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ABSTRACT

In recent times, Game-based Learning (GBL) and “Gamification” serve as emergent mechanisms for modern-day
Training. In accordance with recent literature, knowledge retention and trainee engagement have been shown to be
more effective within a Training environment that purposefully exploits active and experiential opportunities for
skillset acquisition. The application of GBL within a high-fidelity Simulation, presented in a Live, Virtual,
Constructive (LVC)-context, is a novel modern-day framework for STEM/Engineering and Post-secondary Training.

This paper summarizes the development and deployment of GBL Training experiments intended for a Mechanical
Engineering college curriculum. Specifically, we have designed two experiments for undergraduate seniors and
graduate students who are studying ground-based vehicle dynamics: 1) a Triangular Race Track that institutes and
compares “Ghost” vs. “Gauge” GBL-Trainer elements to optimize real-time vehicle performance, and 2) a Skid Pad
closed-course proving grounds that visualizes weight-distribution adjustment to optimize vehicle stability towards a
(desirable) neutral steer condition. To assess the effectiveness of our Training solutions, quantitative data (e.g., speed,
X/Y position) was collected by the Simulator, and likewise, our class cohort (N=70) offered supplementary self-report
data (e.g., trainee Learning Styles) relevant to the GBL experience. As a component of our holistic multi-measure
evaluation, these data are analyzed to report lessons-learned along with any meaningful correlates.

To conclude this paper, we propose future extensions of our GBL-based Training solution into other Engineering
courses. Namely, our framework can be employed in a Junior-level Dynamics course to demonstrate a second-order
representation of a vehicle suspension system, and similarly, within the context of another engineering discipline
(Aerospace Engineering), short-period flight modes can be actively demonstrated for an Aircraft Dynamics
experiment. Likewise, framework extensibility to a portable augmented/mixed reality deployment for other
engineering systems (e.g., military/Marine, K-12 and STEM/location-based entertainment) is forecasted.
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INTRODUCTION AND BROADER IMPACTS

Educators continue to leverage the value of incorporating gaming components into skillset acquisition. Particularly
over the last decade, we have witnessed the emergence of Gamification (the process of adding game-like elements
within a task to encourage participation) and similarly, Game-based Learning (GBL), where trainees explore relevant
aspects of gaming, often in a collaborative manner, within a learning context designed by the trainer (ETR, 2013;
Dsouza, 2016). The four primary components of GBL: Motivation (points/badges), Feedback (status updates),
Practice (learning by trying), and Reinforcement (repetition) (Dhruve, 2017) (refer to Figure 1; Dasara, 2016) lend
themselves to a Training atmosphere where learners steadily work towards a goal (i.e., “problem solving”) (e.g.,
Bauman, 2012), and immediately observing the consequences as key elements of the Training process. The
application of GBL within a high-fidelity Simulation, presented within a Live, Virtual, Constructive (LVC)-context,
can serve as an effective mechanism for STEM/Engineering post-secondary Training.

This paper summarizes a series of GBL-based Post-secondary
experiments that were conceived, designed, developed, and
deployed for a University-based (mechanical) engineering
“technical elective” Road Vehicle Dynamics (RVD) course. Our
Feedback primary intention was to supplement conventional passive course
material delivery (i.e., lectures) with hands-on opportunities for
enhanced skillset acquisition to improve Training effectiveness.
As a portion of our experiments, we collected performance data
Reinforce  from a high-fidelity Simulator, supplemented by relevant self-
report data collected both pre- and post- experiment. To conclude
this paper, we will preview related avenues that will promote
extended dialogue for next-generation opportunities in GBL
Training. We begin by emphasizing the relevance of this topic to
Figure 1 — Primary GBL components I/ITSEC, and to the prevailing Conference themes for 2019.

Motivation

Practice

TOPIC RELEVANCE TO 2019 CONFERENCE THEMES

The current topic is relevant to the prevailing themes at the 2019 I/ITSEC: “winning the war of cognition by pushing
readiness and lethality boundaries”. Certainly, the notion of “cognition” serves as a vital component for the sustained
application of game-based learning (GBL) in next-generation Training; practitioners have acknowledged that playing
video games offers physiological benefits associated with brain stimulation. GBL tends to drive decision-making,
improves cognitive function, and assists with the acquisition of skillsets that are applicable to real life. Ultimately,
the use of serious games for Training improves the mental faculties of the trainee, who actively tries to identify
alternative approaches to solving different situations directly within the learning process (Jabary, 2019). Likewise,
the notion of “readiness” certainly applies to next-generation Training for students (and warfighters). Recent studies
in the literature clearly demonstrate that GBL dramatically improves learner engagement and cognition (Jabbar and
Felicia, 2015), and improves the likelihood of knowledge retention in present-day Training (e.g., Li et al., 2017). In
our targeted Literature Review, we expand on these notions to present a comprehensive synopsis of GBL in Training.

