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ABSTRACT 
 
Augmented reality (AR) technologies are one method of supporting military visual search tasks, such as target 
identification, recognition, and acquisition. However, whether or not a given AR technology actually improves 
human performance depends on many factors, including the quality of the display and the quality of the AR 
information provided to the Soldier. In this paper, we describe current research efforts by the U.S. Army CCDC 
C5ISR Night Vision and Electronic Sensors Directorate to use simulation to study one aspect of AR information 
quality: spatial accuracy. Specifically, we examine the level of AR spatial accuracy required to improve human 
performance as a function of range and the amount of spatial error in the AR symbology. Participants were placed in 
virtual scenarios and asked to locate and target a single virtual human holding a weapon amongst many unarmed 
virtual humans. Participants used realistic sensor controls to scan the virtual field of regard and to locate the target. 
Baseline performance was characterized by having participants locate targets without any AR assistance. In other 
control trials, participants were guided to the target with perfectly accurate AR symbology, located both on a 
situational awareness ring and in the operator’s field of regard. In imperfect AR trials, participants were guided by 
AR symbology distorted by fixed amounts of angular error (1°, 2°, 3°, or 4°) between the target, the observer, and 
the AR symbology. Our results examine the effects of AR spatial accuracy on target acquisition time, comparing 
imperfect AR to perfect AR and unaided searching. The ultimate goal of our research program is to support product 
development and virtual prototyping by simulating task-specific and sensor-specific AR accuracy requirements for 
sensors and head-up displays.  
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INTRODUCTION  
 
The U.S. Army CCDC C5ISR Center Night Vision and Electronic Sensors Directorate (NVESD) has been a world 
leader in the development and evaluation of electro-optical and infrared sensors for over sixty years, supporting 
technology applications ranging from vehicle mounted sensors, to weapon sights, to head-mounted displays. Many 
technological advancements have made it possible to improve the way we present sensor information to a human 
operator. As such, augmented reality (AR) technologies have become an important area of research and 
development for NVESD, as part of the U.S. Army’s focus on increasing Soldier lethality. 
 
Augmented reality technologies attempt to enhance human sensory experiences by inserting digital information into 
the user’s experience of the “real world” (Wu, Lee, Chang, & Liang, 2013). While there are many different forms of 
AR, the present work focuses on the visual overlay of digital information onto the human visual field, either by 
augmenting a live sensor feed or utilizing a see-through display. There are many ways augmenting a Soldier’s visual 
field might assist with operational tasks. For example, AR symbology marking enemy units might improve target 
acquisition, AR labels identifying an object might facilitate object recognition, and AR waypoints indicating a 
navigation route might improve navigation efficiency. While the goal of improving situational awareness and 
military task performance by giving operators additional information is not particularly novel, the ongoing 
maturation of see-through and helmet-mounted display technologies, as well as the improvement of a host of 
supporting technologies (e.g., lightweight computer and graphics processors, information system networks, global 
positioning systems), has made it progressively possible to provide Soldiers with increasingly complex information 
in unobtrusive, mobile platforms.  
 
However, while AR technology is extremely promising, potential risks to human performance also deserve careful 
attention. For example, while AR technologies have the potential to direct the operator’s attention towards critical 
visual information, the AR system may also capture visual attention in undesirable ways, such that operators become 
inattentive to other critical information in the “real world” (Dixon et al., 2013; Radu, 2014; Tang, Owen, Biocca, & 
Mou, 2003). Likewise, while AR has the potential to decrease the cognitive load of operators by reducing the 
amount of information that must be kept in their memory (i.e., because that information is present on the display), 
increased cognitive load with AR systems has also been reported in the literature (Dunleavy & Dede, 2014). Thus, 
AR must be implemented carefully to avoid major risks to military personnel, or such technologies may do more 
harm than good. 
 
One critical area of this research challenges a common assumption for those developing an AR system: that AR 
information provided to the Soldiers will be useful and will help improve Soldier performance. NVESD is interested 
in understanding the “quality” of AR information provided to Soldiers. The quality of AR information has many 
dimensions, including its relevance, timeliness, perceptual saliency, communicative clarity, and its accuracy. All of 
these dimensions are worthy of research to define the necessary quality of information needed to improve human 
performance.  
 
