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SUMMARY & CONCLUSIONS 

This paper presents a framework to evaluate sensor 
solutions and maintenance strategies using performance metric 
and genetic algorithm to mitigate future Boeing 767 (B767) 
Airworthiness Directives (ADs). The results obtained can 
inform predictive maintenance models and reliability 
improvements to mitigate the costs of AD for commercial and 
military B767 operators. 

Commercial and military regulators maximize the safety 
and performance of aviation operations in part by responding to 
aircraft system failures via ADs. ADs issued by the Federal 
Aviation Administration (FAA) and United State Air Force 
(USAF) impart a large business and technical cost on operators. 
For the B767 and its military derivative, the USAF’s KC-46A, 
historical data provides insight into sensor solutions and 
maintenance strategies that may mitigate these costs. A 
reliability study determining the failure modes and mechanisms 
is presented for ADs relating to the engine given their 
significant cumulative cost for B767 operations. 

We further propose investigation that includes performing 
mapping metrics as well as investigating sensor solutions and 
data visualization for further analysis. Consequently, this early 
detection system may reduce maintenance downtimes by 
providing early warning to any potential malfunction. 

The proposed framework was used for the whole dataset. 
However, small values of diagnostic result were observed, 
potentially due to missing value in the dataset. To see the real 
effect of the diagnostic term result, experiment was further 
performed on 5 out of 359 failure mechanisms present in the 
dataset and the result shows higher diagnostic term result for 
each generation. The proposed genetic algorithm can also be 
utilized in other applications that involve optimizing the output 
of the application. 

1 INTRODUCTION 

Failure modes can be defined as symptoms that eventually 
show a system has failed. Aircraft systems contain many 
components and each of these elements has several failure 
modes that could cause systems failure. To determine the 
propagation of failure mechanism that could result in failure 
modes, sensors are required. The sensor’s objective is to detect 
the presence of a failure process or mechanism as quickly as 
possible so that precautions can be taken to avoid future faults. 
Moreover, sensors can also be seen as tools that help in 
diagnosing component failure. Some examples of sensors are 
flow, level, temperature, pressure, and vibration sensors. To get 
the highest amount of information regarding a failure, it is 
always good to use a system of sensors. However, sensors are 
expensive, and they also have combined weight that could 
affect the balance of the aircraft. Consequently, a technique for 
selecting the most appropriate possible sensor needs to be 
created. 

Reeves et al. (2018) discuss sensor performance metrics by 
looking at a phased mission operation whereby failure occurs at 
various points in the mission. Additionally, during the phase of 
mission operation, some components in aircraft systems such as 
pumps are prone to failure. As a result, prompt identification of 
components failure is crucial. A factor known as the time 
dependence factor is used to achieve this. This crucial factor is 
added to the sensor selection method so that the failure can be 
identified as soon as it occurs. In addition, the performance 
metric serves as an indicator that helps to diagnose the failed 
elements in the system [1].  

Over the years, much work has been done around sensor 
selection. For instance, Kang et al. (2000) proposed a technique 
called fault symptom matrix; wherein columns and rows of 
matrix commensurate to a distinct component failure and 
distinct sensor, respectively. The matrix is “1” if a failure can 
be identified by one sensor and it is “0” if the failure of the 
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component cannot be identified by the sensor [2].  Further, 
Senti et al. (2005) proposed a tool called a genetic algorithm 
(GA) based approach to optimize sensor selection [4]. 
However, their approach to sensor selection could produce 
undependable output because the minimum probability of the 
correct diagnosis is considered.  

In addition, Maul et al. (2008) proposed a penalty factor in 
their sensor selection approach [1, 5]. If the number of sensors 
in the combination of sensors is more than expected, it will be 
depreciated by the penalty factor [1, 5]. However, if the process 
of selecting the sensors is replicated by numerous people, it 
could lead to distinct sensor selection. Additionally, sensor 
performance metric was proposed by Reeves et al. (2017) for 
sensor selection. Also, in order to be certain that the sensors that 
have been selected can diagnose the failure and identify failure 
accurately, Bayesian Belief Network was introduced [6]. 

