Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

Adapting Existing Simulation Architectures to Enhance Tailored Instruction

Robert A. Sottilare, Ph.D., Ross Hoehn, Ph.D. and Alyssa Tanaka, Ph.D.
Soar Technology, Inc.
Orlando, Florida
{bob.sottilare, ross.hoehn, alyssa.tanaka}@soartech.com

ABSTRACT

This paper examines the theory, design, application and recommended standards associated with adaptive instructional
systems (AISs) as drivers for tailoring military training in simulation environments. Most military simulations today
are classified as minimally adaptive in that they modify content only based on learner/team performance, and generally
do this in a prescriptive way. AlSs are artificially-intelligent, computer-based systems that guide learning experiences
by tailoring instruction and recommendations based on the goals, needs, and preferences of each individual learner or
team in the context of domain learning objectives. AlSs come in several forms including intelligent tutoring systems
(ITSs), intelligent mentors (e.g., recommender systems), and intelligent media. The most common AIS components
are domain models, learner models, instructional models and interface models. Adaptive instruction is desired as a
military training tool to improve training efficiency (e.g., accelerate learning) by intelligently focusing tutoring
resources where they are needed most - on gaps in learner knowledge and skill. Both US Army Synthetic Training
Environment and US My Navy Learning programs have design goals to enable adaptive instruction. Adaptive
instruction has been a topic of research for decades and AIS architectures such as the Generalized Intelligent
Framework for Tutoring (GIFT) have been used to demonstrate the efficacy of tailoring simulation-based military
training (e.g., Virtual BattleSpace — VBS) to optimize learning outcomes. However, the principles needed to
automatically tailor training within existing military training systems have not been fully described nor generalized.
This paper ties together instructional theory and design principles needed to seamlessly integrate AlSs with military
training simulations with the goal of enabling AlSs to automatically tailor instruction in real-time. To realize a fully
enabled AIS for military simulations, we have identified components, models, functions, gateways, and data exchange
requirements to support both syntactic and semantic interoperability.
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INTRODUCTION

This paper examines the theory, design, application and recommended standards associated with developing adaptive
instructional systems (AISs) as drivers to tailor military training in simulation-based environments. Most military
simulations today are categorized as minimally adaptive in that they modify content based only on learner/team
performance, and generally do this in a very prescriptive way. AlSs are artificially-intelligent, computer-based systems
that guide learning experiences by tailoring instruction and recommendations based on the goals, needs, and
preferences of each individual learner or team in the context of a set of domain learning objectives (Sottilare &
Brawner, 2018). AlSs come in several forms including intelligent tutoring systems (ITSs), recommender systems, and
intelligent media (Figure 1). ITSs are computer-based instructional tools that help learners master knowledge and
skills by using intelligent algorithms to tailor training for each learner (Graesser, Hu, Nye, & Sottilare, 2016; Graesser,
Hu, and Sottilare). ITSs traditionally instruct one learner at a time, but emerging capabilities are anticipated to support
automated instruction for groups of collaborative learners, teams of learners, and ultimately teams of teams.

Intelligent Tutoring Systems Adal’ti"e

Instructional
Model-tracing tutors Systems

Constraint- Cognitive
based Tutors Intelligent
l\ Tutors Media
Dialogue-based
Tutors
Recommender Intelligent
\-\_‘ Systems Q‘m/

Figure 1. Categories of Adaptive Instructional Systems

Military Need for Adaptive Instruction

Adaptive instruction is a highly desired technology for military training and education. Adaptive instruction has the
potential to reduce training costs while enhancing both performance and efficiency. Adaptive instruction has proven
to be more effective and efficient than traditional classroom experiences (VanLehn, 2011; VanLehn, et al., 2005;
Lesgold, Lajoie, Bunzo & Eggan, 1988) or non-adaptive simulation-based training experiences (Goldberg, Amburn,
Brawner & Westphal, 2014). The goal for adaptive instruction is to improve training efficiency (accelerate learning)
by intelligently focusing tutoring resources where they are needed most - on gaps in learner knowledge and skill in
the context of domain competency goals and near-term learning objectives. Both the US Army Synthetic Training
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Environment (STE) and US My Navy Learning (MNL) programs have design goals to enable adaptive instruction
within their future training infrastructure, and research is ongoing to enhance AIS capabilities and processes to support
practical, affordable implementations. Adaptive instruction is critical element of the Total Learning Architecture
sponsored by the Office of Secretary of Defense’s Advanced Distributed Learning Initiative. From 2013-2017, NATO
also sponsored a multi-national research task group to explore opportunities to exploit ITS technologies for adaptive
training in NATO countries (Sottilare et al, 2018).