The current research focuses on a single issue related to AR information quality: detriments to human performance 
caused by inaccurate information. As with any technology, AR systems will not be able to provide operators with 
perfect information at all times. AR errors may be caused by limitations of the AR and/or display technology itself 
(e.g., poor spatial accuracy for displayed symbology), or by receiving imperfect information from a human or 
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computer source and subsequently relaying that inaccurate information to the human operator (e.g., an ally 
designating a civilian as a target by mistake). In these situations, AR errors risk not only reducing any performance 
benefits the AR system is expected to bestow, but may actively harm performance to such an extent that 
performance with inaccurate AR is worse than performance with no AR. 
 
The purpose of this investigation is to examine the effects of angular, spatial distortion in AR symbology designed 
to support target acquisition, as spatial registration of AR symbology remains a significant technical challenge 
(Brunyé, Moran, Houck, Taylor, & Mahoney, 2016). Specifically, we investigate the effects of angular error 
between the true target and displaced AR symbology indicating a target at multiple ranges.  Our primary research 
questions are 1) how much angular AR accuracy is needed for AR information to improve human performance, 2) 
how much AR error is necessary to harm human performance, and 3) how much AR angular error is necessary to 
decrease performance below that of perfect AR guidance. To study the effects of AR errors as they relate to target 
acquisition, our simulation uses the Night Vision Image Generator (NVIG) software to simulate the sensor feed of 
an infrared sensor. A realistic sensor controller enabled operators to scan a ring of virtual human targets, searching 
for a single human holding a weapon.  
 
It is well known that humans can react faster to visual stimuli if they are given spatial cues to inform the human of 
where a visual stimulus is likely to occur (Posner & Cohen, 1984). Our AR simulation influences human target 
acquisition performance by both designating targets on a situational awareness ring and by placing a cue above the 
target in the operator’s field of view (see Figure 1). The targeting cue in the situational awareness ring assists the 
user in gauging which direction and how far to rotate the sensor, based on the distance between the targeting 
symbology and the sensor’s current azimuth heading; this symbol on the situational awareness ring also acts as a 
pre-cue that orients a person’s attention to the symbology appearing over the target in the operator’s field of view 
(Egly, Driver, & Rafal, 1994). The targeting symbol in the field of view subsequently orients the operator’s attention 
to the designated target. While this type of AR symbology is not unique, little data exists quantifying the benefits of 
such AR symbology, or how spatially accurate such symbology needs to be in order to improve human performance. 
This is the second round of data collected from our NVIG target acquisition simulations, and the new data reflect 
several important simulation upgrades following the original pilot experiment (Graybeal & Du Bosq, 2018). 
Changes to the simulation and their impact on the data are discussed, and we also explore whether the initial 
experiment training is sufficient given a slightly more complicated target acquisition task.  
 
 
METHODOLOGY 
 
Adaptation of Existing Simulation Capabilities 
 
Although imagery generated by NVIG has been used in past experiments to support evaluations of human 
performance with a sensor at NVESD (e.g., Graybeal, Du Bosq, & Nguyen, 2019), such experiments usually relied 
on static images presented on a computer monitor. Thus, one of the Perception Laboratory’s goals has been to create 
more immersive scenarios for objective tests of human performance that might better represent the sensor’s 
operational use. 
 
In order to create the interactive scenarios used in this test, we leveraged NVIG’s existing ability to represent a 
virtual world from a sensor view-port that could be controlled by a human operator (i.e., ability to rotate a sensor 
360° in an immersive virtual world). A new software modification was required and developed in order to present 
the operator with a series of scenarios sequentially (i.e., when a given experimental trial was completed and the user 
gave a response, the next scenario needed to load automatically). This modification was necessary to support the 
large number of trials required by this experiment to generate adequate measurement sampling and statistical power.  
 
