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ABSTRACT

Consistent with the Chief of Naval Operations’ priority to enable sailors to “operate in uncertain, complex, and rapidly
changing environments” some of the most advanced educational resources may soon be delivered via immersive ex-
tended reality [XR] technology. Immersive XR can simulate the affordances—opportunities for decision and action
provided by the environment—of complex situations presenting realistic multi-sensory cues within scenarios that
support open-ended action. While XR technology provides capabilities that may improve learning, we argue that it
requires thoughtful integration of instructional strategies and learning content embedded within the XR environment
to maximize learning outcomes. Currently, no comprehensive, generalizable, theory-driven approach to delivering
these interventions yet exists. Here we propose such a framework for delivering effective instruction and assessing
real-time learner performance in a blended, adaptive XR instruction.

Our framework is based on the notion that cognition, the mental processes underlying learning, emerges through
interactions between brain, body and environment. Using the 4E cognition model, which views cognition as embodied,
enactive, embedded, and extended, our framework characterizes the natural ways humans interact with their environ-
ments, laying the foundation for developing effective, intuitive learning experiences in XR We offer an adaptive
training intervention framework that aligns affordances, 4E cognition, and instructional interventions to guide devel-
opment and delivery of XR training.

Finally, any framework implementation requires metrics that capture student task competency in an XR environment,
reflect intervention thresholds, diagnose the cause of performance shortfalls, or successes, so appropriate adaptative
remediation or enhancements are selected. The Adaptive Contextualized Training in Interactive Virtual Environments
(ACTIVE) framework offers a theory-driven approach integrating XR scalability, user-centered design, and real-time
analytics for adaptive training. Contextualized through a Navy curriculum case study, we illustrate the framework’s
potential to enhance learning outcomes and training effectiveness.
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INTRODUCTION

Some of the most advanced training tools are now, or soon will be, delivered via virtual reality (VR) and augmented
reality (AR), collectively referred to as extended reality (XR), spanning the continuum from the real to the fully virtual
world (Milgram & Kishino, 1994). The benefit of XR media for training is that it can simulate complex situations and
scenarios, present realistic visual and audio cues, and play out the effects of open-ended learner actions across diverse
education and training domains (Mikropoulos & Natsis, 2011). While XR offers significant potential, its effectiveness
in training depends on careful design and implementation as there is no guarantee that XR alone will result in effective
traming.

As such, while XR offers significant promises for immersive scalable adaptive training, it also presents risks and
failures, along with instructional and design limitations, that must be addressed to ensure its effectiveness. These can
include:

¢ XR can engage and motivate students, but instructors or the training system must also detect and respond to
distractions and off-task behavior.

o XR allows students to safely try what would normally be dangerous tasks or play out the consequences of
mistakes, but the practical ability to simulate complex problems or allow varied student actions is limited by
the effort and lack of reuse in implementing an instructional response for each one.

e XR allows many students to simultaneously explore models or practice skills, but scaling this capability is
currently limited due to challenges instructors face in monitoring all students and providing personalized
feedback to learners.

e XR can provide a wide range of scenarios and content, but without thoughtful design and focused monitoring
by the instructor, there is the potential for negative training and transfer.

¢ XR alone might not fully leverage the benefits of traditional instruction, such as providing targeted examples
and capitalizing on teachable moments. A blended solution can leverage the strengths of both adaptive XR
and classroom instruction to create a more comprehensive and effective learning experience.

Implementing an adaptive system within XR poses a significant challenge. Despite extensive literature demonstrating
the effectiveness of adaptive training systems in personalizing content and feedback (Kulik & Fletcher, 2016; Mar-
raffino et al., 2021), no comprehensive, theory-driven approach fully leverages XR's potential for adaptive training.
Interest in bridging this gap is growing, with recent research focusing on learning in immersive XR environments to
enhance mediated learning (e.g., Makransky & Peterson, 2021; Mayer et al., 2023; Slater & Sanchez-Vives, 2016).
However, a unified framework that integrates virtual environment learning, adaptive training, and XR’s learning af-
fordances is still lacking. Such a framework would enable the design of more effective, individually tailored instruc-
tion and support sophisticated, multi-component empirical assessments of instructional efficacy.

