

ESA Space Rider:

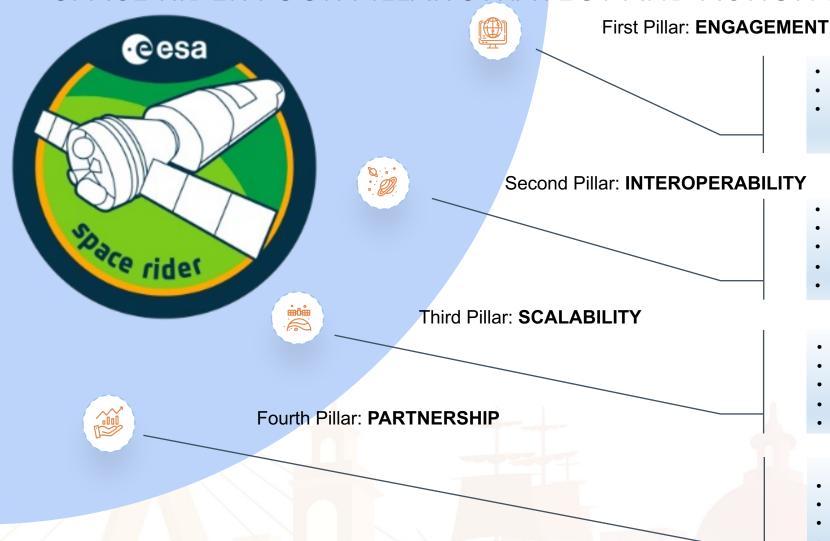
Supporting a New Space Frontier with Unmanned Vehicles

F. CaramelliSpace Rider Payloads and Exploitation Manager

COMMERCIAL AND INSTITUTIONAL UNCREWED TRANSPORTATION SYSTEM

Space Rider is the First Commercial and Institutional European Reusable and Uncrewed Transportation System for Routine & Flexible Access to and Return from LEO ESA has set Clear Objectives in Making the Space Rider Project Commercially Scalable & Sustainable to Ensure Future Profitability and to Establish a Value-Based Ecosystem

A NEW PARADIGM FOR TECHNOLOGY PROGRAMS


In Order to Take Action and Achieve a New Paradigm for Technology Projects, ESA has Identified Four Major Pillars:

- I. Engagement
- II. Interoperability
- III. Scalability
- IV. Partnership

SPACE RIDER FOUR PILLAR STRATEGY AND ACTION PLAN

- CONNECT ECOSYSTEM MEMBERS
- ALIGN TO TERRESTRIAL ENGAGEMENT MODELS
- MARKETING AND BUSINESS DEVELOPMENT WITH END USERS
- SYSTEM OF SYSTEMS CULTURE
- TECH/PROG BEST PRACTICES
- STANDARDS AMONG STAKEHOLDERS
- REALISTIC ACCESSIBILITY
- ENABLING TECHNOLOGIES
- FOCUS ON AUTOMATED FLEXIBILITY
- COMPLEMENT MANNED PLATFORMS
- PROVIDE FLEX TECH SOLUTIONS
- FOCUS LIFE SCIENCE & MANUFACTURING
- SERVICES STEPPED UPGRADE
- PUBLIC PRIVATE PARTNERSHIPS
- SUB-AGGREGATOR PARTNERSHIPS
- IOS STAKEHOLDERS AGREEMENTS
- SYSTEM PARTNERSHIPS

SPACE RIDER COMMERCIAL SEGMENTS

SPACE RIDER has multiple offerings geared towards 5 segments

SR Transportation System

Transportation Vehicle to support Commercial Service Provider Facilities and Capability

SR Qualification System

Pre-eminent IOV and IOD qualification platform

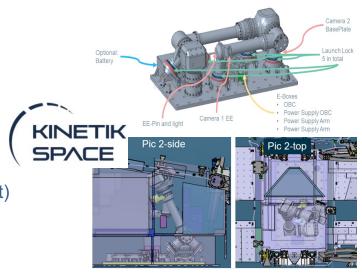
SR ISS Complement

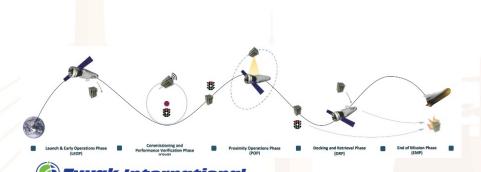
Options for oversubscribed and soon to be de-commissioned ISS