Another NVIG capability that we initially lacked was a more efficient method of loading entities into precise 
locations within NVIG to build immersive scenarios. This was also a simple software development task, and we 
developed the capability to read in a spreadsheet of coordinates and entity names, so that scenarios could quickly be 
generated by modifying coordinates in a spreadsheet rather than adding entities manually to a scenario. This was 
required for careful control of entity location, and also to facilitate placing a large number of entities into a large 
number of scenarios. 
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Scene Generation 
 
We created a series of virtual scenarios where participants had to search for, detect, and acquire a human target who 
was holding an AK-47 rifle; each scene contained only one target. Virtual humans were arranged in a partial ring 
(i.e., arc) around the sensor’s location, so that each virtual human was equidistant from the sensor. The ring of 
potential targets covered a total area of 60° (30° on either side of the sensor’s initial orientation), regardless of target 
range. In order to ensure our experimental design was sensitive to the effects of AR error, potential human targets 
were placed closely together at fixed intervals. This ensured AR spatial errors would force the operator to conduct 
visual searching in order to find the target. In other words, the AR system never made mistakes where the correct 
target, and only the correct target, would appear in the sensor’s field of view despite angular error being present. The 
virtual humans were inserted into a flat, open terrain, such that scenes were devoid of buildings, vegetation, and 
other visual clutter (see Figure 1). Participants had a maximum of 90 seconds to find each target; this time limit was 
used to prevent participants from spending an excessive amount of time on any given trial and to prevent operator 
fatigue. 
 

 

Figure 1: Sample scenes from the target acquisition simulation. Each scene contained an arc of 
virtual humans, and participants must align the center targeting reticle with the person 
holding the weapon. In the left image, the AR symbology correctly designates the target. In the 
right image, the AR symbology contains angular error, and is displaced slightly from the true 
target. Note that the AR symbology both appears on the screen above the target and on the 
sensor’s situational awareness ring. 

 Experimental Design and Hypotheses 
 
We studied the effects of several independent variables on target acquisition performance using a within-subjects 
design. First, we studied the effects of AR accuracy. Participants experienced six categorical levels of the AR 
performance: no AR (i.e., a control condition where participants had to complete the task unaided by any AR system), 
perfect AR (i.e., no angular displacement between the AR symbology and the true target), and four levels of imperfect 
AR, consisting of 1°, 2°, 3°, and 4° of angular error between the AR symbology and the true target. We hypothesized 
that greater amounts of AR error would increasingly impair target acquisition performance.  

Second, we explored the effects of distance between the sensor and the target (i.e., range). We studied the effects of 
three ranges: a “Close” range where the target was easily visible without engaging the sensor’s optical zoom, an 
“Intermediate” range where the target was visible without engaging the optical zoom but optical zoom greatly aided 
target acquisition, and a “Distant” range where the target was not detectable without engaging optical zoom. We 
hypothesized that target acquisition would take longer at extended ranges. In particular, we wanted to explore the 
interaction between range and AR information; for example, while 1° of AR angular error might not impair 
performance at a “Close” range, it might cause sufficient harm at more distant ranges. 

Target locations were counterbalanced across AR error conditions and ranges, so that targets appeared in equivalent, 
but not identical, locations. This was accomplished by creating eight location “windows” (e.g., 4.5°-7.5°), but randomly 
placing the target within that window, so that target locations could not be learned by participants using the sensor’s 
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azimuth heading. The target location windows were centered at 6°, 9°, 12°, and 15° to the left and right of the sensor’s 
starting origin. A target was placed at each of these target windows, for each range, for each AR condition. 

Consequently, the total number of target acquisition trials per participant was 144 (6 AR conditions by 3 Ranges by 8 
target window locations = 144). These trials were subdivided into eight blocks of 18 trials so that participants could 
periodically take breaks; each block was counterbalanced to contain three trials each of the six AR conditions. Each 
participant took each block, and each trial within a block, in a randomized order. 

Sensor Controls and Targeting Reticle 

We used highly realistic sensor grips, developed previously at NVESD, as the human/computer interface. The 
simulation controller was mounted to a stationary desktop in front of a computer monitor; pushing on the grips, either 
to the left/right or up/down, caused the sensor to rotate at a speed proportional to the strength of the push. The 
controller’s sensitivity was set low enough to allow operators to easily acquire the targets at the most distant range (i.e., 
too much sensitivity makes it difficult to acquire small, distant targets). 

