

ZBLAN Optical Fibers Manufactured in Space: Commercial-Grade Standard Requirements from an Industry Perspective

Dr. Ioana Cozmuta, Dr. Remus Osan, Dr. Brian Motil - G-SPACE Inc

Prof. Dr. Marcel Poulain, Dr. Solenn Cozic, Samuel Poulain - Le Verre Fluore

Cesar Lopez-Zelaya - Air Force Research Laboratory

Prof. William A Goddard - Caltech; Prof Qi An - Iowa State University

Technical Session Sponsor

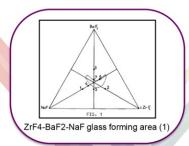
BACKGROUND

1974: discovery of the first <u>fluorozirconate glasses</u> (Rennes Univ. - France)

1977: first fluoride glass fiber (CNET, Rennes Univ.) founding of Le Verre Fluoré (LVF)

1980: typical ZBLAN glass compositions (Rennes Univ.) first <u>fluoroindate glasses</u> (Rennes Univ.)

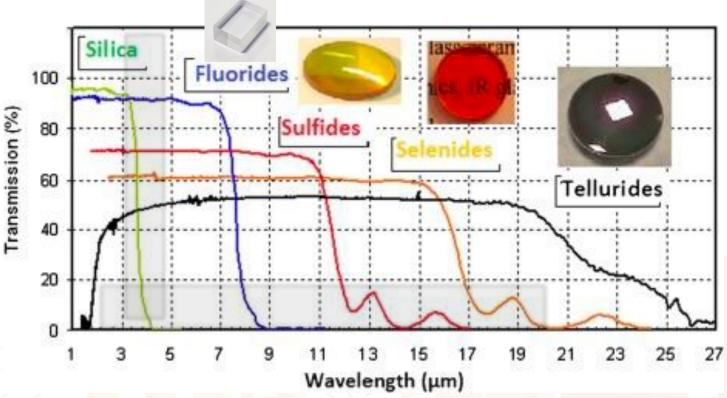
1987: fluoride glass fiber laser (BTRL, CNET)


1991: typical InF₃ glass compositions (Rennes Univ.)

2006: Mid-IR SC ZBLAN fiber source (Michigan Univ, Omni Science, LVF)

2009: first commercial mid-IR SC fluoride fiber source (LVF)

2013: Mid-IR SC InF₃ fiber source (DRDC, INRS-EMT)



(1) M. Poulain et al., «Verres fluores au tetrafluorurede zirconium proprieties optiques d'un verre dope au Nd3+», *Mater. Res. Bull.*, vol. 10, no 4, p. 243-246, (1975).

G S P Δ C E

GENERAL PROPERTIES

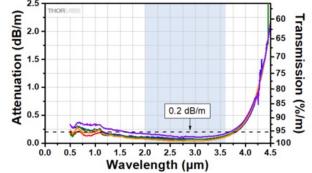
<u>1. ZBLAN GLASSES – ZFG</u> 53ZrF₄-20BaF₂-4LaF₃-3AlF₃-20 NaF

Transmission (3-4 mm thick sample): $0.220-7 \mu m$

 $2. InF_3 GLASSES - IFG$ $40InF_3-20ZnF_2-20SrF_2-20BaF_2$

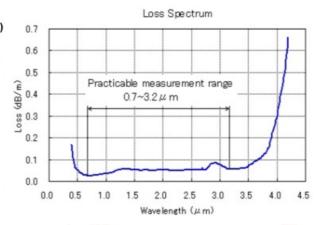
Transmission (3-4 mm thick sample): 0.255-8 μm

3-5 μm: atmospheric transparency window 2-20 μm: molecular fingerprinting window



LEADING TERRESTRIAL MANUFACTURERS

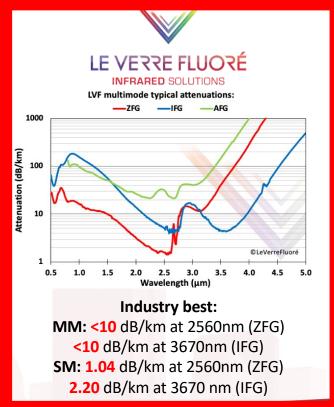
There are 3 high quality fluoride fibers providers in the world today


