. This indicates that the NHIM Ξµ3 indeed persists until µ3 = µ3,e.

Separatrix computation and confirmation of secondary resonance overlap

With the NHIM-unstable secondary resonant periodic orbits continued into the physical J-E-G µ3 = µ3,e,
we used the previously-described stable/unstable manifold separatrix parameterization method to finally com-
pute their attached separatrices. As mentioned in the computations section, each separatrix is represented by
a set of n polynomials with some finite domain of validity; plotting the curves parameterized by these poly-
nomials over their domains of validity in (−Q2, P2) space, we get Figure 11. Unstable manifold separatrices
are shown in red, while stable ones are in blue. Due to the symmetry described in the previous section, the
unstable separatrices are just the reflections of the stable ones about the line ℓ + g = π. As discussed in
the section on computing these parameterizations, we do not use numerical integration to globalize these
stable/unstable manifold separatrix curves, as the strong expansion in directions transverse to the NHIM Ξµ3

would amplify any errors and push the resulting curves off of Ξµ3
. Nevertheless, even without globalization,

we are able to observe intersections between the separatrices of different secondary resonances.

Since it is difficult in Figure 11 to distinguish separatrices of different secondary resonances from each
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other, we can instead plot the unstable separatrix for each island and the stable separatrix of its adjacent is-
land two at a time to more easily observe intersections between them. Recall that the successfully computed
secondary resonant NHIM-unstable periodic orbits (and thus separatrices) were at 11

34 ,
34
105 ,

23
71 ,

35
108 ,

12
37 , and

25
77 , in that order. For each plotted pair of consecutive secondary resonances 11

34 ,
34
105 ,

23
71 ,

35
108 , and 12

37 , such
intersections of unstable and stable separatrices were indeed observed. An example plot showing such inter-
sections for the stable 35

108 and unstable 12
37 separatrices is shown in Figure 12; due to the symmetry around

l+ g = π, reversing the choice of stable and unstable separatrices will also yield the same plot and separatrix
intersections, except with a reflection. No intersection between the separatrices of 12

37 and 25
77 was detected at

the level of manifold globalization seen in Figure 11, but recall that the secondary resonant orbit at 37
114 lying

between 12
37 and 25

77 is still yet to be computed. We believe that once this last periodic orbit and its separatrices
are computed, we will find separatrix intersections in this orbit family region as well.

As a final check on the persistence of the unstable 4:3 J-G orbit family NHIM Ξµ3
until µ3 = µ3,e, we

can also check whether intersections of separatrix curves in the 2D plot of Figure 11 are also intersections
of those curves in the full Fµ3 phase space R4. Checking this for a number of such 2D plot intersections,
the previous condition was indeed satisfied. However, 1D curves generically do not intersect in 4D space;
they do only when contained inside a 2D manifold. Thus, in combination with the tangent vs transverse
expansion/contraction rates discussed in the previous section, this provides extremely strong evidence that
the 2D cylindrical NHIM Ξµ3

persists until µ3 = µ3,e and contains all of these separatrices. Given the sepa-
ratrix intersections inside Ξµ3 shown in Figures 11-12, we hence have full, final confirmation that secondary
resonances 11

34 ,
34
105 ,

23
71 ,

35
108 , and 12

37 overlap in the NHIM Ξµ3 for µ3 = µ3,e.

The overlapping of these secondary resonances also confirms that the higher-energy unstable 4:3 J-G cir-
culating invariant circles with ω ∈ [2.032685, 2π 12

37 ≈ 2.037790], which exist in the µ3 = 0 PCRTBP case,
are destroyed before the µ3 = µ3,e physical mass J-E-G CCR4BP. We expect to get the same result for the
remaining orbits, for ω ∈ [2.037790, 2.0405], once the 37/114 secondary resonant periodic orbit and separa-
trices are found as well. Nevertheless, though these invariant circles corresponding to PCRTBP unstable 4:3
J-G periodic orbits cannot be continued into, and thus have no dynamical equivalent in, the J-E-G CCR4BP,
the previous discussion shows that the family of these orbits represented by the NHIM Ξµ3

does have a dy-
namical equivalent in the J-E-G CCR4BP. The key is that at higher energies, the dynamics inside the NHIM
change completely, from one dominated by circulating invariant circles in the J-G PCRTBP to one governed
by secondary resonances and their NHIM-unstable periodic orbits and separatrices in the J-E-G CCR4BP.