LITERATURE REVIEW: GAME-BASED LEARNING (GBL)

Engineering Education often involves the application of theoretical physics-based models, for which students and
trainees require a depth of comprehension to apply these models systematically, and in real-time. As motor vehicle
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technologies and automation mechanisms continue to mature, it is critical that educators advance techniques for
successful and impactful Training. Our continued focus should concentrate not only on individual concept
reinforcement, but also, assuring a comprehensive understanding of downstream impacts of the interactions between
system factors (i.e., “cause and effect”). In this manner, implementing interactive, participatory educational
experiences inside the classroom can positively impact engineering skill development through improved knowledge
retention (e.g., Whitney, 2017), and trainees need to cultivate experiences that help them to navigate the real world
(e.g., Nagai, 2001; Feisel and Rosa, 2005). Recent research indicates that students who engage in hands-on learning
experiences enjoy improved academic performance, and students who participate in game-based projects tend to study
more, retain more knowledge, establish meaningful connections between key concepts and demonstrate expanded
comprehension of the subject matter (e.g., Coller and Scott, 2009; Coller, 2012).

While previous engineering education research has focused on the implementation of serious play and gamification
in education, gaming elements infused with motion simulation affords a more kinesthetic experience (i.e., awareness
of position/movement), as opposed to exclusively visual/aural representations afforded by interactive graphs or screen-
based video games. Previously (Hulme et al., 2016), the authors leveraged gaming elements and motion simulation
to observe the dangers of distractions and task-unrelated thought while driving, deployed for a Transportation Safety
course. More recently (Hulme et al., 2018) explored the implementation of GBL, Modeling & motion-based
Simulation to allow engineering student trainees to experience a real-world evasive road test maneuver - the ISO 3888-
2 Moose Test. This afforded an experiential opportunity to: a) expose dynamics learners to an official/extreme vehicle
test maneuver within a high-fidelity Simulator, and b) observe the degree of impact of employing electronic stability
control on driver performance at various speeds. Lessons learned from these past Training experiments will be
expanded for the current work, where we will apply standard educational outcome assessments to motion simulation
as a platform for interactive learning, while using multiple measures to quantify its effectiveness in comparison to
traditional pedagogical tools. The GBL experiments (in the context of Road Vehicle Dynamics) are now detailed, and
presented with stated emphasis on the associated Training objectives.

ROAD VEHICLE DYNAMICS (RVD) - THE GBL EXPERIMENTS

In this section, we present an overview of the two Post-secondary experiments that were offered for RVD. The Triple
Curve was offered early in the semester as an exploratory Training mechanism by which to be introduced and
acclimated to the framework of our Simulator. The Skid Pad was offered later in the semester after moderate exposure
to relevant course theory. For each experiment, salient Training goals are described and highlighted.

Experiment [: Triple Curve - Cornering Strategy with Tire Saturation

The Triple Curve was designed as a racing simulation on a triangular track with three straight segments joined by tight
corners. The students are given simple directions: to complete as many legal laps (i.e., no barrier cones struck) as
possible within a two-minute window. This task implies that the students maximize their speed, but maintain control
of the vehicle during the critical transitions, for which students quickly learn that braking is essential for both speed
and control. The conceptual Training link is “tire saturation”: the property that tires generate a limited amount of
traction before the vehicle skids out. To achieve an optimal lap time, the student needs to accelerate as much as
possible, but only within the physical limitations of the tires. This is especially important in corners, where tire traction
provides the centripetal force to hold the vehicle in the corner, and the tractional demands increase in proportion to
the square of the speed of the vehicle. The length of the straight segments allow students to accelerate to
approximately 80 mph before entering each successive corner. However, entering the tight corners at this speed
(without smooth braking) will likely result in an undesirable outcome. Therefore, to make it through this track with
the fastest speed, students must brake as they enter corners. The simple geometry of the track, by design, requires
students to take the same corner over and over again, adjusting their approach with each entry, each time engaging
with the physics of tire saturation.

