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SUMMARY & CONCLUSIONS

This paper presents a framework to evaluate sensor
solutions and maintenance strategies using performance metric
and genetic algorithm to mitigate future Boeing 767 (B767)
Airworthiness Directives (ADs). The results obtained can
inform predictive maintenance models and reliability
improvements to mitigate the costs of AD for commercial and
military B767 operators.

Commercial and military regulators maximize the safety
and performance of aviation operations in part by responding to
aircraft system failures via ADs. ADs issued by the Federal
Aviation Administration (FAA) and United State Air Force
(USAF) impart a large business and technical cost on operators.
For the B767 and its military derivative, the USAF’s KC-46A,
historical data provides insight into sensor solutions and
maintenance strategies that may mitigate these costs. A
reliability study determining the failure modes and mechanisms
is presented for ADs relating to the engine given their
significant cumulative cost for B767 operations.

We further propose investigation that includes performing
mapping metrics as well as investigating sensor solutions and
data visualization for further analysis. Consequently, this early
detection system may reduce maintenance downtimes by
providing early warning to any potential malfunction.

The proposed framework was used for the whole dataset.
However, small values of diagnostic result were observed,
potentially due to missing value in the dataset. To see the real
effect of the diagnostic term result, experiment was further
performed on 5 out of 359 failure mechanisms present in the
dataset and the result shows higher diagnostic term result for
each generation. The proposed genetic algorithm can also be
utilized in other applications that involve optimizing the output
of the application.
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1 INTRODUCTION

Failure modes can be defined as symptoms that eventually
show a system has failed. Aircraft systems contain many
components and each of these elements has several failure
modes that could cause systems failure. To determine the
propagation of failure mechanism that could result in failure
modes, sensors are required. The sensor’s objective is to detect
the presence of a failure process or mechanism as quickly as
possible so that precautions can be taken to avoid future faults.
Moreover, sensors can also be seen as tools that help in
diagnosing component failure. Some examples of sensors are
flow, level, temperature, pressure, and vibration sensors. To get
the highest amount of information regarding a failure, it is
always good to use a system of sensors. However, sensors are
expensive, and they also have combined weight that could
affect the balance of the aircraft. Consequently, a technique for
selecting the most appropriate possible sensor needs to be
created.

Reeves et al. (2018) discuss sensor performance metrics by
looking at a phased mission operation whereby failure occurs at
various points in the mission. Additionally, during the phase of
mission operation, some components in aircraft systems such as
pumps are prone to failure. As a result, prompt identification of
components failure is crucial. A factor known as the time
dependence factor is used to achieve this. This crucial factor is
added to the sensor selection method so that the failure can be
identified as soon as it occurs. In addition, the performance
metric serves as an indicator that helps to diagnose the failed
elements in the system [1].

Over the years, much work has been done around sensor
selection. For instance, Kang et al. (2000) proposed a technique
called fault symptom matrix; wherein columns and rows of
matrix commensurate to a distinct component failure and
distinct sensor, respectively. The matrix is “1” if a failure can
be identified by one sensor and it is “0” if the failure of the



component cannot be identified by the sensor [2]. Further,
Senti et al. (2005) proposed a tool called a genetic algorithm
(GA) based approach to optimize sensor selection [4].
However, their approach to sensor selection could produce
undependable output because the minimum probability of the
correct diagnosis is considered.

In addition, Maul et al. (2008) proposed a penalty factor in
their sensor selection approach [1, 5]. If the number of sensors
in the combination of sensors is more than expected, it will be
depreciated by the penalty factor [1, 5]. However, if the process
of selecting the sensors is replicated by numerous people, it
could lead to distinct sensor selection. Additionally, sensor
performance metric was proposed by Reeves ef al. (2017) for
sensor selection. Also, in order to be certain that the sensors that
have been selected can diagnose the failure and identify failure
accurately, Bayesian Belief Network was introduced [6].

The goal of this research work is to use the risk
management system of sensor performance metric and genetic
algorithm approach to find the best possible combination of
sensors (most befitting combinations of sensors) that can be
used to detect failure mechanisms in the Boeing 767 and
Commercial fleets. This framework could be helpful in not only
avoiding critical failure modes in aircraft, but adding to their
maintainability and reliability as it may drastically increase the
lifetime of crucial systems. This research work consists of data
collection, data preprocessing (section 2), risk analysis through
Failure Modes, Effect, and Criticality Analysis (FMECA)
(section 2.2), and sensor selection (section 2.3) using
performance metrics (section 2.3.1) and genetic algorithm (2.4),
experiment (section 3), result (section 4), discussion (section 5),
and conclusion (section 6).