Soldiers could engage the optical zoom of the sensor and used a “Laser Range Finder” button to designate targets. A 
“Menu” button was used to control a simple dialogue box that appeared after a Soldier designated a target, allowing the 
operator to “Confirm” or “Cancel” the designated target. A third button was used as a “speed boost” that enabled 
operators to rotate the sensor’s field of view faster. This feature was added, along with a change to make the sensor 
rotate at a speed proportional to the sensor’s field of view (which changes with the level of optical zoom), after 
participants in the initial pilot implementation complained that the sensor rotated too slowly for close targets (Graybeal 
& Du Bosq, 2018). 

A different targeting reticle was displayed depending on whether or not the optical zoom was enabled; each reticle 
included a single dot at the very center of the screen. Participants were instructed to align that targeting dot with the 
virtual target holding the weapon. 

 

Figure 2: Perception Laboratory facilities and experimental configuration. The Perception 
Laboratory has 10 workstations for simultaneous testing (left). Controller grips were mounted 
to the desk and positioned in front of large, high definition 4K computer monitors (right). 

Participants 
 
Eighteen U.S. Army Soldiers were recruited through Headquarters, Department of the Army. The Soldiers arrived 
during two different sessions for a one-week stay each, participating in thermal vehicle identification training and 
other perception experiments in addition to the augmented reality simulation presented here (Graybeal, Monfort, Du 
Bosq, & Familoni, 2018). Soldiers’ ages ranged from 20 to 46 years old (M = 30.3, SD = 7.4). Likewise, time spent 
in service of the military varied widely between participants (M = 7.8, SD = 4.1). All research procedures were 
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carried out under a protocol for human subjects research approved by the U.S. Army Medical Research and Materiel 
Command Institutional Review Board. 
 
Procedure 

Participants were first given a group PowerPoint presentation explaining the AR simulation instructions and sensor 
controls. Participants were instructed to acquire the targets as quickly as possible. They were also told that an AR 
system would attempt to help them during the target acquisition task, but that it would not always function perfectly.  
 
Participants then participated in training scenarios to learn the sensor controls and to practice acquiring targets. The 
training consisted of three trials at each of the three ranges for each of three AR conditions: No AR, Perfect AR, and 
AR with 4° angular error (27 trials total). These three AR conditions were selected because they covered the full 
range of AR performance. Once participants completed the training, they began the experiment. While participants 
could always take a break between any of the eight blocks of trials, they were asked to take a ten minute break 
halfway through the experiment to alleviate fatigue. The instructions, training, and experiment collectively took 
approximately two hours.  
 
Data Analysis 
 
Data analysis was conducted using the R Project statistical analysis software. Hierarchical linear regression models 
(Bates et al., 2015) were used to analyze human performance data (target acquisition time and target acquisition 
accuracy), using Satterthwaite’s method of approximating degrees of freedom for the calculation of t and p values 
(Satterthwaite, 1946). Nested-model comparisons were used to produce interpretable main effects (due to the 
presence of categorical variables with more than two levels in the primary regression analyses). Two regressions 
were planned per dependent variable to answer our primary research questions: the first comparing all AR 
conditions to No AR assistance and the second comparing all imperfect AR conditions to Perfect AR assistance. 
Additional post-hoc regressions, subsetting the data at various ranges, were conducted to further test these 
hypotheses at specific ranges; the Bonferroni correction was applied to both the dual regression approach (α =.025) 
and post-hoc analyses (α =.008) to control the rate of Type 1 inference errors. 
 
As target acquisition accuracy is a binary variable, logistic regression was used to analyse it. Target acquisition 
accuracy was calculated purely in terms of angular error between the true target, the sensor, and the target 
designation pathway through three-dimensional space indicated by the participant; vertical accuracy was ignored. A 
response was scored as correct if the designated path through three-dimensional space was no more than half of a 
meter away from the target (i.e., the designated path was closer to the target than any other virtual human).  
 