We designed and implemented a series of gaming elements to guide the learner towards their ultimate Training goal -
to achieve the greatest number of legal laps (i.e., no cones struck) within the time allowed, and implicitly, an optimal
lap time. We programmed the Simulator to collect a series of data, including the X/Y drive path coordinates for each
driver (and each driven lap) on their excursion (captured at 30 Hz.) as well as a Score Sheet printout that summarized
primary statistics and from the drive excursion (e.g., data relating to total and legal laps, maximum and average speed,
and any hazard events such as cone strikes or spinouts). We employed two Training approaches for the Triple Curve
experiment. Our “Ghost” trainer was designed with a “follow the leader” strategy in mind. In other words, rather
than trying to coach novice Trainees on the technical nuances of the race course, we simply instructed them to refer
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to the expert (pre-recorded) “Ghost” vehicle that would accompany them on their drive. In this manner, we observed
if trainees could achieve effective Training by watching/observing, and without any presentation relating to the actual
performance dynamics of the moving vehicle. Refer to Figure 2, which illustrates the Ghost trainer shown in the red
vehicle on the right side of the view. We also developed a GBL-based “Gauge” trainer, enabling visualization of
technical guidance to observe if certain learners might respond to game-based on-screen overlays that would help
them navigate towards optimized performance. These “gauges” include color-coded spheres placed upon the virtual
roadway to simultaneously provide indication of the optimal drive line, as well as colors to indicate regions of
acceleration (green), braking (red), and transition segments (yellow). Likewise, a vertical gauge was provided (left
side of screen) to indicate the maximum tire slip angles encountered during a turn. The green region (low on the
gauge) is indicative of overcautious driving; the red region (high on the gauge) is indicative of reckless driving, and
the yellow region (middle of gauge) is the “sweet spot” that we were inspiring novice drivers to try to achieve during
their turns. Refer to Figure 3, which illustrates the Gauge-Training environment.

Figure 2 - Triple Curve (GBL “Ghost” Trainer) Figure 3 - Triple Curve (GBL “Gauge” Trainer)

Experiment II: Skid Pad - Handling of Oversteer and Understeer Vehicles

The Skid Pad interactively teaches students about the understeer and oversteer characteristics of road vehicles, and
specifically how these characteristics depend on the longitudinal position of the vehicle’s center of gravity (CG).
Trainees are afforded a two-minute duration with the goal of achieving the fastest possible lap time. A radius on the
skid pad is clearly specified for the students to follow. In addition to being able to steer, brake, and accelerate; the
students are able to utilize paddle shifters to the left and right of the steering wheel to adjust the longitudinal CG
position of the vehicle. Note that such a feature would be impractical or impossible to experience within a real-world
vehicle. Changing the CG position modifies the understeer characteristics of the car, and in-turn, modifies the top
speed “potential” of the car while cornering. For optimality, trainees need to modify the CG position towards the
“neutral steer” condition. In traditional homework problems, identifying the neutral steer point involves intensive
mathematical calculations, while in the simulator, finding neutral steer involves intuitive adjustment of the CG by
kinesthetic “feel” to comprehend its resulting impact upon vehicle handling.

Again, we designed and implemented GBL elements to guide the learner towards their ultimate Training goal -
optimize the stability of the vehicle towards a desirable neutral steer condition, which typically permits an optimal
balance of maximum speed and vehicle control. The GBL elements to guide the trainee are explained as follows:

1) The steering wheel indicator provides visual feedback on exactly how much drivers are turning their hands,
noting that at neutral steer, trainees are steering LESS (i.e., hands in a fixed-position);

2) The travel speed gauge guides drivers towards obtaining their optimum speed on the chosen radius, guided by
green/yellow/red color-coding, while the current travel speed is shown digitally to the right of the contour gauge.

3) The (CG) and tire stiffness distribution meter guides trainees towards a “balanced” vehicle based upon
tire/weight distribution, front-to-rear. The meter tire colors change relative to their individual saturation levels,
ranging from 0% (unsaturated; green) to > 6% (saturated/beyond; red), to intermediate (e.g., yellow/orange).

4) The radar map displays the current location (and heading) of the driven vehicle relative to the roadway,
surrounding cones, and remainder of the GBL virtual world training map.

5) The heading pathway lies within the 3D viewport itself, and can be seen a series of colored spheres that guide
the driver, and change color in real-time according to compliance: green represents on-center; red indicates far
off-center, with intermediate colors (e.g., yellow/orange) indicating partial satisfaction.

6) The scoring meter was implemented to provide an overall Gamification “rating” (0-100% scale) based on
compliance to speed, heading, and neutral steer proximity. This “rewards” system was instituted to engage and
motivate drivers to comply with the goals of the experiment in direct pursuit of its primary Training objective.
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Figure 4 - Skid Pad GBL Trainer (forward view, labelled)

Refer to Figure 4, which illustrates the forward view of the completed Skid Pad GBL Training environment, with all
gaming elements depicted and labelled. Prior to a formal presentation of our experimental results, we describe the
high-level details of our RVD class cohort as well as a summary of the major features of our high-fidelity driving
simulator that was leveraged for both GBL-Training experiments.