2 RESEARCH APPROACH AND METHODS

This paper is a collaboration research work between North
Carolina A&T State University and Geogia Tech Research
Institute. Proper sensor selection is determined based on the
values of each term in the performance metric. For example, in
aircraft engine control systems, the criticality term value could
be higher because the criticality term deals with safety-critical
systems such as landing [1]. When the system downtime is
costly, the diagnostic term could be higher. For example, when
there is problem with the gas rigs and oil, the diagnostic term
result could prompt the right sensors, thereby letting us know
that the gas rigs and oil should have maintenance priority [1].
Since the performance metric would compute many different
combinations of sensors in the aircraft, it could take a while to
see the result. Thus, to get the optimal sensor selection, Genetic
Algorithm is used.

2.1 Dataset

The data set for this analysis consists of ADs from the ten
zones with the highest cost on US operators. Each AD contains
information about failure modes and mechanisms, affected
components, and recommended corrective actions. Before
conducting the FMECA, the data set was carefully reviewed to
eliminate any duplicate entries. Each AD and its identified
failure modes are condensed and categorized into a generalized

set of failure modes to make for ease of analysis. From this
generalized set of failure modes were chosen that had either a
relatively large presence or a potentially high level of severity.

2.2. Failure Modes, Effects, and Criticality Analysis

Failure Modes, Effect, and Criticality Analysis (FMECA)
is a powerful technique used in the aerospace industry to
systematically identify and assess potential failure modes of
systems, components, or processes. This report presents the
FMECA analysis conducted on the available data set of
Airworthiness Directives (ADs) to assess the frequency and
severity of failures associated with these directives.

FMECA contains a range of mechanisms that were
recorded causing the failure mode across the dataset. To assess
the severity, each failure mode grouping was assigned a number
1-10 based on its potential effects on passengers or the aircraft.
A level of 1 indicates a decrease in comfortability while a level
of 9 or 10 indicates loss of life or control of the craft.
Additionally, to assess the probability, the frequency of
occurrence for each failure mode is evaluated using a category
called the Occurrence Factor. The number of ADs that make up
each failure mode category is then normalized into a percentage
of the complete dataset of zones. This percentage is then ranked
by the Occurrence Factor, with 0.001% earning the lowest
grade of 1 and 5-10% earning the highest grade of 10. The
FMECA matrix was created by multiplying the severity and
occurrence ratings. This results in the criticality rating, with the
highest scoring failure modes selected as a priority for sensor
solution consideration.

2.3 Sensor Selection

During the FMECA analysis, some failure mechanisms
were detected such as mechanical malfunctions (e.g., control
wiring, wire bundles), friction between wiring, cracking,
fracture, and various failures in the fuel system. These failures
could be identified or prevented from occurring by using
sensors. A tool that can be used to find the most appropriate
possible combination of sensors to detect failure is needed. In
this paper, we propose the use of a sensor performance metric
and genetic algorithms to find the ideal combination of sensors
possible that can be used to identify failure mechanism in
aircraft as discussed in the following steps [1]:

2.3.1 Performance Metric

The performance metric, ;;, is a metric that describes the
average of three terms: the percentage of failure that can be
detected by the sensors, DE,, the relief of diagnosis of the
failure the sensor can detect, DIy, and the effect of the failures
detected on the successful completion of the mission, CRys;.
Additionally, the subscripts s in I, DE;, DI, and CRyy

signify each sensor or combination of sensors [l].
Mathematically, I is defined in equation (1) as follows:
_ DE,+ DI, +CR,
o= 3 ()

The value of the performance metric is a value that falls
between 0 and 1, wherein “1” signifies the best sensors meaning



as soon as the failure occurs, it identifies all failures. However,
“0” means the sensor is not effective or useful to detect the
failure type.