THORLABS

Ø100 µm, Ø200 µm, and Ø450 µm ZrF, (5 Independent Runs)

Thorlabs: 200-250dB/km at 2500nm

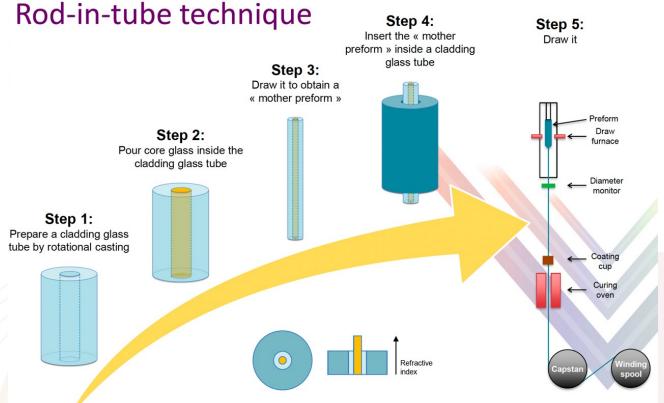
FiberLabs Inc.

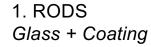


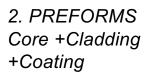
FiberLabs: 50 dB/km at 2500nm

G-SPACE is the US Representative for Le Verre Fluore

50 years of experience; Thousands of compositions







G+SPACE

MANUFACTURING

- Fiber pulled from rods has no commercial value
- 2. Pulling rods is an important step in mastering processing

Fiber geometries

- Various configurations (double clad, double D-shape, polarization maintening, low birefringence...)
- High geometry control (core/cladding eccentricity, dimensions)
- 125µm fibers with core diameters as small as 1µm (adjusted cut-off wavelength)
- · High core/cladding interface quality

COMMERCIAL GRADE OFFERINGS

- Immediate availability of a wide spectrum of these fiber products
- Can accommodate high volumes (effective no limitation in length of manufacturing)
- 3. Highest quality on the market
- Repeatable and reliable manufacturing

Commercial grade ZBLAN fiber optics products

Standard fiber	Core/clad diameter	Numerical aperture	Short term bend radius	Long term bend radius
ZFG MM (0.15) 90/150	90/150 μm	0.15	≥ 15 mm	≥ 45 mm
ZFG MM (0.20) 90/150	90/150 μm	0.20	≥ 15 mm	≥ 45 mm
ZFG MM (0.20) 200/260	200/260 μm	0.20	≥ 25 mm	≥ 75 mm
ZFG MM (0.20) 300/360	300/360 μm	0.20	≥ 35 mm	≥ 100 mm
ZFG MM (0.20) 400/460	400/460 μm	0.20	≥ 45 mm	≥ 120 mm
ZFG MM (0.20) 600/680	600/680 μm	0.20	≥ 70 mm	≥ 150 mm

Standard fiber	Core/dad diameter	Numerical aperture	Cutoff wavelength	Operating wavelength	Short term bend radius	Long term bend radius
ZFG SM [1.95] 6.5/125	6.5/125 μm	0.23	1.95 μm	0.3-3.90 μm	≥15 mm	≥ 45 mm
ZFG SM [2.55] 8.5/125	8.5/125 μm	0.23	2.55 μm	0.3-4.5 μm	≥ 15 mm	≥ 45 mm

NEW PRODUCTS:

- Pr-doped fiber for visible fiber laser applications
- 2. GeO₂ fibers
- 3. Custom ZFH, IFG fibers and bulk glasses

PASSIVE APPLICATIONS

MULTIMODE FIBERS

- · Remote detection
 - ✓ Spectrometry (pollutants concentration)
 - ✓ Temperature (optical pyrometry)
 - Process control (wet paint thickness, oil refinery)