COHORT DETAILS AND TRAINING ENVIRONMENT COMPOSITION

The GBL Training exercises have been designed for a Post-secondary course - MAE 454/554: Road Vehicle Dynamics
(RVD). The course enrollment was a total of 83 students (22 Grad; 61 Undergrad). Self-report “surveys” (i.e., trainee
learning styles) were issued (N=83 completed) that were directly related to the GBL-Training experience offered as a
feature element of the RVD course. As students tend to process information in different ways - typically based upon
individual preferences (PPC, 2019) — we sought to determine if certain GBL-based Training techniques might be
better suited towards certain types of learners. Accordingly, we issued the Index of Learning Styles (Felder and
Silverman, 1988; Soloman and Felder, 1999), which explores a four-dimensional learning style model. A series of 44
two-choice questions (i.e., 11 in each of the 4 categories) are issued to determine an indication as to probable strengths
and possible tendencies that might lead to challenges and deficiencies in learning/training. The four-dimensions on
the scale are: 1) Active (4) vs. Reflective (B): how does a trainee prefer to process information; 2) Sensing (A4) vs.
Intuitive (B): how does a trainee prefer to take in information; 3) Visual (4) vs. Verbal (B): how does a trainee prefer
information to be presented; and 4) Sequential (4) vs. Global (B): how does a trainee prefer to organize information.

The full-cohort results (average/standard deviation) . T ;
can be viewed in Figure 5. The cohort average was Learning Styles - cohort summary | WAvg = Stdev:
such that the class, taken as a whole, preferred “A”- 9 ! y

style learning in all four subcategories (i.e., an

A
H A H N
“AAAA” sequence). Of the pairs of categories 6 A
(shown partitioned within the plot), “Visual” was I I I
&

preferred most dominantly over “Verbal” learning; 3
this was followed by “Sensing”, which was preferred
substantially over “Intuitive” learning; this was 0
followed by “Sequential”, which was preferred )
slightly over “Global” learning; and finally, “Active”, ¥ o8 -
was marginally preferred over “Reflective” learning. A flg’ @ ® <—,°°‘
These Learning Style results will be further explored @ ¥
for our Result Correlations. Figure 5 — Index of Learning Styles (N=83)

The SImRING Simulator’s physical (hardware) environment input system (Human Input Device, or HID) includes a
steering wheel (w/ 240 degrees of stroke), pressure-modulated floor pedals (i.e., acceleration and braking), and buttons
and paddle shifters that enable real-time, driver in-the-loop input during the simulations. Refer to Figure 6, which
presents a driver POV of the HID controls. Dynamics computations include classic ground vehicle models (e.g.,
Milliken and Milliken, 1995) that implement longitudinal force (i.e., throttle and brake) as model inputs, and compute
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vehicle velocities, accelerations, and tire forces as outputs. These models include basic tire behavior that allow for
hands-on, exploratory Training. Simulator System output manifests itself in three primary forms: a) graphics
rendering: a high-definition, surround screen visualization projected upon our large-screen (6 ft. high, 16 ft. diameter)
display system (i.e., 11520x1080 composite edge-blended and image-warped screen resolution); b) motion rendering:
a 6-DOF 2000E electric motion platform; and c) aural rendering: a 2.1 stereo high-fidelity sound system located
around the exterior to the Simulator. Figure 7 depicts a partial-panoramic view of the entire Training environment:
the SIMRING Simulator (left), and a short-throw projector that displays the forward-only view (i.e., 60 degree FOV)
of the driver/passenger for the off-board Training audience. The virtual (software) environment is constructed within
the Visual Studio (Windows-based PC) programming environment, using the C/C++ programming language. Input
signals are captured from the HID using DirectInput (DirectX); output signals are generated for graphics (OpenGL),
Motion (Winsock and Win32 Posix threads), and Sound (OpenAL) using widely-available libraries and functions
based upon hybrid elements of C/C++. Preliminary Results from this effort are now featured, including quantitative
(Simulator), survey (self-report) and observed correlates.

=

Figure 6 - HID controls, driver POV Figure 7 - Simulator Training Environment

EXPERIMENTAL RESULTS & DISCUSSION

In this section, we present an overview of our preliminary results from the implementation of our GBL Training
exercises. Here, we present a) quantitative results from the Simulator, b) results from Self Report (both pre- and post-
experiment), and c¢) observed result correlations between these two data forms. Prior to this presentation, we begin
with a description of hypotheses that informed what we expected to observe for each experimental condition.