2.3.2 Detection Term

The detection term (DE(;) deals with the percentage of
failure that can be detected by the sensors. In order for the
detection term to perform its operation, the initial state of the
sensor before the occurrence of failure mechanism, has to be
different from the final state of the sensor after the occurrence
of failure mechanism [1]. Mathematically, the detection term
can be defined in equation (2) as follows:
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According to Reeves et al.(2018), the P4 in equation (2)
stands for the total probabilities of occurrence of failure that can
be identified by sensor and Pmq represent the total probabilities
of the prevalence of failure that at least one sensor can identify
out of the whole possible combination of sensors on the aircraft
[1]. Similarly, the value of DE s, falls between 0 and 1 where 1
indicates that all failures can be detected by sensor s as soon as
they occur and 0 depicts that no failures occur.

According to Reeves et al. (2018), to know the time at
which the components or elements fail and their detection time,
a time dependence factor is proposed. The time dependence
factor measures the correlation between the component failure
and its detection time [1]. By applying the time dependence
factor to equation 2, it results in the following in equation 3:
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where P. is the probability of failure event examined, Nd{s} is
the number of failure components that sensor s can detect, tq is
detection time, t¢is the time of failure, and T is the length of the
mission [1]. Additionally, the first expression in parentheses
depicts the ratio of detection of failure delay to the total length
of the mission. While the second expression in parentheses
indicates the ratio of detection of failure delay to the mission
time left. If the delay between failure and detection is long, the
factor will be small [1]. However, this research work only
focuses on using equation (2) for the detection term as there is
no time of detection (t4), time of failure (t;) and length of
mission (T) in the dataset used for this work.

2.3.3 Diagnostic Term

The diagnostic term refers to how sensor s can be utilized
to diagnose a failure. To differentiate between distinct failures,
the failure traits need to be distinct. Mathematically, the
diagnostic term can be defined as the formula in equation 4:
D[ = Z nrs (4)
Z Psri

According to Reeves ef al. (2018), the nrs denotes distinct
sensor reading, Pn; indicates the probability that a failure
occurs, and Py indicates the probability of reading sensor i [1].

Additionally, the component failure is said to be diagnosed
properly if the value of DIy is larger. Based on Reeves et al.
(2018) study, in order to see the advancement in diagnostic
terms, a time factor is examined as shown below in equation 5

T —t T —t
Factor(T,,)=| 1-—= 4|14
i T T-t,

Moreover, according to Reeves ef al. (2018) the first
expression in the parentheses in equation (5) indicates the ratio
between the time in which the greatest failure diagnostic ability
can be reached to the length of the mission. While the second
factor indicates the ratio between the time in which the greatest
failure diagnostic ability can be fulfilled to the mission time left
[1]. For every time step, equation (5) can be modified as shown
below in equation (6):
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For all points in the mission, Xmax indicates the number of
sensors reading, and T, indicates the time step [1]. Thus, the
DI can be modified into equation (7) as follows:

DI Zt tdm‘“ZWV(”(N(Tlepmax) Facrar(Tlepmax) )
X D)

Based on Reeves et al. (2018) survey, the Tsepmax i the
highest value of Tgep, nrs(tq) stands for the number of
differences at individual time step, and t4min signifies the initial
time at which the detection time was noticed [1]. However, this
research work only focuses on using equation (4) as the
diagnostic term as there is no time step (Tsp), maximum time
step (Tsepmax), time of detection (tq), and length of mission (T)
in the dataset used for this project.

Similarly, the value of the diagnostic term is between 0 and
1; where 1 show that all the failure of a component as soon as
they occur create different readings of the sensor and it is closer
to 0 when the failure of the component output the same readings
of the sensor [1].
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2.3.4 Criticality Term

Criticality term (CR ;) deals with the ability of a sensor to
identify failure in the performance of a system [1]. Similarly,
the CR; follow the idea of Cheok et al. (1998), Fussell-Vesely
metric. This metric considers the sensors that can be used to
identify failure [9]. Mathematically, the criticality term is
defined as follows in equation 8:

_ sts B sts (qa = O)
) =
sts

where Qs is the system’s failure probability; the formula in
equation (8) shows that the system’s failure probability, Qsys(qs
= 0) which is considered when the system is functioning well is
removed from the failure of the system Qsys [1]. According to
Reeves et al. (2018), this value is then normalized by the system
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failure probability Qsys[1].
2.4 Genetic Algorithm