Delivering education and training capabilities at the scale necessary for deep and lasting impact requires a theory-
driven paradigm shift that leverages the affordances of XR for adaptive training and addresses both the limitations
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noted above and more pragmatic challenges: the high cost of designing XR systems; developing instructional capa-
bilities that can accommodate complex concepts and large corpi of content; and adapting instructional remediation in
a way that accounts for emergent student behaviors and variable paths to success

Limitations in Current Technology

Limitations and challenges in extant technology highlight the fragility, lack of scalability, and rapid obsolescence
caused by atheoretical, one-off, hand-coded assessments and adaptive responses (Vergara et al., 2020; Sottilare & Van
Lehn, 2023). To scale the benefits of adaptive XR, we need a technical approach to training, assessment, and adapta-
tion that replaces one-off coding with flexible, reusable measures and interventions. This paper proposes a theory-
driven, reusable (both in terms of the framework being applicable across a broad spectrum of XR learning environ-
ments as well as reusable technology itself), and technically advanced framework for assessing real-time student per-
formance in adaptive XR instruction. The ACTIVE framework is designed to address these challenges and is charac-
terized by three key aspects. First, we draw on theory on the affordances of XR grounded in the 4E cognition model
(McGowin et al., 2021; McGowin et al., 2022; McGowin et al., 2023) and practical taxonomies of learning objectives
and training interventions (e.g., Van Buskirk et al., 2009; Schatz et al., 2012) to frame the measurement of student
performance and adaptation over XR learning progressions. Second, we recognize that XR environments are one
modality for learning and assert that blended adaptive training, defined as the thoughtful integration of classroom
instruction with technology-aided instruction (e.g., XR or online learning), is the most practical and cost-effective
approach for educators and trainers to accelerate learning (e.g., Fegely & Cherner, 2023). Third, we employ a learner-
centered design process to aid instructors. This framework leverages our general framework in the context of different
knowledge and skill types to fully exploit XR affordances and help instructors understand student performance,
thereby optimizing training and learning outcomes.

Adaptive Contextualized Training in Interactive Virtual Environments (ACTIVE) framework

To help remediate these limitations and address these gaps, we introduce the Adaptive Contextualized Training in
Interactive Virtual Environments (ACTIVE) framework. This framework is a comprehensive approach designed to
enhance adaptive training in XR settings. Grounded in theories of 4E Cognition and XR affordances framework
(McGowin et al., 2023) as well as adaptive training

(Martin et al., 2020), the ACTIVE framework aimsto ~ Framework Elements What the Element Does
provide a general, actionable framework for mon-  4ECognition o o~ A_,Philphical and cognitive theory
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incorporates embodied, enactive, embedded, and ex-
tended cognition, viewing learning as a holistic pro-
cess, and cognition involving more than simply infor-
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eight unique features of mixed, immersive reality en-
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Figure 1. ACTIVE framework and its various elements

! Specifically integrating XR with classroom instruction (i.e., blended learning) is a future direction that the ACTIVE framework will investigate.
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instructional strategies are effectively implemented within the XR system. Finally, the framework includes the A4s-
sessment of Competency (E), which involves real-time measurement of learner performance during XR training inter-
ventions. This continuous assessment allows for ongoing adjustments and improvements, ensuring the training re-
mains effective and responsive to the learners' needs.

The ACTIVE framework addresses the need to evaluate the learning benefits of XR compared to more cost-effective
counterparts, such as non-interactive media. It is particularly suited for scenarios where immersive experiences and
spatial and bodily interactions may enhance learning and skill acquisition (Radianti et al., 2020; Hamiliton et al.,
2021). This evaluation is important because it ensures that the specific tasks and learning objectives are met effectively
and efficiently, catering to a variety of learners and modalities. Understanding the unique advantages of XR helps
justify its use over traditional methods, ensuring that the investment in XR technology leads to improved educational
outcomes and skill development.