Experimental Hypotheses:

Experiment [ — The Triple Curve: We speculated that the Ghost Trainer (which doesn’t afford any rigorous Training
scaffolding) would likely impart a greater sense of recklessness for many drivers who would struggle to keep up with
the expert driver. We expected to witness more “real-time” learning across a diverse set of driving styles within a
more competitive atmosphere; i.e., drivers fighting against another live driver. This might create a greater incentive
to “beat the computer”, but inherently impart more abruptness in the corners where the Training challenge, ultimately,
is to be won or lost. We expected that the Gauge Trainer would likely assist in navigating novice trainees towards a
suggested (optimal) racing line, and would impart a greater sense of consistency with observed driving performance.
We expected to see less variability in Training performance, and recognized that there would be more valuable
Training feedback to the driver (e.g., trajectory, throttle/brake timings). Likewise, we wondered if too many on-screen
GBL elements would serve to distract (rather than enhance) the driver’s performance.

Experiment II - Skid Pad: We speculated that the CG placement would emerge as being the most critical GBL element.
However, we recognized that this would require mastery solely “by feel” to achieve optimality, and this will be more
challenging than mastering speed/heading. To this end, we predicted that those who score the highest are likely the
Trainees who are better “real world” drivers (or, better Simulator drivers, e.g., natural gamers), who are inherently
comfortable driving an oversteer (unstable) vehicle at elevated speeds. Compared to the Triple Curve, trainees are
more frequently engaging with learning outcomes, which could be explicitly verified by way of the Scoring tallies,
and observed/measured improvement (over time) by way of trainee CG placement.

Quantitative Results collected from the Simulator:
Experiment I — The Triple Curve: For the Triple Curve experiments, we had a total of N=48 driver/passenger
combinations; 24 each in the Gauge/Ghost Trainers. To assess quantitative differences in cornering performance,
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outcomes between the Ghost Trainer and Gauge Trainer Cohorts, we first compare the racing trajectories of each
training group to an ideal trajectory generated by an Expert driver. These results are shown in Figure 8; for sake of
reference, the average lap times for each cohort (Expert / Gauge/Ghost) are displayed in a similar color-coding within
Table 1. The Expert Driver (green) tends to hold an outside lane position in the straight sections, brakes into a tight
radius through the apex of each corner, and then transitions again to an outside lane position. The Ghost Trainer (blue)
and Gauge Trainer (red) cohorts share similar characteristics to the Expert Driver, however the key difference is the
variability of driver behavior at the outlet of each corner, as indicated by the widening of standard deviations. This is
indicative of novice trainees (from both cohorts) reaching the tire saturation limits and losing control at the later stages
of each corner. This behavior is even more pronounced with the Ghost Trainer Cohort, whose standard deviation
bounds easily engulf the Gauge trainer bounds.

Gauge Trainer Cohort ‘ Ghost Trainer Cohort ‘
24.21 £ 0.80 25.25+2.19 25.41 £2.68
Table 1 — Cohort Average Lap Times

Average Lap Time (s) (+10)

This behavior is dissected in greater detail with a G-G diagram (Figure 9) - a traditional means of assessing cornering
performance, displaying longitudinal acceleration (i.e., throttling/braking forces) as a function of lateral acceleration
(i.e., centripetal forces). The Expert Driver enters the corner and heavily, but smoothly, reduces braking force to
approximately -0.22 g’s of longitudinal acceleration, as the lateral acceleration obtains a maximum of -1.8 g’s. At
this point, the brakes are gradually released and the throttle is introduced as the lateral acceleration works back toward
zero, and the vehicle begins to straighten out. Notice in Figure 9 that both the Gauge Trainer and Ghost Trainer cohorts
employ considerably less deceleration going into the corner than the Expert Driver. The longitudinal acceleration for
the Ghost Trainer cohort reaches a minimum of -0.17 g’s, and the Gauge Trainer Cohort brakes even less, settling
around -0.1 g’s. Because both cohorts, on average, brake too little and too late into each corner, they enter the apex
with too much speed. As a result, a peak lateral acceleration beyond -1.8 g’s is observed, and this pushes the front
tires beyond their saturating slip angles. This means that the vehicle can’t turn any further (given its current speed
and heading angle) with increased attempts at steering. In Figure 9, it is also clear that the contour of the acceleration
profile for the Ghost cohort spans a greater range than that observed for the Gauge cohort, indicating larger magnitudes
of accelerations, and more aggressive cornering. The greater uniformity of performance across the Gauge cohort can
be attributed to the GBL-Training elements that were provided to those drivers: a visible (suggested) racing line,
brake/throttle cues, and a tire slip angle heads-up display. While the Ghost Trainer Cohort could deduce a racing line
by following the “Ghost” vehicle on the track, this competitor vehicle outpaced most drivers, and quickly left their
immediate field of view. Additionally, the implied incentive to “race” the ghost trainer likely encouraged a more
aggressive racing strategy, producing the larger variation of behavior we observe within the Ghost Trainer Cohort.