The goal of this research work is to use the risk 
management system of sensor performance metric and genetic 
algorithm approach to find the best possible combination of 
sensors (most befitting combinations of sensors) that can be 
used to detect failure mechanisms in the Boeing 767 and 
Commercial fleets. This framework could be helpful in not only 
avoiding critical failure modes in aircraft, but adding to their 
maintainability and reliability as it may drastically increase the 
lifetime of crucial systems. This research work consists of data 
collection, data preprocessing (section 2), risk analysis through 
Failure Modes, Effect, and Criticality Analysis (FMECA) 
(section 2.2), and sensor selection (section 2.3) using 
performance metrics (section 2.3.1) and genetic algorithm (2.4), 
experiment (section 3), result (section 4), discussion (section 5), 
and conclusion (section 6).    

2 RESEARCH APPROACH AND METHODS 

This paper is a collaboration research work between North 
Carolina A&T State University and Geogia Tech Research 
Institute. Proper sensor selection is determined based on the 
values of each term in the performance metric. For example, in 
aircraft engine control systems, the criticality term value could 
be higher because the criticality term deals with safety-critical 
systems such as landing [1]. When the system downtime is 
costly, the diagnostic term could be higher. For example, when 
there is problem with the gas rigs and oil, the diagnostic term 
result could prompt the right sensors, thereby letting us know 
that the gas rigs and oil should have maintenance priority [1]. 
Since the performance metric would compute many different 
combinations of sensors in the aircraft, it could take a while to 
see the result. Thus, to get the optimal sensor selection, Genetic 
Algorithm is used.   

2.1 Dataset 

The data set for this analysis consists of ADs from the ten 
zones with the highest cost on US operators. Each AD contains 
information about failure modes and mechanisms, affected 
components, and recommended corrective actions. Before 
conducting the FMECA, the data set was carefully reviewed to 
eliminate any duplicate entries. Each AD and its identified 
failure modes are condensed and categorized into a generalized 

set of failure modes to make for ease of analysis.  From this 
generalized set of failure modes were chosen that had either a 
relatively large presence or a potentially high level of severity. 

2.2. Failure Modes, Effects, and Criticality Analysis 

Failure Modes, Effect, and Criticality Analysis (FMECA) 
is a powerful technique used in the aerospace industry to 
systematically identify and assess potential failure modes of 
systems, components, or processes. This report presents the 
FMECA analysis conducted on the available data set of 
Airworthiness Directives (ADs) to assess the frequency and 
severity of failures associated with these directives. 

FMECA contains a range of mechanisms that were 
recorded causing the failure mode across the dataset. To assess 
the severity, each failure mode grouping was assigned a number 
1-10 based on its potential effects on passengers or the aircraft.  
A level of 1 indicates a decrease in comfortability while a level 
of 9 or 10 indicates loss of life or control of the craft. 
Additionally, to assess the probability, the frequency of 
occurrence for each failure mode is evaluated using a category 
called the Occurrence Factor. The number of ADs that make up 
each failure mode category is then normalized into a percentage 
of the complete dataset of zones.  This percentage is then ranked 
by the Occurrence Factor, with 0.001% earning the lowest 
grade of 1 and 5-10% earning the highest grade of 10. The 
FMECA matrix was created by multiplying the severity and 
occurrence ratings. This results in the criticality rating, with the 
highest scoring failure modes selected as a priority for sensor 
solution consideration. 

2.3 Sensor Selection 

During the FMECA analysis, some failure mechanisms 
were detected such as mechanical malfunctions (e.g., control 
wiring, wire bundles), friction between wiring, cracking, 
fracture, and various failures in the fuel system. These failures 
could be identified or prevented from occurring by using 
sensors. A tool that can be used to find the most appropriate 
possible combination of sensors to detect failure is needed. In 
this paper, we propose the use of a sensor performance metric 
and genetic algorithms to find the ideal combination of sensors 
possible that can be used to identify failure mechanism in 
aircraft as discussed in the following steps [1]: 

2.3.1 Performance Metric 

The performance metric, I{s}, is a metric that describes the 
average of three terms: the percentage of failure that can be 
detected by the sensors, DE{s}, the relief of diagnosis of the 
failure the sensor can detect, DI{s}, and the effect of the failures 
detected on the successful completion of the mission, CR{s}. 
Additionally, the subscripts s in I{s}, DE{s}, DI{s}, and CR{s} 
signify each sensor or combination of sensors [1]. 
Mathematically, I{s} is defined in equation (1) as follows: 
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The value of the performance metric is a value that falls 
between 0 and 1, wherein “1” signifies the best sensors meaning 



as soon as the failure occurs, it identifies all failures. However, 
“0” means the sensor is not effective or useful to detect the 
failure type. 