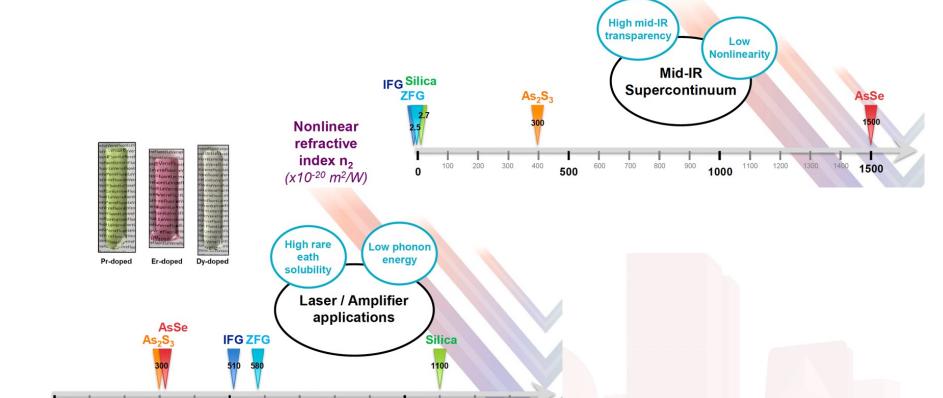
- Pigtailing Interband / Quantum Cascade Lasers (from 2 up to 5µm)
- · Laser power transmission (Er-YAG)
 - ✓ Continuous wave: ZFG can withstand more than 188W
 - ✓ Pulsed laser: ZFG can withstand 1.6J pulses at 2.94µm
- · Mode scrambling

Instrumentation polarization maintening fibers

 Astronomical projects low birefringence fibers

SINGLE MODE FIBERS:

- Low birefringence
- Low dispersion
- Low attenuation in K-Band


HARSH ENVIRONMENTAL TESTING:

- Moist Heat
- Thermal cycle under vacuum
- Thermal cycle under dry nitrogen

ACTIVE APPLICATIONS

Phonon energy (cm⁻¹)

1000

700

500

100

200

300

ZBLAN IN-SPACE MANUFACTURING (ISM)

New Space, Vol. 5, No. 3 | Original Articles

Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit

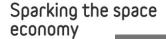
is corrected by \vee

Ioana Cozmuta o and Daniel J. Rasky

2017

Published Online: 1 Sep 2017 | https://doi.org/10.1089/space.2017.0016

Abstract


Exotic optical fibers and glasses a transmission (speed, low attenuati Gravitational effects (convection s melting properties, crystallization t factors constitute limits to the yield of applications. Manufacturing in a fabrication process (i.e., improved

Manufacture in Orbit ...

2019

BY DEBRA WERNER | JANUARY 2020

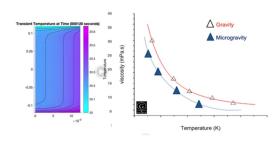
2020

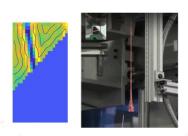
FOMS INC GEARS UP FOR ZBLAN FIBER MANUFACTURING ON ISS

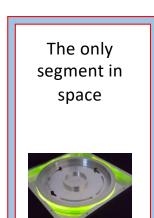
@G-SPACE Inc, 2024

COMMERCIAL GRADE CRITERIA FOR ZBLAN ISM

- Fiber Diameter Uniformity and Concentricity
- Attenuation and Diffusivity
- Mechanical Strength
- Numerical Aperture
- Fiber Designs (geometries)
- Spectral Transmission Range
- Environmental Stability
- Repeatability and Scalability of Production
- Product Optimization in Microgravity
- Product Design Driven by Market Applications
- Economic Feasibility