Ghost and Gauge Drivers Standard Deviation G-G Diagram All Corners
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Experiment II - Skid Pad:

For the Skid Pad experiment, we had a total of N=44 driver/passenger combinations. This time, rather than introducing
multiple variations of the exercise to different students, four cohorts (with approximately 11 driver/passenger
combinations per cohort) were tasked with the identical exercise modifying their vehicle’s CG toward a neutral steer
configuration to complete as many laps as possible on a tight circular track, within a two-minute window. Each vehicle
was initially configured as “oversteer” with the CG shifted so far aft that the car was un-drivable at all but low speeds.
Typically, an oversteer vehicle will tend to spin nose-in at elevated speeds greater than 30 mph. This encouraged
trainees to use paddle shifters mounted on the steering wheel to adjust their CG forward and thus counteract the
instability. However, shifting the CG too far forward made the car “understeer”; less sensitive to steering commands
and therefore unable to maintain the specified radius at higher (optimized) speeds.

Such an over-adjustment of the CG forced
students either to reduce speed, and suffer slower 131
lap times, or once again modify the CG toward an - — Cohort 1
optimized “neutral steer” balance point to achieve 1250 Cohort 2
and maintain optimal speed. Figure 10 records 5
how the four student cohorts adjusted the CG of \
their vehicle as a function of time, depicting the '
ratio of front cornering stiffness to front weight
percentage. As this ratio approaches unity, the
vehicle approaches the ideal “neutral steer”
condition. Therefore, on average, the students
modified the vehicle CG toward neutral steer in
an exponential fashion. This suggests that 1051 s
trainees consistently engaged with the effect of \,s=
the CG on the vehicle dynamics throughout the At ¥
training exercise; making large adjustments early
within the allotted experimental timeframe to
counteract obvious  vehicle performance 0.95 ' ' ‘ ' : :
L . 0 20 40 60 80 100 120
deficiencies, and subsequently making small

compensations later to fine-tune and converge . time [s] e
upon more subtle performance gains. Figure 10 — Average Cohort Deviations
(from Neutral Steer)

Cohort Deviations from Neutral Steer
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Result Correlations:

In this final subsection, the authors sought to detect any patterns or correlations between self-reported data related to
learning style, and actual (observed and measured) experimental performance upon the driving simulator. Naturally,
such information is critical to assist educators in determining how to tailor training content and delivery towards
learner preferences and style. Recall (from Figure 5) that a majority of the class cohort, at the very beginning of the
semester, stated a preference for Active-Sensing-Visual-Sequential (AAAA) style learning. Due to the physical nature
of the GBL-Training environment -- as anchored by a high-fidelity motion-based Simulator -- each of the four authors
formed a hypothesis to speculate those learners, among the training cohort, that are the most prone to exhibit elevated
training achievement. All four authors agreed on the first and third learning categories (in the learning styles
sequence) as being Active (A) and Visual (A) for preferred trainees in our environment. For the second category:
two of us opined that Sensing (A) learners would make the connection between the Simulator and the “real world”,
while two of us opined that Intuitive (B) learners would better relate to a Simulator as representing an abstraction
towards real driving. For the fourth category: three of us opined that Global (A) learners might tend to absorb training
content somewhat randomly without realizing connections, and then suddenly “getting it”, while one of us opined that
Sequential (B) learners might tend to perform better within the context of a brand new training exercise, where only
partial understanding is achievable within the short duration of the experiment. Hence, we paid particular attention to
the Simulator results that were performed by the following learner groups: AAAA (overall preference to entire cohort),
and AAAB, ABAA, and ABAB (author hypotheses).

We investigated performance correlations for both the Triple Curve (Experiment I) and the Skid Pad (Experiment IT).
In Figure 11, we observe the correlation between measured Simulator performance (i.e., cohort-averaged number of
legal laps achieved) in the Triple Curve experiment vs. the self-reported preferred learning style of the driver. Note
that the learning styles on the X-axis show frequencies parenthetically, totaling 45 drivers who performed the
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experiment, and for whom we had complete datasets. The plot displays the overall cohort average of Legal Laps
achieved (3.695) as a dashed red line. The cohort-averaged preferred learning style (AAAA) is shown as a yellow
series, and the author-hypothesized “optimal” learning styles for GBL-Simulator Training (AAAB, ABAB, and
ABAA) are shown as red series. Those 10 drivers among the AAAB (Active/Sensing/Visual/Global) learning style
displayed a noteworthy tendency for optimal driving performance, while those 5 drivers among the ABAB learning
style (i.e., Intuitive in place of Sensing) displayed more moderate performance, and the two drivers among the ABAA
learning style (i.e., Intuitive in place of Sensing, and Sequential in place of Global) displayed substandard driving
performance.