 
RESULTS 
 
Target Acquisition Time 
 
A nested model comparison revealed a significant main effect of range on target acquisition time X2(1, N = 18) = 
422.97, p < .001, such that target acquisition time increased at longer ranges, as predicted (“Close”: M = 12.39 s, SD 
= 6.03 s; “Intermediate”: M = 22.52 s, SD = 15.75 s; “Distant”: M = 27.96 s, SD = 18.73 s). Likewise, a nested 
model comparison revealed a significant main effect of AR condition X2(5, N = 18) = 639.00, p < .001. Target 
acquisition times were fastest with perfect AR, increased with increasing amounts of angular error, and were slowest 
with No AR (see Table 1). Likewise, variance in target acquisition times increased with increasing amounts of 
angular error, with No AR representing the least consistent acquisition times and Perfect AR representing the most 
consistent acquisition times. 
 
A hierarchical linear regression model revealed that, compared to No AR, all AR information significantly improved 
target acquisition times (all p-values < .001). Further, compared to the No AR condition, the increases in target 
acquisition time as range increased were significantly smaller with all AR conditions (all p-values < .001). In other 
words, AR information protected against the impairments in target acquisition normally seen with increased range, 
although the magnitude of this protection decreased as angular error increased. Further post-hoc regressions, subsetting 
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the data by range, indicated that all AR conditions were a significant improvement over No AR at all ranges (all p-
values < .001).  

 

Figure 3: Target acquisition time by range and AR condition. Increased range (i.e., distance to 
the target) and increased amounts of angular error increased target acquisition times. Error 
bars represent 95% confidence intervals (based on standard error estimates calculated in the 
hierarchical linear regression models). 

A second hierarchical linear regression model, using Perfect AR as the reference group, revealed that 1° (B = -.69, p = 
.394) and 2° (B = 1.39, p = .086) of angular error did not significantly differ from perfect AR, but 3° (B = 2.03, p = 
.012) and 4° (B = 3.86, p < .001) of angular error resulted in significant impairments in target acquisition time. 
Compared to perfect AR, 3° (B = 2.06, p = .011) and 4° (B = 3.45, p < .001) of angular error also showed significantly 
larger increases in target acquisition time as range increased. Further post-hoc regressions, subsetting the data by range, 
indicated that there were no significant differences (relative to perfect AR) with any of the four imperfect AR 
conditions at the “Close” range. At the “Intermediate” range, only the 4° of angular error resulted in significantly worse 
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performance than perfect AR (B = 3.10, p = .035). Finally, at the “Distant” range, both 3° (B = 4.61, p = .008) and 4° (B 
= 8.41, p < .001) of angular error again resulted in significantly worse performance. 

Table 1. Mean target Acquisition Times by AR Condition 

 
 

Table 2 shows the difference in mean target acquisition times between imperfect AR and No AR/Perfect AR 
guidance; it demonstrates how even imperfect AR assistance dramatically improved average target acquisition 
performance relative to the No AR condition. At the “Close” range, imperfect AR reduced target acquisition time 
uniformly by approximately 5 to 6 seconds compared to No AR guidance. Both the benefits of AR and the effects of 
angular error became more impactful at longer ranges, such that target acquisition time was reduced by 30.62 
seconds with 1° of angular error at the “Distant” range (compared to No AR guidance), versus a smaller 23.21 
second reduction with 4° of angular error. Compared to Perfect AR, there were no meaningful differences between 
any of the imperfect AR conditions at the “Close” range. At the “Distant” range, 1° of angular error introduced a 
(statistically non-significant) 1.01 second delay in target acquisition versus a (statistically significant) 8.42 second 
delay with 4° of angular error. 
 

Table 2: Difference in Target Acquisition Times Between Imperfect AR and Control 
Conditions 

 

Target Acquisition Accuracy 
 
Excluding trials where participants were unable to designate a target within the 90 second time limit, accuracy was 
extremely high for all participants, at each of the three ranges: 100% at the “Close” range, 99.62% at the 
“Intermediate” range, and 99.74% at the “Distant” range. As such, target acquisition accuracy in our experiment 
almost exclusively reflects the ability to identify the target within the 90-second time limit, rather than the ability to 
accurately designate the target in general (i.e., errors in correctly aligning the targeting reticle or mistakenly 
designating incorrect targets).  
 