2.3.2 Detection Term 

The detection term (DE{s}) deals with the percentage of 
failure that can be detected by the sensors. In order for the 
detection term to perform its operation, the initial state of the 
sensor before the occurrence of failure mechanism, has to be 
different from the final state of the sensor after the occurrence 
of failure mechanism [1]. Mathematically, the detection term 
can be defined in equation (2) as follows: 
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According to Reeves et al.(2018), the Pd in equation (2) 
stands for the total probabilities of occurrence of failure that can 
be identified by sensor and Pmd represent the total probabilities 
of the prevalence of failure that at least one sensor can identify 
out of the whole possible combination of sensors on the aircraft 
[1]. Similarly, the value of DE{s} falls between 0 and 1 where 1 
indicates that all failures can be detected by sensor s as soon as 
they occur and 0 depicts that no failures occur. 

According to Reeves et al. (2018), to know the time at 
which the components or elements fail and their detection time, 
a time dependence factor is proposed. The time dependence 
factor measures the correlation between the component failure 
and its detection time [1]. By applying the time dependence 
factor to equation 2, it results in the following in equation 3: 
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where Pe is the probability of failure event examined, Nd{s} is 
the number of failure components that sensor s can detect, td is 
detection time, tf is the time of failure, and T is the length of the 
mission [1]. Additionally, the first expression in parentheses 
depicts the ratio of detection of failure delay to the total length 
of the mission. While the second expression in parentheses 
indicates the ratio of detection of failure delay to the mission 
time left. If the delay between failure and detection is long, the 
factor will be small [1]. However, this research work only 
focuses on using equation (2) for the detection term as there is 
no time of detection (td), time of failure (tf) and length of 
mission (T) in the dataset used for this work. 

2.3.3 Diagnostic Term 

The diagnostic term refers to how sensor s can be utilized 
to diagnose a failure. To differentiate between distinct failures, 
the failure traits need to be distinct. Mathematically, the 
diagnostic term can be defined as the formula in equation 4: 
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According to Reeves et al. (2018), the nrs denotes distinct 
sensor reading, Pmli indicates the probability that a failure 
occurs, and Psri indicates the probability of reading sensor i [1]. 

Additionally, the component failure is said to be diagnosed 
properly if the value of DI{s} is larger. Based on Reeves et al. 
(2018) study, in order to see the advancement in diagnostic 
terms, a time factor is examined as shown below in equation 5 
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Moreover, according to Reeves et al. (2018) the first 
expression in the parentheses in equation (5) indicates the ratio 
between the time in which the greatest failure diagnostic ability 
can be reached to the length of the mission. While the second 
factor indicates the ratio between the time in which the greatest 
failure diagnostic ability can be fulfilled to the mission time left 
[1]. For every time step, equation (5) can be modified as shown 
below in equation (6): 
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For all points in the mission, xmax indicates the number of 
sensors reading, and Tstep indicates the time step [1]. Thus, the 
DI{s} can be modified into equation (7) as follows: 
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Based on Reeves et al. (2018) survey, the Tstepmax is the 
highest value of Tstep, nrs(td) stands for the number of 
differences at individual time step, and tdmin signifies the initial 
time at which the detection time was noticed [1]. However, this 
research work only focuses on using equation (4) as the 
diagnostic term as there is no time step (Tstep), maximum time 
step (Tstepmax), time of detection (td), and length of mission (T) 
in the dataset used for this project. 

Similarly, the value of the diagnostic term is between 0 and 
1; where 1 show that all the failure of a component as soon as 
they occur create different readings of the sensor and it is closer 
to 0 when the failure of the component output the same readings 
of the sensor [1]. 

2.3.4 Criticality Term 

Criticality term (CR{s}) deals with the ability of a sensor to 
identify failure in the performance of a system [1]. Similarly, 
the CR{s} follow the idea of Cheok et al. (1998), Fussell-Vesely 
metric. This metric considers the sensors that can be used to 
identify failure [9]. Mathematically, the criticality term is 
defined as follows in equation 8: 

( )
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where Qsys is the system’s failure probability; the formula in 
equation (8) shows that the system’s failure probability, Qsys(qs 
= 0) which is considered when the system is functioning well is 
removed from the failure of the system Qsys [1]. According to 
Reeves et al. (2018), this value is then normalized by the system 



failure probability Qsys [1]. 