Legal Laps - Simulator Optimized vehicle CG (%)
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Figure 11 — Experiment I (Triple Curve) correlation Figure 12 — Experiment II (Skid Pad) correlation

In Figure 12, we plot the correlation between measured Simulator performance (i.e., cohort-averaged percent CG
obtained towards 100% neutral steer) in the Skid Pad experiment vs. the self-reported preferred learning style of the
driver. Again, the learning styles on the X-axis show frequencies parenthetically, totaling 42 drivers who performed
the experiment. Some of these were repeat drivers from Experiment I, and others were not; this accounts for the fact
that the frequency of learning styles portrayed in the graph differ from those depicted in Figure 11. The plot displays
the overall cohort average of CG optimality (56.3%) as a dashed red line. As with the previous graph, the cohort-
averaged preferred learning style (AAAA) is shown as a yellow series, and the author-hypothesized “optimal” learning
styles for GBL-Simulator Training (AAAB, ABAB, and ABAA) are shown as red series. And here again, similar
trends are observed: those 7 drivers among the AAAB (Active/Sensing/Visual/Global) learning style displayed a
noteworthy tendency for optimal driving performance (although, inferior to the four self-reported BAAB for this
Experiment), while those four drivers among the ABAB learning style (i.e., Intuitive in place of Sensing) displayed
more moderate performance, and the four drivers among the ABAA learning style (i.e., Intuitive in place of Sensing,
and Sequential in place of Global) displayed substandard performance.

To conclude our presentation, we now present a targeted summary of valuable lessons learned from this ongoing work.
Of these observations, some were offered by the Trainers immediately post-experiment, and others by the actual
trainees who endeavored the GBL exercises.

EXPERIMENTAL OBSERVATIONS & LESSONS LEARNED
Finally, in this section, we summarize a series of observations that were detailed immediately post-experiment. Some
were noted by the authors of this paper, and others offered by various trainees from the RVD course cohort.

Experiment [ — The Triple Curve:

e FASTEST LAP. On-screen text innocuously denoting “fastest lap” inadvertently distracted many students from
the intended Training purpose of the experiment, which was to try to achieve MANY legal laps instead of one
“very fast” lap. Word-of-mouth enticed members of the later cohorts to achieve "bragging rights" for the fastest
(single) lap. This notion conflicted with the intended Training goal of the experiment - to master cornering (i.e.,
smooth straightaway-curve transitions), and achieve as many legal laps as possible within the time period allowed.
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e GAUGE TRAINER. Numerous students felt that the color-coded racing line feature should adapt (dynamically)
to driver behavior rather than serve as a (static) feature primarily intended as a game-based reference “guideline”,
which was its original design intent. Some drivers thought that the reference spheres were dynamic, and reported
that this misconception adversely impacted their performance. Some other drivers attempted to ride the Racing
Line too precisely, and this oversight resulted in abrupt corrections and undesirable driver-induced oscillations.

e GHOST TRAINER. Numerous students suggested that the Ghost Car adapt to the performance of the previous
lap of each driver (dynamically), rather than serve as a full-excursion, static replay of an “expert” Simulator
driver, which was its initial design intent. Likewise, drivers astutely requested that the Ghost Car have front and
rear brake lights, which would help drivers to better visually comprehend when that vehicle is accelerating and
braking amidst the critical cornering segments. Likewise, trainees requested to institute a TRIPLE Ghost Car
feature (e.g., 1) expert driver replay; 2) cohort-averaged driver, 3) current driver/previous lap).

Experiment II — The Skid Pad:

At the conclusion of the second Simulator experiment (i.e., the Skid Pad), we issued a brief survey (N=70 completed)
to query the degree of effectiveness afforded by various aspects of the GBL-based Training. Recall (Figure 4) that
these included on-screen indicators that related to travel speed, travel heading (i.e., a “racing line”), CG-placement
(weight distribution), a scoring meter, and a steering meter. Refer to Figure 13, which displays average and standard
deviation on the left-most segment of the plot. Not surprisingly, the CG-meter was found to be the most useful (on a
5-point Likert scale), followed closely by the heading meter.