CONCLUSIONS

In this study, we showed that the effect of Europa on the unstable Jupiter-Ganymede 4:3 mean motion
resonant orbits causes a major qualitative change in the structure of that orbit family, as compared to the
PCRTBP. This occurs through the generation of secondary resonances between the PCRTBP orbit periods and
the perturbation of Europa, and the overlap of these secondary resonances inside of the normally hyperbolic
invariant manifold formed by the 4:3 unstable orbits. Through continuations of invariant circles, followed by
computations of secondary resonant periodic orbits and their attached stable/unstable manifold separatrices,
we not only confirmed the secondary resonance overlap and the resulting destruction of dynamical equivalents
of the higher-energy PCRTBP periodic orbits, but also found that the orbit family as a whole does persist
into the physical-mass Jupiter-Europa-Ganymede CCR4BP. New types of orbits, different topologically from
the PCRTBP ones, appear instead inside the family at those higher energies. This overlap thus has major
implications for the types of resonant orbits which should be analyzed in certain multi-moon systems.

Although this study was done for the Jupiter-Ganymede 4:3 resonant orbit case, we believe that this same
behavior will occur in many other families of unstable mean motion resonant orbits as well. In fact, the failure
of higher-energy orbits to continue until µ3 = µ3,e, described earlier in this paper for the 4:3 orbits, also oc-
curred in our previous Jupiter-Europa-Ganymede CCR4BP based study14 for the unstable Jupiter-Ganymede
7:5 and 3:2 mean motion resonant orbits. Secondary resonance overlap would explain the continuation fail-
ure for those MMRs as well. Furthermore, such phenomena likely occur at high energies and eccentricities
inside MMRs with bodies other than Ganymede as well, as long as a strong enough perturbing body exists.
For instance, a higher-a Europa exterior unstable MMR orbit could experience secondary resonances with
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Ganymede; or in the Uranian system, an Oberon interior unstable MMR orbit could be influenced by Titania
in a similar manner. All of these moons have mass ratios on the order of 10−5 with their planets, so the
perturbations would be of a similar order of magnitude to the one studied in this paper. Thus, there are many
systems and MMRs for which an investigation of secondary resonant phenomena should be done.

For investigation of unstable mean motion resonant orbits in a CCR4BP model, it should be kept in mind
that secondary resonances may play a decisive role, but that there are also cases where this does not happen;
for example, the Jupiter-Europa 3:4 PCRTBP unstable resonant periodic orbit family has previously15 been
successfully continued into the Jupiter-Europa-Ganymede CCR4BP as invariant tori across a wide range of
energies and λu. Thus, for investigating the effect of adding a third large body on an unstable PCRTBP reso-
nant orbit family, we suggest first attempting to continue the orbits as tori into the corresponding CCR4BP. If
these continuations fail for some range of ω at higher energies, then a Farey sequence can be used to identify
all secondary resonant rotation numbers below a certain order in that ω range; these will be the secondary
resonances whose NHIM-unstable periodic orbits and separatrices should be computed.

As mentioned in the introduction, the primary importance of mean motion resonances is that overlapping
of different MMRs (i.e. heteroclinics between their unstable orbits) drives changes of semi-major axis, and
thus large scale transport across the phase space. With the knowledge gained in this study, we now know what
types of unstable resonant orbits can exist at higher energies in higher-fidelity models like R4BPs. Crucially,
such high-energy orbits make close flybys of their resonant moon and thus have higher λu-values, so their
stable/unstable manifolds will yield transfers with lower TOF - critical for practical missions. They are also
more likely to have heteroclinics with other unstable MMR orbits. With the resonant orbits found, we can
now compute these manifolds. In our previous work,14 we searched for transfers from the Jupiter-Ganymede
4:3 MMR to the Jupiter-Europa 3:4, but were unable to find heteroclinics due to the lack of high-λu 4:3 orbits
found. Now that those orbits have been characterized and in many cases (periodic orbits and separatrices)
computed, we can resume this heteroclinic search, which showed promise even in that earlier study.

Since the high-energy, high-λu 4:3 Jupiter-Ganymede unstable resonant orbits occur inside secondary
resonances, they will include NHIM-unstable periodic orbits, whose stable/unstable manifolds will have to
be computed. These will be 2D in the entire CCR4BP phase space, as opposed to 1D when considered only
inside the 2D NHIM of orbits; in fact, the 1D separatrices of each secondary resonant periodic orbit will
be contained inside the 2D stable/unstable manifolds of that same orbit. A parameterization method for 2D
stable/unstable manifolds of map-periodic orbits, similar to those26 for 2D stable/unstable manifolds of fixed
points, should be possible to develop for this. The librational tori inside secondary resonances can also be
computed, but will require an extension of our torus computation method23 to multiple-shooting. We are
confident that such secondary resonant orbits inside MMRs and their stable/unstable manifolds, both in the
Jovian system as well as others, will provide useful transfer options for missions in multi-moon systems.
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