A nested model comparison, including trials where participants failed to designate a target in 90 seconds, revealed a 
significant main effect of range on target accuracy X2(1, N = 18) = 33.66, p < .001; accuracy was perfect (i.e., 
100%) at the “Close” range, while slightly and progressively lower at the “Intermediate” range (98.08%) and the 
“Distant” range (96.15%). Likewise, a nested model comparison revealed a significant main effect of AR error 
condition X2(5, N = 18) = 123.85, p < .001; accuracy at the “Distant” range was lowest with No AR (80.581%), 
highest with perfect AR (100%), and increasing amounts of angular error decreased accuracy (see Table 3). 
 
A hierarchical linear regression model, subsetting the data to analyse only the trials at the “Distant” range was selected, 
as performance for many AR conditions was perfect at both the “Close” and the “Intermediate” ranges (perfect, 
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invariant performance causes computational problems for regression techniques). Performance on trials with Perfect 
AR was still perfect at the “Distant” range, so these trials were also excluded. Using No AR trials as the reference 
group, the regression revealed significant improvements in target acquisition accuracy for all imperfect AR groups (all 
p-values < .001). As performance was highest in the Perfect AR condition, we can infer differences between the No AR 
and Perfect AR trials are also unlikely to be due to mere chance, despite their exclusion from the model. A second 
regression, comparing performance on imperfect AR trials to Perfect AR was not conducted due to the invariance in the 
Perfect AR condition. 
 

Table 3: Mean Accuracy Scores by AR Condition at the “Distant” Range 

 

Analysis of Experiment Training 
 
If the training at the beginning of the study was 
insufficient for participants to learn to acquire targets as 
quickly as possible, we might observe progressively faster 
target acquisition times over the course of the experiment. 
Analysis of the average time to acquire a target during 
each of the eight sequential experimental block revealed 
that target acquisition times decreased throughout the first 
four blocks and also during the last four blocks, but reset 
during the transition from the fourth to the fifth block (see 
Figure 4). This likely reflects an effect of the mandatory 
break participants took halfway through the experiment. A 
nested model comparison revealed a significant effect of 
adding a variable to the model that accounted for the 
number of blocks since the start of the experiment or the 
break at the halfway point: X2(1, N = 18) = 13.96, p < 
.001. 
 
 
 
DISCUSSION 
 
Our experimental simulation demonstrates a clear method for studying target acquisition performance with 
imperfect AR symbology in order to better understand AR sensor requirements. With a relatively small sample size, 
we were able to demonstrate significant gains in human performance compared to completing the task without AR 
assistance; we were also able to distinguish when AR errors were becoming severe enough to impact human 
performance. Lastly, we were able to confirm two basic principles of AR symbology for target acquisition: 1) 
increasing amounts of AR error lead to progressive detriments in target acquisition performance and 2) that AR 
accuracy requirements increase as the task becomes more difficult. 
 
Our research program joins a growing body of literature examining the impact of AR errors on human performance 
(e.g., Brunyé, Moran, Houck, Taylor & Mahoney, 2016; Graybeal & Du Bosq, 2018; Monfort, Graybeal, & de 
Visser, & Du Bosq, 2018). Degradations in human performance were confirmed by formal hypothesis testing, but 
even when impairments were not statistically significant, the data followed a clear pattern of progressive 

Figure 4: Analysis of average target acquisition time 
throughout the experiment. 
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impairments due to increasing AR error. This is not a surprising outcome, but it is an important finding to share with 
the AR engineering community so that designers and consumers of these systems understand that the quality of the 
AR information provided to Soldiers affects their task performance. This principle is important, not only because 
small errors can matter, but also because it demonstrates the need to measure and define AR accuracy requirements.   
 