SPACE ENHANCED VALUE CHAIN



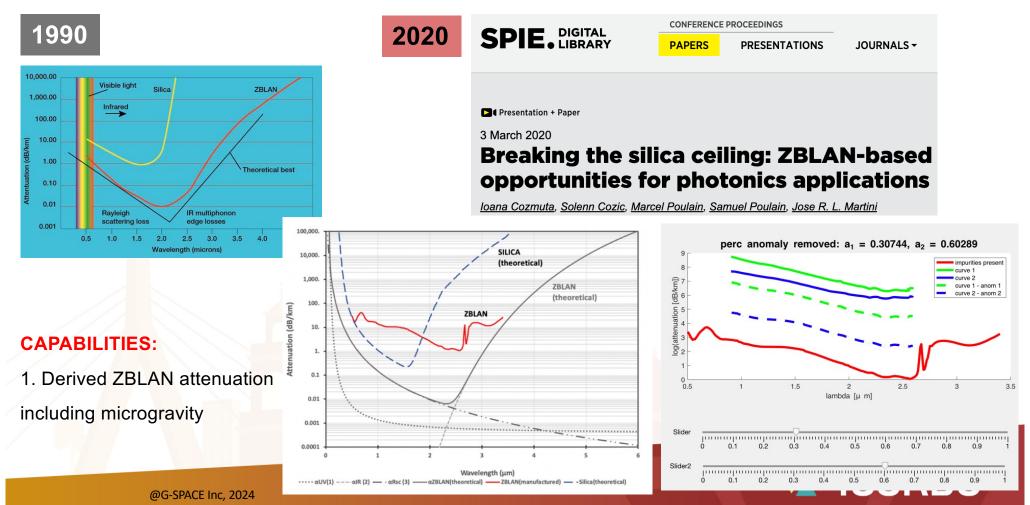

Market needs-based: performance required by a certain application; preferably lead by an industry player

(1) Raw material from the market leader

(2) Process control in the space hardware terrestrially

(3) Optimize hardware operational parameters for microgravity(4) Real-time monitoring

(5) Manufacture fiber in space according to specs


(6) Integrate in products & sell

Compare performance with market leader

G-SPACE CAPABILITIES IN ZBLAN ISM

Gs P Δ CE

STATE OF THE ART EXPERIMENTAL CHARACTERIZATION

Raw materials (highest quality rods)

Terrestrial Reference Drawing

Fiber Design

Imaging

Core-clad concentricity

Coating-cladding concentricity

Mechanical Properties

short- and long-term bending radius

tensile strength

Optical Properties (at 2.5 microns)

power transmission

attenuation measurement

identify scattering local defects (count, size)

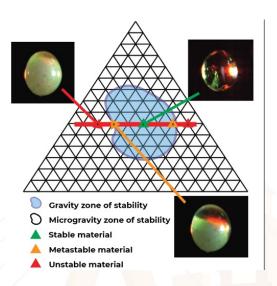
fiber diffusion

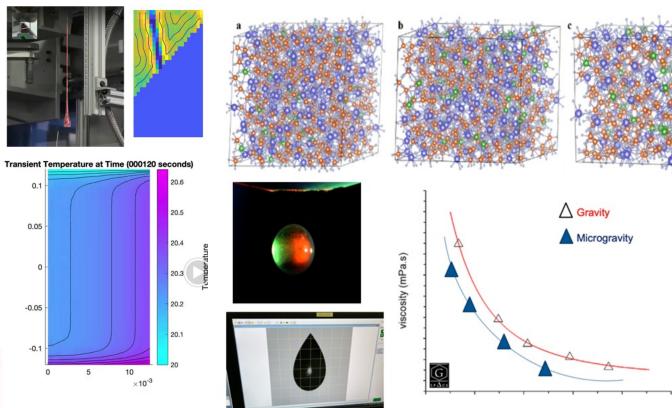
if possible: dispersion (mode, mode field diameter), polarization, Rayleigh scattering

In partnership with

CAPABILITIES:

2. G-SPACE DELTA-TO-GRAVITY™

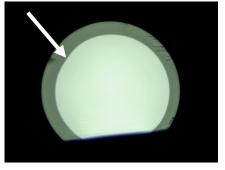




AI/ML ZBLAN MICROGRAVITY PRODUCT DESIGN

CAPABILITIES:

3. Optimizing formulations and manufacturing process control


Reduce trial and error in ZBLAN microgravity manufacturing and accelerate time to market

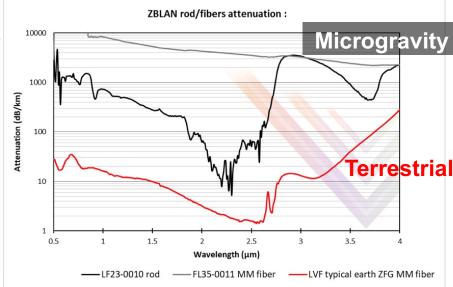
ZBLAN ISM CASE STUDY

G S P Δ C E

SpX-25 and Spx-26

Coating-cladding non-concentricity

Terrestrial


DIFFUSIVITY

Microgravity

ATTENUATION

ZBLAN ISM EVOLUTION

2014:

One ZBLAN ISM manufacturer (US based); No product

2024:

10 ZBLAN ISM manufacturers (worldwide);
No commercial product
Successful processing of **rods** into long length fibers

CHALLENGES

Lack of quantifiable, repeatable scientific evidence on microgravity processing

Microgravity can not remove impurities

Length and quality misconceptions

No requirement to establish terrestrial baseline

Lack of standardization

Vertical integration for ISM companies

A systemic problem

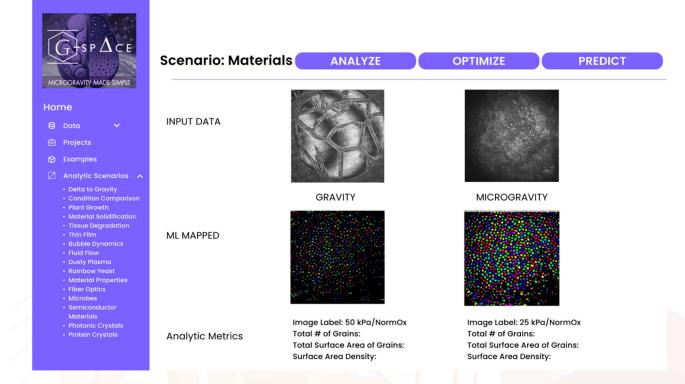
Space Manufacturing today is slow, risky, expensive and NOT SCALABLE

Gravity impact is often overlooked and hard to visualize

No standardized tools to quantify & leverage microgravity impact

What we build today in microgravity is very low yield

High risk of losing data and process control during microgravity



2024 Technical Sessions

G-SPACE ISM SOLUTION

AI/ML SaaS Platform to Accelerate Microgravity Innovation and Production at Scale

G-SPACE provides

an AI-driven platform for predicting, optimizing, and analyzing microgravity effects, streamlining space research and manufacturing

KEY BENEFITS:

- Saves time
- Reduces cost
- Lowers risk

G-SPACE GO TO MARKET OFFERING

AVAILABLE IMMEDIATELY:

Analysis, Optimization & Prediction*
Real Time Process Control**
New Materials discovery***
ISM market prediction model*

- expert services + software platform
- ** expert services + hardware recommendation
- *** expert services + experimental facility

INCREASED ROI

Faster time to Market: Accelerate your R&D with sophisticated experiment design and analysis, less waiting between flights, lower risk, less trial and error and faster product development cycles

More insights: Predict results, monitor your experiments in real time, extract every byte of insight using G-Space analytical tools before, during and after the flight

Higher yields: With near-real-time visibility into your experiment as it happens in space, our monitoring suite unlocks higher yields and makes it more profitable to experiment and manufacture in space

GRAVITY FREE REGARDS

CONTACT US:

For Investment opportunities:

loana@g-space.com

For Microgravity Product Design:

info@g-space.com

For ZBLAN products:

Sales@g-space.com

Technical Session Sponsor