2.4 Genetic Algorithm 

To optimize the result derived from the performance 
metric, we need to use genetic algorithms. According to 
Holland JH's book (1992), a Genetic algorithm (GA) is an 
optimization algorithm that works based on natural selection. 
The GA chooses items from the present population and uses 
that item as the parent that can produce children for the next 
generation [10]. The population grows towards the best solution 
after consecutive generations. Moreover, problems that are not 
suitable for other optimization algorithms can be solved with a 
GA. For example, GA can be used to optimize tasks that have a 
discontinuous objective function. At each step, the GA uses 
pragmatic rules which include selection, crossover, and 
mutation to produce the next generation from the present 
population. In terms of the sensor selection problem, the sensors 
stand for chromosomes and every sensor has a gene. When a 
sensor is selected, it stands for 1, however, when a sensor is not 
selected, it is referred to as 0. For example, suppose there are 
20 sensors in an application, the string: 
11001000000000010001 indicates that sensors 1, 2, 5, 16, and 
20 are selected [1].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 1. Proposed Sensor Selection Framework 

Figure 1 depicts how the proposed sensor selection 
framework works. Humans are included in the framework 
because some sensors might not be able to capture some failure. 
So, it is advisable for humans to be visiting some critical places 
in the aircraft perhaps like every 10 minutes. 

3 EXPERIMENT  

Firstly, all the failure mechanisms in the dataset were 
examined and the programming language used for the 
experiment is a python programming language. Additionally, 
all the functions which include performance metric, detection 
term, diagnostic term, and criticality term were evaluated. To 
assess the best possible combination of sensors (most 
satisfactory sensor selection), the fitness function (performance 
metric) was passed into a specific type of genetic algorithm 
called pyGAD. In the pyGAD module, different parameters 
such as num_generation, fitness_func, initial_popuplation, 
sol_per_pop were passed into the module. These parameters 
were chosen based on the given problem. For example, 
nums_parent_mating represents the number of solutions to be 
selected as parent, also, within the population, sol_per_pop 
represents the number of chromosomes which further represent 
the number of sensors in our research work, num_genes 
represent the number of genes in the chromosomes.  

5 out of the whole 359 failure mechanisms: water 
accumulation, malfunction, unserviceable relay, seal failure, 
damage to wire were examined with the performance metric 
and genetic algorithm methods to be able to see better 
diagnostic term result. The two experiments were performed 
based on 20 generations.  

Additionally, 10 sensors which include pressure sensor, 
temperature sensor, flow sensor, vibration sensor, strain gauge 
sensor, level sensor, proximity sensor, light sensor, sound 
sensor, and humidity sensor are used for these experiments. 
Each of these sensors measure different characteristics. For 
example, in the dataset used for this experiment, some failure 
mechanisms such as fuel leak occur in the dataset and this type 
of problem can be detected with a sensor device such as 
pressure sensor as the pressure sensor measures the level of the 
fuel. Also, in the dataset, there are some mechanical 
malfunctions; this type of problem can be detected by strain 
gauge sensor. The strain gauge changes the tension, pressure, 
and force into electrical resistance which can be measured. 
Moreover, in the dataset, there are some water accumulation 
failure mechanisms. This type of failure can be measured by 
level sensor and pressure sensor. The level sensor works in such 
a way that the pressure on the sensor’s surface is changed to the 
height of the liquid when the sensor is put in the measuring 
liquid. The vibration sensors also monitor features such as   
acceleration, and speed.  

4 RESULT  

The FMECA analysis identified several critical failure 
modes based on their criticality ratings. These critical failure 
modes were associated with components that showed either a 
high frequency of failure or had severe consequences on aircraft 
airworthiness. Specific failure modes that rank high in the 
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severity assessment include Ignition/Fire/Combustion, Fluid 
Leak, Arcing/Electrical Failure. 

Furthermore, Table 1 shows the result of the performance 
metric, detection term, diagnostic term, and criticality term on 
the whole dataset for different generations. Table 1 also shows 
that the larger the combination of sensors, the higher the value 
of the performance metric, detection term, diagnostic term, and 
criticality term respectively. For example, the combination of 9 
sensors gives higher detection term and criticality term as 
compared to the combination of 7 sensors for the detection term 
and criticality term. This means that the combination of 9 
sensors can detect all the failure mechanisms correctly. 
Additionally, the performance metric was optimized by the 
pyGAD model for efficient combinations of sensor that can be 
used to identify the failure mechanisms correctly.  From Table 
1, it was also observed that the diagnostic term output in each 
of the generations was very small when the missing values in 
the failure mechanism column were included. This caused 
smaller diagnostic values in each generation. 