Today, however, the military has many training systems developed by a variety of vendors that can exchange
simulation data under interoperability standards such as the Distributed Interactive Simulation (DIS IEEE 1278) and
the High Level Architecture (HLA IEEE 1516). While these standards enable increased trainee immersion in shared
synthetic environments, they do not support instructional adaptivity or tailored training in any standardized fashion.
The challenges involved in providing adaptive instruction to the military at scale are many and significant (Sottilare,
2018). While adaptive instruction has been a research topic for many years, it has only recently become feasible to
meet some of the challenges which previously prevented adaptive instruction from becoming both a practical and cost-
effective solution.

RESEARCH AND DEVELOPMENT CHALLENGES

Sottilare (2018) identified eight major challenges associated with bringing adaptive instructional technology from
state-of-the-art to state-of-practice. We adapted/expanded this list to account for emerging AlS needs:

Common conceptual model of AlISs, and their components, functions, and processes

Standards for component interoperability to promote reuse and reduce authoring costs

Recommended practices to evaluate the efficiency and effectiveness of AlSs

Efficient (largely automated) authoring processes to create adaptive instruction and curate content in a wide

variety of military and non-military task domains

5. Effective/efficient modeling of individual learners, teams, and teams of teams as a basis for real-time tailoring
decisions

6. Methods to enable AISs to make optimal instructional decisions: recommendations, strategies (plans) and
tactics (actions)

7. Ability to represent team/collective instructional domains for adaptive instruction

8. Ability to build rapport and engagement with learners on both a near-term and career basis

9. Ability to support adaptive distributed/mobile learning

el N

Each of these challenges enumerated above is critical in providing a fully functioning AIS. However, in this section
we chose to focus on those challenges (#1, 2, and 3) that directly affect our ability to develop an interoperable,
extensible AIS architecture. A major design goal of this emerging AIS architecture is compatibility with current and
future training technology (e.g., live and synthetic training simulations, simulators/stimulators, and serious games) in
order to minimize disruption to military training pipelines and make AIS solutions affordable.

Developing a Common AIS Conceptual Model

Conceptual models are an abstract representation of common objects or phenomena within a system. They are used to
represent a set of ideas which illustrates how the system works or is intended to work. The goals for developing an
AIS conceptual model are to:

Enhance our shared understanding of the scope of AlSs (what they are and are not), and how they function
Promote an efficient method to convey AlS design principles to the public (e.g., users, designers, instructors)
Provide a reference model for AIS designers to identify system specifications

Document an AIS framework for future reference

AIS common components include models of the domain, the learner, the instruction, and the user interface (Sottilare,
Graesser, Hu & Sinatra, 2018; Sottilare & Salas, 2018; Sottilare & Sinatra, 2018). In our pursuit of a common AIS
conceptual model, we are not necessarily requiring each of these models to function the same, but we do wish to
understand what functions are essential to this category called AlSs. What functions must be common, similar or are
allowed to be different? There exist common AIS frameworks in which design principles and processes are consistent
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within each framework. The Cognitive Tutor (Ritter, Anderson, Koedinger & Corbett, 2007) and its associated
authoring processes is one example of an AIS framework with consistent processes and data structures. Another is
the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare,
Brawner, Sinatra & Johnston, 2017), but its design principles, processes, and data structures — while consistent — are
very different than those of the Cognitive Tutor.

Within the Institute of Electrical and Electronics Engineers (IEEE) Standards Association is an effort to develop an
AIS conceptual model standard. This standard (IEEE Project 2247) is intended to define and classify the components
and functionality of adaptive instructional systems (AlS). This standard also defines parameters used to describe AlSs
and establishes requirements and guidance for the use and measurement of these parameters. The purpose of this
standard is to enable producers of AISs to describe the overall operation of an AlS; to specify its approach, method,
and level of adaptation; and to identify the methods used to implement specific components and interfaces.

Developing an AlS Interoperability Standard

Interoperability is defined as “the ability of two or more software components to cooperate despite differences in
language, interface, and execution platform. It is a scalable form of reusability...” (Wegner, 1996). When examining
interoperability as an AIS design goal, we are attempting to design interfaces that are defined to a degree that allows
information to be exchanged with and understood by other AIS systems or AIS system components (Sottilare &
Brawner, 2018). According to Ouksel & Sheth (1999) and Euzenat (2001), interoperability occurs at two levels:
syntactic and semantic. Syntactic Interoperability occurs when two or more systems are able to communicate by
exchanging data. Syntactic interoperability is a prerequisite for semantic interoperability which occurs when the data
exchanged between two or more systems is understandable to each system and can be used by each systems processes.