To optimize the result derived from the performance
metric, we need to use genetic algorithms. According to
Holland JH's book (1992), a Genetic algorithm (GA) is an
optimization algorithm that works based on natural selection.
The GA chooses items from the present population and uses
that item as the parent that can produce children for the next
generation [10]. The population grows towards the best solution
after consecutive generations. Moreover, problems that are not
suitable for other optimization algorithms can be solved with a
GA. For example, GA can be used to optimize tasks that have a
discontinuous objective function. At each step, the GA uses
pragmatic rules which include selection, crossover, and
mutation to produce the next generation from the present
population. In terms of the sensor selection problem, the sensors
stand for chromosomes and every sensor has a gene. When a
sensor is selected, it stands for 1, however, when a sensor is not
selected, it is referred to as 0. For example, suppose there are
20 Sensors in an application, the string:
11001000000000010001 indicates that sensors 1, 2, 5, 16, and
20 are selected [1].
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Figure 1. Proposed Sensor Selection Framework

Figure 1 depicts how the proposed sensor selection
framework works. Humans are included in the framework
because some sensors might not be able to capture some failure.
So, it is advisable for humans to be visiting some critical places
in the aircraft perhaps like every 10 minutes.

3 EXPERIMENT

Firstly, all the failure mechanisms in the dataset were
examined and the programming language used for the
experiment is a python programming language. Additionally,
all the functions which include performance metric, detection
term, diagnostic term, and criticality term were evaluated. To
assess the best possible combination of sensors (most
satisfactory sensor selection), the fitness function (performance
metric) was passed into a specific type of genetic algorithm
called pyGAD. In the pyGAD module, different parameters
such as num_generation, fitness func, initial popuplation,
sol_per pop were passed into the module. These parameters
were chosen based on the given problem. For example,
nums_parent_mating represents the number of solutions to be
selected as parent, also, within the population, sol per pop
represents the number of chromosomes which further represent
the number of sensors in our research work, num_genes
represent the number of genes in the chromosomes.

5 out of the whole 359 failure mechanisms: water
accumulation, malfunction, unserviceable relay, seal failure,
damage to wire were examined with the performance metric
and genetic algorithm methods to be able to see better
diagnostic term result. The two experiments were performed
based on 20 generations.

Additionally, 10 sensors which include pressure sensor,
temperature sensor, flow sensor, vibration sensor, strain gauge
sensor, level sensor, proximity sensor, light sensor, sound
sensor, and humidity sensor are used for these experiments.
Each of these sensors measure different characteristics. For
example, in the dataset used for this experiment, some failure
mechanisms such as fuel leak occur in the dataset and this type
of problem can be detected with a sensor device such as
pressure sensor as the pressure sensor measures the level of the
fuel. Also, in the dataset, there are some mechanical
malfunctions; this type of problem can be detected by strain
gauge sensor. The strain gauge changes the tension, pressure,
and force into electrical resistance which can be measured.
Moreover, in the dataset, there are some water accumulation
failure mechanisms. This type of failure can be measured by
level sensor and pressure sensor. The level sensor works in such
a way that the pressure on the sensor’s surface is changed to the
height of the liquid when the sensor is put in the measuring
liquid. The vibration sensors also monitor features such as
acceleration, and speed.

4 RESULT

The FMECA analysis identified several critical failure
modes based on their criticality ratings. These critical failure
modes were associated with components that showed either a
high frequency of failure or had severe consequences on aircraft
airworthiness. Specific failure modes that rank high in the



severity assessment include Ignition/Fire/Combustion, Fluid
Leak, Arcing/Electrical Failure.

Furthermore, Table 1 shows the result of the performance
metric, detection term, diagnostic term, and criticality term on
the whole dataset for different generations. Table 1 also shows
that the larger the combination of sensors, the higher the value
of the performance metric, detection term, diagnostic term, and
criticality term respectively. For example, the combination of 9
sensors gives higher detection term and criticality term as
compared to the combination of 7 sensors for the detection term
and criticality term. This means that the combination of 9
sensors can detect all the failure mechanisms correctly.
Additionally, the performance metric was optimized by the
pyGAD model for efficient combinations of sensor that can be
used to identify the failure mechanisms correctly. From Table
1, it was also observed that the diagnostic term output in each
of the generations was very small when the missing values in
the failure mechanism column were included. This caused
smaller diagnostic values in each generation.