Microgravity as a Service

Platform that supports a wide range of life and physical science applications

PILLAR TWO: INTEROPERABILITY

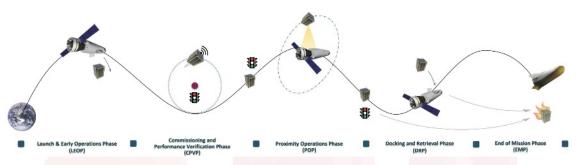

Space Rider as IOS / CPO


System studies ongoing and tech. dev. roadmap in preparation

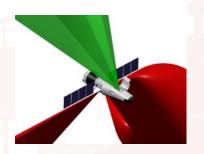
Following partner projects collaborations ongoing or offered by Space Rider

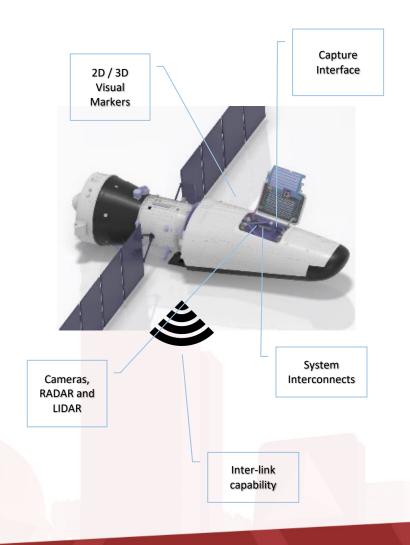
Deploy and Retrieval: TYVAK SROC (Space Rider Observation Cubesat)

Joint Operations: SAB IOSHEX, Kinetik, PIAP, Space Villages

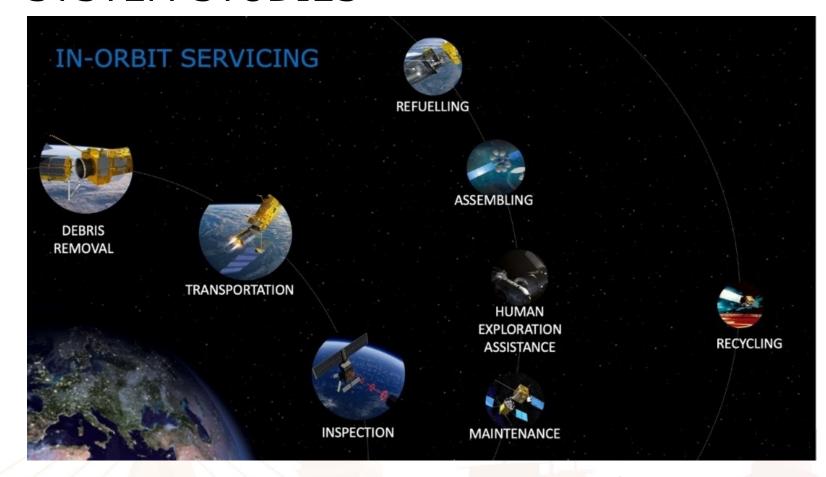

PILLAR TWO: INTEROPERABILITY

- The Space Rider Observation Cube (SROC), an ESA technology demonstration mission.
- Based on a CubeSat deployed from Space Rider, to perform inspection, rendezvous and dock with dedicated retrieval mechanism hosted in the SR cargo-bay
- SROC will allow the development of in-orbit demonstration technologies and capabilities for small-satellite proximity operations, with a particular focus on propulsion, GNC, and docking/retrieval mechanisms




INTERFACE STUDIES

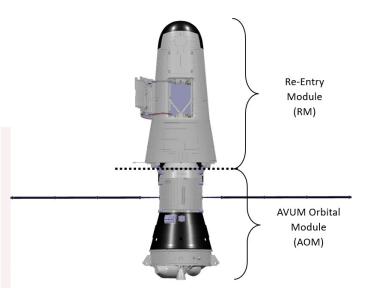
- Visual Markers: 2D/3D visual markers
- Cameras, RADAR, LIDAR: high-resolution, low latency camera and/or RADAR/LIDAR sub-systems.
- Mechanical Capture / Grappling Interfaces: mechanical fixture
- **System Interconnects**: advanced interface for exchanging power, data, and other services (e.g., fuels)
- Standard-based Data and T&C Inter-link: chaser / target inter-link for communication of vital T&C for CPO in a cooperative scenario and GNC co-ordination.
- Vehicle parameters for a reference CPO configuration
 - Approach Zone
 - Keep-out Zone
 - Approach Corridor(s)
 - forbidden zones



SYSTEM STUDIES

- Technologies & Deploy (and Retrieval) of P/Ls
- Rendez-vous, Docking / Berthing and Joint Operations
- Inspection, Refurbishment, Assembly and Manufacturing