In the current marketplace, AIS models vary in function and data structure from system to system, domain to domain,
and one framework to another. For example, a domain model for an algebra course developed within the Cognitive
Tutor framework is not interoperable with, nor directly usable by the GIFT architecture. This limits the ability to
reuse components and makes each AIS development unique. This drives costs into the unaffordable range. If we
think of current AIS components (learner, domain, instructional, and user interface models) as having unique processes
and data structure, how might we insure interoperability without impeding creativity or violating intellectual property
rights? To this end, we might examine the information content and formats of the messages exchanged by AIS
components as a target for standardization.

Again, under the auspices of IEEE Project 2247, there is activity to develop a data standard to serve as a reference for
technical standards that support the exchange of data among AISs and between AlSs and other education and training
systems. This standard will define the data and data structures to be used in these interactions and exchanges and
parameters used to describe and measure them. It will establish requirements and guidance for the use and
measurement of the data, data structures, and parameters. The goal of this standard is to provide both syntactic and
semantic interoperability.

In pursuing a data standard, the inter-component and inter-system message sets can reflect the changing needs of AIS
designers and developers without imposing a standard that could limit creativity and suppress the entry of technology
purveyors into the AIS marketplace. This means that we will likely see higher numbers of AIS technology solutions,
increased competition, and lower costs to develop AlS solutions.

Developing AIS Recommended Practices for Evaluation

AlSs are increasingly being deployed in commercial and open-source versions. These systems have demonstrated the
potential to significantly improve learning across many sectors of training and education (Defalco et al, 2017;
Goldberg et al 2014; Graesser, Hu, Nye & Sottilare, 2016), but the ability/criteria to evaluate the effectiveness of any
individual AlS may not be supported by rigorous scientific methods. While many factors contribute to the design and
engineering of an AIS, there significant variation in the features contributing to the adaptivity (automated tailoring)
of AlSs and the methods instructors and end-users may deploy these systems.

Again, under the auspices of IEEE Project 2247, there is an effort to identify recommended practices for the evaluation
of AlSs and adaptive instructional technologies. The purpose of this IEEE recommended practice for AlSs is to
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establish criteria and best practices for evaluation of AlSs so that consumers can determine the likelihood of desired
learning outcomes and program impacts based on the features included in the AIS and the intended usage frequency
of those AIS features. Next, we discuss AlSs functions and process during pre-instructional, real-time instructional,
and post-instructional processes.

HOW ADAPTIVE INSTRUCTIONAL SYSTEMS WORK

To understand how AlSs work, we begin by discussing the interaction between the AlS, the learner, and the training
system environment (Figure 2). The AIS monitors both the training system environment and the learner with respect
to the learning objectives and associated measures, and then adapts inputs based on the condition of the learner and
the context of the instruction.

Adaptive Instructional System
percepts = simulation conditions percepts =
learner
Vi actions &
- X . diti
Policy ( ) Policy < conditions
Improvement Evaluation
“actor” “critic”
control policy
agent observes agent acts on agent agent observes
and assesses environment acts on and assesses
environment (action = learner learner
(state & reward) | A difficulty level) (action = (state & reward)
v feedback
Training ( learner acts on system environment |

System )( Learner

learner observes system emvironment

Figure 2. A model of a real-time Adaptive Instructional System (AIS)

In existing military simulation architectures, an individual learner (or team) interacts with a training system scenario
(usually a series of events) that is intended to provide an experience that will allow the learner(s) to exercise their
knowledge and skills with the goal of learning, or potentially refreshing learning of, a task. In Figure 2, this is
illustrated by the interaction between the learner (green box) and the training system (orange box) where the learner
acts on the environment and then observes how the environment changes or responds based on that interaction. In an
existing military simulation, there is also an instructor function that monitors the learner’s progress toward learning
objectives. There might also be some adaptation based on the progress of the learner towards learning objectives. This
adaptation could be hard coded into the simulation or it could be scenario-driven where the human course manager or
battlemaster selects/changes a scenario based on some understanding of the learner’s proficiency in the domain under
instruction, but there is no formal learner model. In the following sections, we discuss the AIS architectural elements
that support learner-centric design, self-improvement or reinforcement learning, interaction between the learner and
the AIS, and a variety of AIS processes for initializing AlSs, automating instructional management, and evaluating
the effectiveness of AlSs.