Our simulation data also demonstrate that AR accuracy requirements change as the difficulty of the task increases. 
As range increased in our study and targets became smaller and more numerous, there was greater opportunity for 
the AR symbology to remediate human weakness, but deviations from Perfect AR also lead to greater detriments 
compared to ideal information. In our study, imperfect AR was never worse than No AR; the search task was 
generally difficult enough (and the errors were small enough) that even when the AR system was off considerably at 
long ranges, pointing operators in the correct general direction was still beneficial. However, this will not be true of 
every task (Monfort, Graybeal, & de Visser, & Du Bosq, 2018), and in our previous pilot of this experiment with a 
smaller field of regard, 4° of angular error at distant ranges yielded performance close to baseline performance with 
No AR guidance (Graybeal & Du Bosq 2018). 
 
These findings demonstrate the importance of understanding the specific visual task an AR system will support, as 
AR requirements will change based on specific aspects of the task. NVESD has historically leveraged its electro-
optical and infrared modelling capabilities and Perception Laboratory to define the necessary sensor characteristics 
(e.g., resolution, dynamic range, etc.) for military operators to complete specific visual tasks. In addition to making 
general contributions to the AR literature, our research program ultimately aims to develop simulation capabilities 
for empirically evaluating AR reliability requirements for specific sensors for specific tasks. These simulations 
should be able to set bounding parameters to inform system requirements, aid in the cost/benefit analysis of AR 
systems, and ultimately lead to more informed acquisition decisions. This research represents a major advancement 
toward that goal, as sensor parameters, the nature of targets, and target placement can quickly and easily be 
reconfigured using the NVIG experimental software developed under this effort. 
 
The current simulation improved on several limitations from our initial implementation (Graybeal & Du Bosq 
2018). Specifically, we added a “speed boost” (i.e., speed multiplier) button that enabled participants to more 
quickly orient to target designation symbology. We believe this more accurately represents the cognitive task we are 
attempting to model, specifically rapid orientation to threats using AR symbology. This change also made it possible 
to utilize a larger field of regard, as participants were not limited to searching at a single, slow rotation speed. 
Additionally, we added a sensor azimuth heading and randomly placed targets within controlled quadrants (as 
opposed to precise consistent locations) so that it was easier for participants to keep track of targets they had 
previously scanned if they decided to switch directions while searching.  
 
As a result of these changes, improvements to human performance, relative to baseline, were larger than our initial 
pilot simulation (Graybeal & Du Bosq 2018), and this change is likely due to both the ability of participants to 
leverage the AR information more efficiently (i.e., by using the “speed boost”) and the increased difficulty of the 
baseline task (i.e., it was more difficult to search a larger field of regard without assistance). In the current study, AR 
target designation symbology dramatically reduced target acquisition time. Even at the closest range (i.e., during the 
easiest task), perfect AR symbology reduced target acquisition time by approximately 30%. At the farthest range, 
Perfect AR reduced target acquisition time by approximately 60%.  
 
Although these changes made the task less tedious and better aligned with the cognitive process we wanted to 
simulate, NVIG struggled to render all of the potential targets realistically while the sensor rotated rapidly with the 
“speed boost” engaged. This caused unrealistic and occasionally disorienting motion visualizations that should be 
improved in future simulations (the sensor’s azimuth heading and icons on the situational awareness ring indicating 
the location of potential targets were not affected). Another aspect of the simulation that could be improved for 
future iterations is our target placement methodology, as targets were never placed at the most lateral regions in the 
arc of potential targets. This was done intentionally during the pilot version of the experiment when targets were 
placed in fixed locations (so that participants could not use the end of the arc of potential targets as a cue to learn 
probable target locations), but is no longer necessary now that we have developed the ability to randomly place 
targets within a controlled (and counterbalanced) location window (Graybeal & Du Bosq 2018). While these are 
both minor task idiosyncrasies, remediating them should improve the quality of future data. 
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Figure 5: A person standing in NVESD’s new immersive VR 
testing environment (left) and an example scene a participant 
might see, as rendered in NVIG (right). 