Figure 2 shows the performance of the proposed
framework on 20 generations. From figure 2, it was observed
that as the generation increases the value of the fitness
(performance metric) increases.

Table 1 Best possible combination of sensors that can be used
to detect failure mechanism in the dataset. The legend will be
used for reference in the following information to denote the
sensors in each generation.

Legend:

Pressure Sensor [A] | Temperature Sensor [B] | Level Sensor
[C] | Stain gauge Sensor [D] | Flow Sensor [E] | Vibration
Sensor [F] | Proximity Sensor [G] | Light Sensor [H] | Sound
Sensor [I]

Sensors Numbers I3 DEgsy DIy CRysy Generation
A,B,D,E,G,H,I 7 0.5065 0.5845 0.0128 0.9220 1
A,B,D,E,F,G,H,1 8 0.5348 0.6676 0.0147 0.9220 3
A,B,C,D,E,F,G,H,T 9 0.5894 0.7989 0.0179 09518 5
A,B,C,D,E,F,G,H,I 9 0.6231 0.8979 0.0197 0.9518 17
A,B,C,D,E,F,G,H,T 9 0.6255 0.9048 0.0199 0.9518 20
Fitness vs Generation
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Figure 2. The performance of the proposed framework based
on 20 generations on the whole failure mechanism present in
the dataset.

Furthermore, to see better performance of the diagnostic
term, 5 out of the 359 failure mechanisms were considered. The
result of this experiment can be shown in Table 2.

Table 2 Best possible combination of sensors to detect 5
failure mechanisms out of the whole 359 failure mechanism
present in the dataset.

Sensors Numbers Iy DEiy DIy CRys; Generation
A,C,E,F, 1 5 0.7646 0.7218 0.7218  0.8502 1
A,B,D,E,F,H,1 8 0.9594 1.0000 1.0000 0.8782 11
A,C,D,E,G,I 6 0.8255 0.7992  0.7992 0.8782 4
A,B,C,D,E,G,1 7 09594 1.0000 1.0000 0.8782 7
A,B,C,D,E,G,H,I 8 0.9594 1.0000 1.0000 0.8782 18

From Table 2, for each generation, it was observed that
there is an increase in the diagnostic term as compared to the
diagnostic term in table 1 and this is because there is no account
for any missing value in the second experiment as the second
experiment was based on 5 out of 359 failure mechanisms
present in the dataset. Additionally, from Table 2, it was
observed that ideal combination of 7 sensors can identify the
failure mechanisms instead of 8 sensors since they both have
the same Iy, DEy;, DIy, and CRy,. Consequently, these 7
combinations of sensors help to minimize cost and weight in the
aircraft. In addition, these selected sensors can be placed in
different locations on the aircraft to maintain the right balance
on the aircraft.

5 DISCUSSION

In general, to spend less on sensors and to avoid
unnecessary weight, it is safe to use the performance metric as
it is used to find the best (appropriate) possible combination of
sensors that can be used to identify failure in aircraft.
Additionally, the result of each term of the performance metric
can be used to select the suitable sensor for a particular
application. There are some applications that require more of a
particular term than the others. For example, in a safety-critical
system, the result of the critical term will be more crucial than
the other two terms as the problem deals with more critical
behavior. When the application downtime is high, the result of
the diagnostic term is more crucial than the other two terms.

In addition, it was noticed that the result of 5 out of the 359
failure mechanisms considered in the dataset shows higher
diagnostic term. Consequently, the missing values present in
the dataset could affect the diagnostic term result.

6 CONCLUSIONS

This paper proposed sensor selection by using performance
metric and genetic algorithm (GA). In addition, the code was
written with python programming. Two experiments were
performed using the proposed framework and it shows that
there is a gap in diagnostic terms between the first experiment
and second experiment due to some missing values in the
dataset. From the experiments, it was observed that the
combination of 7 or more sensors produced higher performance
metric. Hence, human lives are crucial; we need urgent ways of
mitigating risks in aircraft by using different sensors based on
the performance metric and genetic algorithms.

Future research work is planned to build machine learning



algorithms that can be used to predict failure mechanisms to
prevent it from damaging the aircraft.
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