AIS Learner-Centric Design

In an AIS, the learner model is initially populated from historical sources — such as a learning record store or other
repository — where learner data can be used to construct a model of the learner’s proficiency in the domain to be
instructed. During adaptive instruction, the AIS uses data from the training system environment, the learner model
and any real-time information sources (e.g., sensor data, assessments or learner inputs) to make instructional decisions
(e.g., provide feedback, provide support or change the difficulty of the training scenario). A driving force for
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adaptation decisions for any individual learner is to keep the learner engaged and challenged, optimizing learning
during adaptive instruction. Vygotsky (1978) provides a model of this interaction in his zone of proximal development
(ZPD) where the difficulty level is managed by the instructor to be compatible with the learner’s capabilities.
Scenarios that are too easy result in learner boredom and those that are too difficult result in anxiety or withdrawal.

AIlSs as Self Improving Systems

Another important element of AIS design as shown in Figure 2 is the concept of AlSs as self-improving systems
through reinforcement learning (RL). RL is an area of machine learning where software agents take actions in an
environment with the goal of maximizing cumulative reward (Sutton & Barto, 1998). In the case of AlSs, we are
attempting to optimize learning by capturing the conditions of the learner and the training system environment when
the instructional agent makes a decision, and then examining the actual outcome to determine the value of the decision.
The more experience the agent has in making decisions, the better those decisions will be over time. For example, a
self-improving system could use learner data to consistently update and improve the learner model. This not only
allows for a more accurate model of learner interaction, but can also help the AIS to make better decisions for that
learner and maintain the interaction within the ZPD. This is illustrated (Figure 2) by policies that are formulated and
improved over time through constant evaluation. Both the effectiveness of the selection of the policy to be applied
and the implementation of the policy itself are objectives for improvement. In the absence of large datasets, this RL
process might be bootstrapped (initialized) to be more effective at the onset of a course of instruction by: 1)
implementing policies derived from the literature that are generalizable across domains, and 2) examining norms in
specific populations by maintaining population models (Hu & Sottilare, 2019).

AlS-Learner Interaction Loops

To understand how AISs work, we begin by discussing inner loop and outer loop interactions in ITSs, a type of AIS
and representative of the largest AIS category (Figure 1). VanLehn (2006) defined inner loop activities by an
intelligent tutoring system (ITS) as step-by step guidance within a problem being worked by a learner during
instruction. “Systems that lack an inner loop are generally called computer-aided instruction (CAI), computer-based
training (CBT) or web-based homework (WBH). Systems that do have an inner loop are called [ITSs]” (VanLehn,
2006, p. 233). This inner loop activity is what makes ITSs and thereby AlSs adaptive.

We expanded VanLehn’s definition of inner loop to include not just problems, but any scenario (or event) in which a
learner interacts with media with the goal of learning to do a task. While VanLehn is also specific about step-by-step
guidance, we have adopted a more liberal approach in which the interaction between the learner and the tutor: inner
loop activities include any interaction (e.g., guidance, feedback, support) between the AIS and the learner within a
scenario, event or problem. This expanded definition does not preclude the step-by-step approach advocated by
VanLehn, but does allow for other AlS-learner interactions and adaptations within the inner loop. Again, building
upon VanLehn’s work, we define outer loop activities to include any recommendation (e.g., next problem to select,
next course to take) made to the learner that is outside of the current scenario, event or problem. These outer loop
recommendations often consist of activities related, either directly or indirectly, to the current scenario.

APPLYING ADAPTIVE INSTRUCTION TO MILITARY TRAINING

In applying adaptive instruction to existing training simulations, platform simulators (e.g., aircraft simulators), and
serious games, we have considered architectural aspects such as common components, interoperability, and
recommended practices for evaluating AlSs. Of the three architectural challenges previously discussed in this paper,
interoperability provides the greatest challenge and greatest payoff. Therefore, we considered applications of adaptive
instructional technology to existing/future military training systems under the lens of interoperability. Two likely
approaches to adapting existing simulation architectures to enhance tailored instruction are presented below.