And Creation of a **Space Rider digital platform**

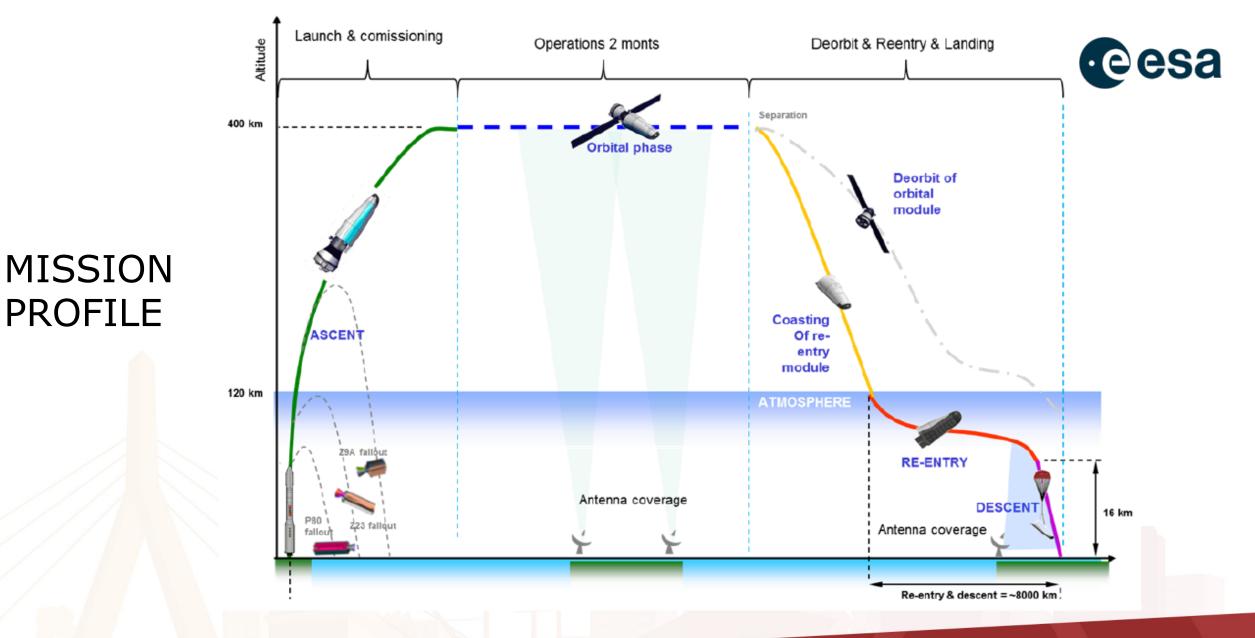

SPACE RIDER TRANSPORTATION SYSTEM

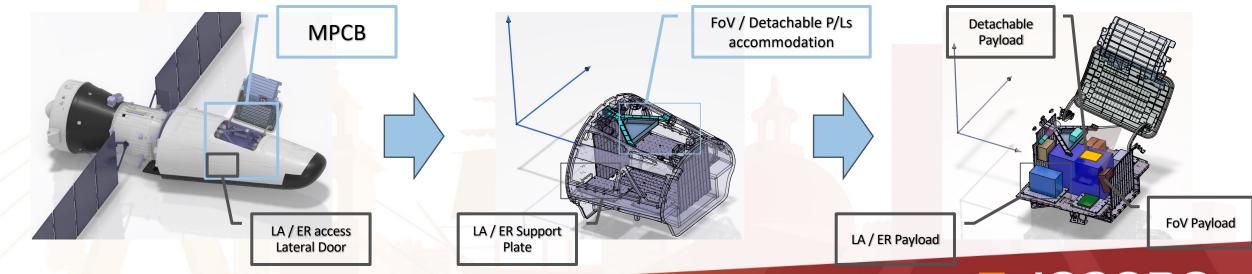
- The first European affordable, independent, re-usable, uncrewed end-to-end commercial transportation system for routine access to and return from LEO.
- Space Rider (SR) vehicle: uncrewed robotic laboratory (part of SRS) composed by a re-entry module (RM) built by TAS-I and an orbital module (AOM) built by AVIO. Hosts P/Ls for an array of applications, orbit altitudes and inclinations (w.r.t. performance of the launcher), and mission durations.
- In orbit for about **two months**, while **performing experiments** inside its cargo bay such as technology demonstration and research activities in different fields (e.g., pharmaceutics, biology, physical science, ...) communicating with the **Ground Segment** for **orbital vehicle control** (by **Telespazio**) and **P/Ls data** & **landing management** (by **ALTEC**).