Therefore, the purpose of the ACTIVE framework is to: 1) specify the unique affordances of XR that may call for its
use in place of classroom and non-immersive technologies; 2) align learning objectives to training interventions suited
for XR environments, akin to the Training Intervention Matrix constructed by Van Buskirk et al. (2009), Schatz and
colleagues’ Instructional Tactics (2012), or Stanney et al.’s (2023) ELEVATE-XR framework; and 3) define general
measures of learning and skill acquisition that can be automatically collected from students’ interactions with the
training interventions. Thus, the ACTIVE framework is intended to guide instantiations of adaptive training in XR
and serve as a set of testable theories for designing adaptive XR learning systems.

We believe that by providing a structured, theory-driven approach, the ACTIVE framework can help guide the design
and implementation of adaptive XR learning systems, ensuring they are both effective and scalable.

In the pages that follow, we synthesize relevant theories of XR learning with practical considerations to assess whether
and when learners are meeting learning objectives. We outline an adaptive framework that can change content to best
support learner progress. To achieve this, we review current theories and practical applications, link these concepts
together, and demonstrate the framework's effectiveness through virtual case studies. These case studies illustrate how
an adaptive XR framework can dynamically adjust to optimize learning outcomes, ensuring learners meet their objec-
tives efficiently and effectively.

BACKGROUND
XR and Learning Affordances

XR is increasingly being adopted in educational and training environments due to its unique capabilities to create
immersive and interactive learning experiences. The potential of XR to enhance learning outcomes is largely attributed
to its distinctive learning affordances (McGowin et al., 2023), which can leverage advanced technological and psy-
chological mechanisms. These affordances include a core set that focuses on XR’s ability to immerse learners in
engaging environments (i.e., immersion, presence, interactivity, and agency) and a set of more specific concepts de-
signed to leverage XR’s unique capabilities to promote active learning and concrete experiences. These specific con-
cepts, which have a rich history in the modeling and simulation literature, include transforming abstract to concrete,
encouraging active participation over passive observation, turning what is infeasible due to cost or safety into the
practically scalable, and exploring simulated manipulations of reality and beyond (i.e., instructional experiences that
are not bound to strictly mimicking reality). See Table 1 for a more detailed explanation of the eight learning af-
fordances of XR.

Table 1. Learning Affordances of XR.

Affordance Description

Immersion The degree to which an XR system realistically stimulates the user's senses, creating an inclusive, ex-
tensive, surrounding, and vivid illusion of reality. High levels of immersion are achieved through ad-
vanced technology that replicates human sensory experiences, allowing learners to feel fully engrossed
in the virtual environment.

Presence The psychological sensation of being in a different environment, where virtual objects are experienced
as real through sensory or non-sensory means. This sense of "being there" enhances engagement and
the perceived authenticity of the virtual experience.
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Agency The learner's ability to control and interact with the learning environment. It encompasses perceiving
and acting on opportunities within the virtual space, with sensory-motor actions accurately reflected in
the environment. This enhances the learner's sense of control and engagement.

Interactivity The multidirectional exchange of information between agents (persons, systems, virtual agents) in a
mediated environment. Characterized by the degree of modification, malleability, and feedback, high
interactivity in XR may facilitate active learning by allowing learners to engage in dialoguing, control-
ling, manipulating, searching, and navigating within the virtual environment.

Concretization The transformation of abstract concepts into concrete tangible experiences enhancing learners' under-

standing (ideally through embodied, enactive, and embedded interactions) where learners directly inter-
act with and enact the content, facilitating deeper learning through multi-modal engagement. This helps
learners grasp complex ideas by allowing them to interact with and visualize these concepts in a virtual

setting.
Doing rather than only | Creating environments that closely resemble real-life situations, allowing learners to actively engage in
observing practical tasks and simulations. This promotes better retention and understanding compared to passive
observation.
Doing the infeasible or | Enabling practice of tasks that are too dangerous, impractical, expensive, or improbable to perform in
impossible real life. Provides realistic training experiences by simulating rare, expensive, or extreme events in a
safe and controlled environment.
Exploring manipula- Allowing learners to experiment with and manipulate scenarios beyond human capabilities, fostering
tions of reality and be- | new understandings and perspectives. XR can simulate effects of climate change or allow users to expe-
yond rience life from different social identities.