Approach #1: Stimulating Military Training Systems with Adaptive Instructional Systems
Our first approach is one in which the adaptive instructional technology is external to the existing simulation

architecture and the AIS is used as a stimulator for feedback and instructional decisions implemented in the simulation
architecture.
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To fully implement this approach of AlSs as stimulators for existing/future training systems, we begin to examine
details about the data exchanged between AIS common components (Figure 3, blue boxes), the learner (Figure 3,
green box) and a training environment (Figure 3, orange box). In this stimulator approach, the AlS is external to the
training environment and the data shared between the composite system (AIS, learner and training environment) is
shown in Figure 3 as yellow boxes. Standardizing these messages will allow both composite subsystem and AIS
component interoperability.
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Figure 3. Using an AIS as a Real-time Stimulator for Military Training

To support the stimulator approach, the following types of messages (numbered and shown in yellow in Figure 4) are
required:

1. Learner State/Trait Initialization — this message type allows the AIS to pull relevant learner states from a
repository (cloud or local) to initialize the AIS learner model; examples of learner state initialization
messages might include the learner’s proficiency for the domain to be instructed or the learner’s personality
traits which are fairly steady-state in adult learners

2. Learner States Updates — these messages include learning, performance, domain proficiency, and affect
(emotions, mood, and personality) states along with others, and are derived from data sourced by domain
model (learner assessments), historical data (learner records in the repository), sensor data (physiological and
behavioral) and learner input

3. Strategy Selection — as part of instructional process, AlSs assess learner states and appropriate select
strategies (plans for action) based on reinforcement machine learning models and/or recommended practices
in the literature; strategy selections could include, but are not limited to: ask a question, prompt the learner
for more information, ask the learner to reflect on a recent experience, change the difficulty level of the
training environment, give the learner feedback or direction or provide the learner with a hint

4. Recommendations — as part of the instructional process, AlSs may also provide recommendations to the
learner about what they should do next; recommendations could include: take a break, skip this problem and

2019 Paper No. 19239 Page 8 of 12



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)

move to another problem, take a specific course after completing the one they are in or remediate by going
back to review previous material; recommendations are relayed directly to the interface model and then to
the learner without the need for a tactical selection

5. Learner Assessments — whether they are tests or in-situ exercises where the learner can apply knowledge and
skill, the results of learner assessments are transferred from the domain model to learner model where they
are used to re-evaluate the learner’s proficiency in the current domain of instruction; assessments typically
focus on the recall of knowledge and/or the application of skill

6. Tactic Selection —in AIS architectures such as GIFT, the domain model uses the strategy selection to narrow
the tactical action; for example, if the strategy is to ask the learner a question, then the tactic is to select an
appropriate question (from a question bank) that is relevant to the instructional context (where the learner is
in the instruction)

7. Measures — the learning objectives, the training environment and the scenario(s) being used in the instruction
will drive the measures needed to assess the learner’s progress toward the learning objectives; measures are
defined in the interface model as part of the integration process for linking the AIS with the training
environment

8. Adaptations — this message is used to drive changes in the training environment and is the action taken in
response to both strategy and tactic selection; this message contains information about the most recent
instructional decision and how that decision affects the current scenario

9. Tactic and Recommendation Presentation — the focus of this message is to provide the interaction with the
learner required by the strategy and/or tactic selection; while technically, tactic presentation to the learner is
also an adaptation, we distinguish it from adaptation directed at the training environment since the message
content will be very different; recommendations do not require a tactic selection

10. Measures and Conditions — the information on measures is pulled directly from the training environment
based on the interface model definition; the conditions of the instruction are also pulled directly from the
training environment through the interface and into the domain model to support assessments

11. Learner Interaction — the learner interacts directly with the training environment and only the relevant
measures and conditions are captured to support assessments; no specific learner interaction message is
required in this design as it is already captured by the measures and conditions message type

12. Sensor Data and Learner Input — messages acquire data about the learner independent of the training
environment and this data is used by the learner model to assess learner states of various kinds

Using this stimulation approach will permit AlSs that meet the standards identified previously in this paper to interact
with and drive instructional adaptations in existing and future military training systems through simple interface
models (e.g., gateways). AlS architectures such as GIFT have already proven gateways to be an effective means to
support adaptive instruction for:

e  Serious games
= Virtual Battle Space to train dismounted infantry tasks (Goldberg et al, 2012)
= VMedic to support tactical combat casualty care task training (DeFalco et al, 2017)
e  Virtual simulations
= Dynamic Environment Testbed used to train excavator tasks (GIFT, 2014)
e Live simulations and real equipment
= USMA land navigation course used to teach map reading and terrain recognition (Sottilare &
LaViola, 2015)
= Medical triage training (Sottilare, Hackett, Pike & LaViola, 2016)
= Encryption Gear
e Educational platforms
= edX used to teach educational data mining techniques (Aleven et al, 2018)
e  Problem-Solving platforms
= Sudoku puzzles (Holden & Sottilare, 2015)
= Logic puzzles (Sinatra, Sims & Sottilare, 2014)