Figure 2 shows the performance of the proposed 
framework on 20 generations. From figure 2, it was observed 
that as the generation increases the value of the fitness 
(performance metric) increases. 
 
Table 1 Best possible combination of sensors that can be used 
to detect failure mechanism in the dataset.  The legend will be 
used for reference in the following information to denote the 

sensors in each generation. 
Legend: 
Pressure Sensor [A] | Temperature Sensor [B] | Level Sensor 
[C] | Stain gauge Sensor [D] | Flow Sensor [E] | Vibration 
Sensor [F] | Proximity Sensor [G] | Light Sensor [H] | Sound 
Sensor [I] 

                                
Sensors              Numbers      I{s}       DE{s}         DI{s}    CR{s}    Generation 
A, B, D, E, G, H, I           7     0.5065   0.5845     0.0128     0.9220     1     

A, B, D, E, F, G, H, I       8     0.5348   0.6676     0.0147     0.9220     3     

A, B, C, D, E, F, G, H, I   9    0.5894   0.7989     0.0179     0.9518     5     

A, B, C, D, E, F, G, H, I   9    0.6231   0.8979     0.0197     0.9518     17 

A, B, C, D, E, F, G, H, I   9    0.6255   0.9048     0.0199     0.9518     20 
 

Figure 2.  The performance of the proposed framework based 
on 20 generations on the whole failure mechanism present in 

the dataset. 

Furthermore, to see better performance of the diagnostic 
term, 5 out of the 359 failure mechanisms were considered. The 
result of this experiment can be shown in Table 2. 

Table 2  Best possible combination of sensors to detect 5 
failure mechanisms out of the whole 359 failure mechanism 

present in the dataset. 

                                
Sensors         Numbers    I{s}       DE{s}      DI{s}    CR{s}    Generation 
A, C, E, F, I                  5    0.7646    0.7218     0.7218      0.8502         1  

A, B, D, E, F, H, I        8    0.9594    1.0000     1.0000      0.8782         11  

A, C, D, E, G, I             6    0.8255   0.7992      0.7992     0.8782          4   

A, B, C, D, E, G, I        7    0.9594   1.0000      1.0000      0.8782         7 

A, B, C, D, E, G, H, I    8   0.9594   1.0000      1.0000      0.8782         18   

 
From Table 2, for each generation, it was observed that 

there is an increase in the diagnostic term as compared to the 
diagnostic term in table 1 and this is because there is no account 
for any missing value in the second experiment as the second 
experiment was based on 5 out of 359 failure mechanisms 
present in the dataset. Additionally, from Table 2, it was 
observed that ideal combination of 7 sensors can identify the 
failure mechanisms instead of 8 sensors since they both have 
the same I{s}, DE{s}, DI{s}, and CR{s}. Consequently, these 7 
combinations of sensors help to minimize cost and weight in the 
aircraft. In addition, these selected sensors can be placed in 
different locations on the aircraft to maintain the right balance 
on the aircraft. 

5 DISCUSSION 

In general, to spend less on sensors and to avoid 
unnecessary weight, it is safe to use the performance metric as 
it is used to find the best (appropriate) possible combination of 
sensors that can be used to identify failure in aircraft. 
Additionally, the result of each term of the performance metric 
can be used to select the suitable sensor for a particular 
application. There are some applications that require more of a 
particular term than the others. For example, in a safety-critical 
system, the result of the critical term will be more crucial than 
the other two terms as the problem deals with more critical 
behavior. When the application downtime is high, the result of 
the diagnostic term is more crucial than the other two terms. 

In addition, it was noticed that the result of 5 out of the 359 
failure mechanisms considered in the dataset shows higher 
diagnostic term. Consequently, the missing values present in 
the dataset could affect the diagnostic term result.  

6 CONCLUSIONS 

This paper proposed sensor selection by using performance 
metric and genetic algorithm (GA). In addition, the code was 
written with python programming. Two experiments were 
performed using the proposed framework and it shows that 
there is a gap in diagnostic terms between the first experiment 
and second experiment due to some missing values in the 
dataset. From the experiments, it was observed that the 
combination of 7 or more sensors produced higher performance 
metric. Hence, human lives are crucial; we need urgent ways of 
mitigating risks in aircraft by using different sensors based on 
the performance metric and genetic algorithms. 

Future research work is planned to build machine learning 



algorithms that can be used to predict failure mechanisms to 
prevent it from damaging the aircraft. 
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