MISSION CONOPS


- Pre-launch: pre-integration and tests, transport to launch site final integration and tests, installation on launcher and transport to launch pad;
- Launch and ascent: launch vehicle mission, into near-circular orbit nominal inclinations (5-55°), extendable up to SSO;
- **Orbital flight:** payloads operations for a period of two months and more, each orbit lasting approximately 90 minutes;
- **De-orbiting**: reconfiguration of the Space Rider vehicle for deorbit, execution of the deorbit manoeuvre, separation of AOM and RM;
- **Re-entry and Landing**: AOM destruction and RM re-entry going from hypersonic to transonic flights till the deployment of a subsonic parachute at an altitude of 6-10 Km (M=0.2), followed by the triggering of a guided parafoil for a controlled descent till the landing site.
- Post-Landing: P/Ls retrieval, RM moved to refurbishment facilities;
- **Post-Flight**: RM inspection, analysis and refurbishment for next flight. The turn-over time is six-month. The RM is designed to perform 6 flights.





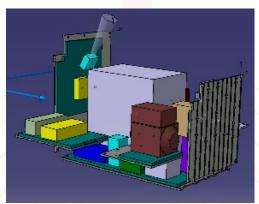


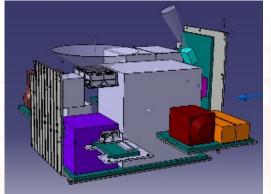
PROFILE

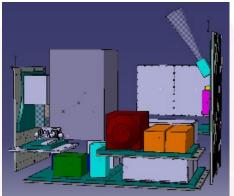
Multi Purpose Cargo Bay (MPCB)

- Accommodation of multiple P/L configurations, sealed or vented P/Ls directly or partially exposed to space environment (e.g., direct illumination, FoV, ...) movable or detachable (released from cargo-bay).
- Geometrical volume up to 1.2 m³, up to 600 Kg of P/Ls instruments mass.
- Equipped with **power** and **data lines** plus **7 payload Support Plates** (**SP**) which purposes are to be:
 - Mechanical standardized fixing interface between the P/L and the RM cold structure.
 - Thermal conductive path between the P/L and the RM Thermal Control System.
- Late-Access (LA) and Early-Retrieval (ER) for environmental sensitive P/Ls, integration and retrieval through RM lateral doors dedicated access to the outer face of P/Ls mounted on LA/ER MPCB support plates.

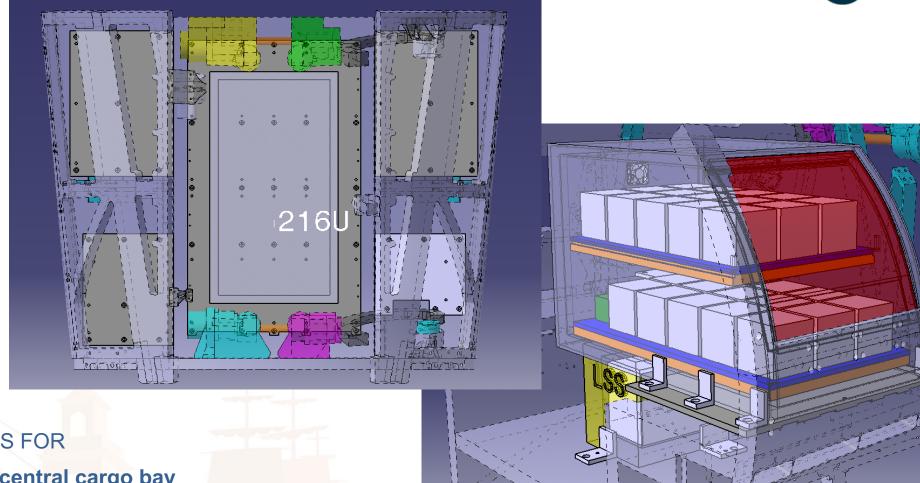
CARGO BAY FOR MAIDEN FLIGHT


esa


Space Rider Payloads Aggregate design for the Maiden Flight is currently on going:


- 20 Payloads from both commercial and institutional customers are at the moment on board, representing various typologies of experiments:
 - √ Pharma/biotech micro-g R&D
 - √ Technology IOV/IOD
 - √ Physical science, remote sensing
 - √ In-orbit operation technologies and processes

 Continuous update of Aggregate Payloads composition according to End Users evolution is on going



FOCUS PRESSURISED CARGO MODULE

PCM CONFIGURATIONS FOR

FACTORY MODULE in central cargo bay

LATE ACCESS MODULE in 2 late access lareral cargo bays

Courtesy: Voyager Space Europe

PAYLOAD USER GUIDE

CONTENTS

- Project highlights
- Cargo Bay Payload environment
- Payload Services
- Payload Operational cycle

ISSUES

- Issue 1 dated 09/09/2021 available
- Issue 2 dated 12/12/2023 released to the pub

USER GUIDE

for the SPACE RIDER Re-usable Free Flyer Platform

Contacts: STS/PS Fabio Caramelli - ESA/ESRIN fabio.caramelli@esa.int

SCM Cynthia Bouthot....

SCM Jose Salgado....

AIRBUS
Technical Session Sponsor

Thanks to Cyndy and Jose for their invaluable contribution