Note further that the speed, steering, and .
scoring meters, respectively, were perceived Skid Pad - Post-survey Results
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Additional anecdotal observations regarding the Skid Pad experiment are briefly listed as follows:

e CG METER. Because drivers were (intentionally) made blind to the fore/aft position of the CG relative to the
tire stiffness distribution, many didn’t realize that they weren’t accumulating score at the initial (oversteer) CG
position. This absent a priori knowledge would have changed their task prioritization to favor optimizing this
feature over the other major subcomponents: speed and heading. In accordance with our Training objective, most
trainees in the cohort did a good job with coordinating the front/rear tire colors to achieve neutral steer, and most
discovered that this process had to iteratively evolve with elevated vehicle speed.

e TRAVEL SPEED. The Trainers realized post-experiment that we over coached trainees on the required caution
of a typical Skid Pad experiment. Because of this unintended negative Training, many students achieved maximal
speeds in the mid 50°s (mph) rather than optimizing the vehicle towards the theoretical optimum of the vehicle
(~ 70 mph). In the future, we might consider dynamic metrics such that trainees only score at increasingly
elevated speeds as the period of play evolves.

¢ STEERING/HEADING. This GBL element was identified to be useful, but more informative for exterior
onlookers to observe than as a real-time Training aide for the driver/passenger pair. A valuable suggestion was
made that we introduce a visual/aural counter to denote (in real time) how many guide path spheres have been
struck; akin to a “Pac Man” (e.g., Rosenberg, 2018) style of gameplay (e.g., “munching” dots to earn points).
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CONCLUSIONS AND NEXT STEPS

In this paper, we have described the design, development, and deployment of a framework for GBL-based Training
experiments intended for a Post-secondary Road Vehicle Dynamics (RVD) course. Our primary intention was to
supplement traditional course material delivery with experiential, engaging, game-based opportunities for enhanced
skillset acquisition to improve Training effectiveness. We collected performance data from a high-fidelity Simulator,
supplemented by relevant self-report data relevant to trainee Learning Styles. Highlights from our experimental
findings include the following:

Experiment I: Within the Triple Curve, the Ghost trainer inherently encouraged a more aggressive racing strategy.

This tended to result in a greater observed uniformity of training performance across the Gauge cohort than the Ghost

cohort, largely attributed to the GBL-Training elements that were explicitly provided to the Gauge drivers, as opposed

to those that had to be deduced by the Ghost drivers.

e Result Correlations to Self-reported data: Those trainees among the most popular learning style (AAAA)
performed slightly better than the cohort average, while those drivers among the author-hypothesized “optimal”
AAAB (Active/Sensing/Visual/Global) was the highest performing learning style. The trainees among the other
author-hypothesized “optimal” learning styles (ABAB, and ABAA) performed “moderately”” and “substandard”,
respectively.

Experiment II: Within the Skid Pad, student cohort-averaged CG ratio adjustment (i.e., from oversteer towards

neutral steer) approached unity exponentially, indicating that as intended, trainees consistently engaged with the effect

of the CG on the vehicle dynamics throughout the training exercise. Large adjustments were observed initially to
counteract obvious vehicle deficiencies, followed by fine-tuning and “optimization” to achieve more subtle
performance gains.

o Result Correlations to Self-reported data: Those trainees among the most popular learning style (AAAA)
performed slightly lower than the cohort average, while those drivers among the author-hypothesized “optimal”
AAAB (Active/Sensing/Visual/Global) was the second-highest performing learning style. The trainees among
the other author-hypothesized “optimal” learning styles (ABAB, and ABAA) performed “above average” and
“substandard”, respectively.

The GBL Training framework that has been described in this paper is certainly extensible to other course offerings
within a Post-secondary (Mechanical) engineering curriculum. For example, the current team already has aspirations
to deploy this framework (Fall, 2019) within a Junior-level Systems Dynamics course. In this context, the GBL-
Simulation tools will be adapted to demonstrate a second-order spring-mass-damper representation of a vehicle
suspension system. Using these game-based training tools, a “critically damped” vehicle can be converged upon while
inducing a bumpy ride (e.g., potholes) within a simulated ground vehicle setting. Similarly, within a more advanced
Senior-level course within the context of another engineering discipline (e.g., Aerospace Engineering), Flight modes
can be actively demonstrated for an Aircraft Dynamics experiment within our GBL training framework. In this
manner, trainees can actively obtain an improved understanding of longitudinal (e.g., Phugoid) vs. lateral (e.g., Dutch
Roll) modes of flight motion. Finally, our training framework can be extended to accommodate augmented/mixed
reality applications (e.g., a heads-up display interface for next-generation vehicle navigation) for emergent engineering
systems (e.g., autonomous vehicles, Flying Cars). Such a Training framework could provide benefit both for young
trainees (e.g., K-12 learners and STEM), as well as advanced training applications for warfighters in the military.
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