After examining target acquisition times throughout the experiment, there was no clear evidence performance 
improved substantially over time. This suggests the training was likely sufficient to reach near-optimal performance 
before the experiment started. Although target acquisition times improved during blocks one through four and again 
during blocks five through eight, the performance resetting to baseline between blocks four and five during the 
mandatory break suggests this is only a temporary effect, likely due changes in motivation that allowed participants 
to acquire targets more quickly the longer they spent acquiring targets in the simulation. Still, for future simulations, 
it suggests we reconsider how we implement breaks during an experiment, perhaps forcing participants to take more 
frequent but shorter breaks in order to keep target acquisition performance as consistent as possible. 
 
Our upcoming research will continue to explore AR target acquisition simulations by examining additional 
variables, such as the size of the field of regard, the sensor field of view, the density of potential targets, and the 
amount of visual clutter in the scenes; all of these variables have the potential to impact the difficulty of the search 
task and subsequently the quality of information needed to improve human task performance. This target acquisition 
study is also part of a larger NVESD effort to study the effects of AR errors on military tasks using military sensors. 
Other tasks we are currently simulating include AR assistance for thermal vehicle identification (Graybeal, Du Bosq, 
& Nguyen, 2019) and land navigation (Graybeal & Du Bosq 2018).  
 
Importantly, the current laboratory simulation assumes relatively ideal operating conditions for the human user, 
whereas AR systems may be frequently utilized when operators must make a decision very quickly, under high 
stress, or while fatigued from combat or sleep deprivation. For example, time pressure might increase an operator’s 
reliance on visual automation provided by an AR display (Rice & Keller, 2009). Although it is always challenging 
to simulate operational conditions in the laboratory, future experiments could examine how these variables influence 
an operator’s use of AR. 
 
As we continue to improve our methods of simulating sensors and AR content displayed within them, we plan to 
develop progressively more immersive scenarios. NVESD recently acquired an immersive AR/VR environment for 
human experimentation. The system consists of a VR headset and a wearable, backpack computer. Integrated into 
the headset is a pair of visible cameras. The environment consists of plexiglass panels that emit green light. Any 
objects seen by the camera remain in the VR headset’s field of view, but a virtual world is superimposed over the 
camera’s field of view wherever the camera sees the green walls and floor. Our future studies aim to evaluate 
sensors and the effects of augmenting those sensors with additional information using immersive displays and 
environments like this one, as depicted in Figure 5.  
 
Ultimately, besides gaining specific insight into 
target acquisition performance with AR, we hope 
that readers will realize the importance of the 
following principle: for every military task aided 
by AR, there is a quality threshold for AR 
information that must be surpassed in order for 
AR information to provide quantifiable 
improvements in human performance. Even 
when human performance is still enhanced by 
imperfect AR, performance may be degraded 
significantly by AR errors. Likewise, there is a 
lower bound for AR informational quality, and 
presenting AR information of quality beneath 
this threshold will cause human performance to 
degrade. We caution against AR designers 
making implicit assumptions about how accurate 
an AR system needs to be, as this can be 
explored empirically through simulation. While our simulation only explores the accuracy component of AR 
information, many other factors affecting the quality of the AR information exist and are worthy of careful 
consideration, including whether the AR information is perceivable, intuitive, timely, and relevant. 
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CONCLUSION  
 
This paper presents a simulation of human target acquisition performance with both perfect and imperfect AR 
targeting symbology. Unsurprisingly, AR symbology aided target acquisition performance during the search task. 
Target search and acquisition time increased with range, and incremental AR errors progressively increased target 
acquisition time. AR information also protected against the impairments in target acquisition normally seen with 
increased range, although the magnitude of this protection decreased as angular error increased. While AR targeting 
symbology in this simulation was always a statistically significant improvement compared to a No AR control 
condition (all p-values < .001), larger amounts of angular error induced significant impairments at the more difficult 
ranges compared to perfect AR targeting symbology.  Our results demonstrate that as the task difficulty (i.e., range 
to target) increases, AR accuracy requirements increase as errors become more damaging. Ultimately, our 
simulation marks a major step towards our goal of being able to define sensor- and task-specific AR requirements 
through simulation. 
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