Approach #2: Embedding Adaptive Instructional Systems in Existing Military Training Systems

Next we examine an alternate approach to integrating AISs using gateways to stimulate military training systems. This
approach embeds the instructional loops shown in Figure 4 into a military simulation architecture to provide more
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“native” adaptive instruction. In most cases, the message types and associated formats can remain the same as they
are in our stimulator approach (Approach #1). The primary difference is the direct interaction between the AIS
functions and the simulation manager functions within the military training system. This could require changes to the
adaptation messages to match the form and function of native simulation manager inputs.
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Figure 4. Embedding AIS functions in Military Training Environments

An example of an embedded approach is adaptive marksmanship. A prototype adaptive instructional capability was
developed for the US Army’s engagement skills training simulation (Goldberg, Amburn, Brawner & Westphal, 2014).
The inner and outer loops of the adaptive instruction were created as a single module and integrated into the software
baseline of the emerging engagement skills trainer. While on the surface the embedded approach would appear to be
more work, it is of the similar magnitude as the AIS stimulator approach. Protocols exchanged between components
can easily be tailored or streamlined to meet new requirements, and changes in any simulation scenario measures
could be easily mapped to the interface model. The advantage of this approach is in its efficiency as there is no excess
messaging or data required. Only the information needed to support native assessments is required to be mapped to
the interface model. The disadvantage of the embedded approach is that portions of this solution may not easily transfer
to other military training simulations.

NEXT STEPS
Recommended next steps to make AlSs practical for military training are:

e Develop a standard AIS conceptual model as a basis for identifying AIS components, processes, and data
exchange needs

e Develop standards for AIS interoperability to support data exchange between common AIS components
described in the AIS conceptual model

e Incentivize the AIS marketplace to produce much needed AIS prototype architectures to support both
stimulator and embedded modes

e Develop recommended practices for evaluating the capabilities of new AlS technologies (tools and methods)

e Build standards and recommended practices for new AIS architectures upon already proven design principles
in AIS architectures such as GIFT and the Cognitive Tutor
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e Incentivize the AIS marketplace to enhance authoring, deployment, instructional management, and
evaluation processes to further improve the cost/benefit associated with AlSs

A FINAL WORD

An important caution moving forward is that AISs are not a panacea for military training. It is important to understand
the contributions of clear learning objectives, good/relevant content, and good measures to learning and performance
outcomes. While AlSs are learner-centric technologies that offer effective strategies and tactics for tailoring training,
they must have clear objectives that can be measured and content/scenarios that are relevant to those objectives in
order to optimize their effectiveness. Making AlSs affordable and practical options for computer-based instruction
will hasten their widespread use in military training, but this is contingent upon continued reports of their effectiveness
in a variety of domains required by military organizations. “Even though we have conducted over four decades of ITS
research and shown ITSs to be effective tools in providing one-to-one-tutoring, ITSs are not ubiquitous. In large
measure, the skills needed to author an ITS and the cost of those skills limit ITS use. Even a simple ITS providing one
hour of instruction may take 200 hours to develop at a cost of $50,000. This cost may not be practical for low density
or low throughput courses” (Fletcher & Sottilare, 2014), but may be very affordable for widely taught courses (e.g.,
combat lifesaver skills that are taught to every soldier).

There is more to consider than just cost. Costs and benefits are usually measured in terms of funding, but other
measures (e.g., productivity, operational effectiveness, health, quality of life, morale, and human life) are also
variables of interest in determining the benefit of AIS technology applied to the military training domain. The
widespread use of AlSs in the future is also contingent upon a proven return-on-investment (ROI). ROl indicates how
many units of net benefits are returned (after investment costs have been subtracted out) per unit of cost. In contrast
to current military training systems, AlSs require a higher level of investment based on the artificial intelligence that
drives their decisions and the greater amount of content required to support options for tailoring. An ROI decision-
making framework will be critical to painting an objective picture of the true value of AlSs and artificial intelligence
will play a significant role in automating AlS processes. As we see greater efficiencies in AlS authoring, deployment,
instructional management, and evaluation processes, the costs associated with AlS technologies will shrink and AlSs
will become an increasingly attractive option for military training.
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