Note: Table adapted from McGowin et al., 2023.
Embodied, Enactive, Embedded, Extended (4E) Cognition

The theory of 4E cognition (cognition as embodied, enactive, embedded, and extended), posits that thinking and cog-
nition result from dynamic interactions among the brain, body, and environment (Clark, 2008; Valera et al., 1991).
Loosely defined, 4E cognition encompasses the interaction of a person’s body or avatar (embodied cognition) within
its environment (embedded cognition) and its engagement with external artifacts and agents (extended cognition)
through reciprocal action and sensorimotor activities (enactive cognition) (Pouw et al., 2014). In other words, we rely
on our bodies and senses to perceive and interpret the world around us, and as such, the specific characteristics of our
bodies and sensory systems shape how we understand and interact with our environment, which in turn affects our
cognition. 4E cognition can be seen as a synthesis of ideas from ecological psychology, cognitive science, and philos-
ophy, also drawing on the concept of affordances as proposed by Gibson (1979) (Lobo et al., 2018). Affordances are
actionable properties that emerge between agents and their environments, allowing direct interaction with the envi-
ronment not merely through shapes and spatial relationships but through ecologically rich information about possible
actions (Gibson, 1979; Norman, 1988). This theory suggests that higher-order information can be directly perceived
and acted upon in ecologically valid contexts without the need for complex internal representations (c.f. Haselager et
al., 2008). 4E cognition suggests that through direct perception and interaction with environmental affordances, cog-
nition is distributed across the brain, body, and surroundings, thereby enhancing efficiency and performance (Fiore &
Kapalo, 2017; Fiore & Wiltshire, 2016).

Linking XR, Learning Affordances, and 4E Cognition

Building on these foundational theories, recent research has suggested that immersive XR can provide learners with a
range of authentic, contextually rich experiences that may promote positive skill transfer (Kaplan et al., 2021; Radianti
et al., 2020). Meta-analytic findings show how technology-enabled active experiential learning strategies improve
student performance in STEM disciplines (Shi et al., 2020). Other systematic literature reviews have shown similar
findings, with XR generally, although not always, outperforming less immersive learning (Radianti et al., 2021; Ham-
ilton et al., 2021). Linking XR, learning affordances, and 4E cognition provides a comprehensive way of understand-
ing how these elements interact to enhance learning outcomes. To illustrate this, we now review some relevant exam-
ples.

One example comes from Jang et al. (2017), who compared active and passive learning environments using 3D-
stereoscopic simulations in anatomy education. Active learners, who manipulated 3D anatomical structures, showed
better outcomes than passive viewers. The ability to interact directly with content likely helped concretize abstract
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anatomical concepts, enhancing understanding. Additionally, the ability to explore manipulations of reality and be-
yond—such as viewing and interacting with anatomical structures in ways not possible in the real world—may have
contributed to the improved learning outcomes observed in the active group.

Another example is from Seo et al. (2021), who conducted a usability study on VR anatomy education, focusing on
the musculoskeletal system. The VR system allowed users to manipulate skeletal models (i.e., rotate, zoom), config-
ure, and attach them together and to receive real-time visual feedback through a virtual mirror, helping them under-
stand muscle movements and spatial relationships dynamically. This high level of interactivity likely contributed to
users translating 3D models into an understanding of their spatial relationships. The real-time feedback from the mirror
allowed users to see which muscles were contracting, with the system highlighting activated muscles for instant visual
feedback, enabling an embodied understanding of muscle movements.

Extended cognition involves incorporating external elements to support or distribute cognitive effort (Fiore & Wilt-
shire, 2016). Examples include using phone reminders and calendars to supplement recall or internet searches to pro-
vide new information on demand. This concept is particularly relevant in the context of XR, where technologies can
serve as external aids to enhance or scaffold cognitive performance (Estany & Martinez, 2014; Fiore & Wiltshire,
2016). Albus et al. (2021) provide support for this idea by investigating the use of annotations in VR to enhance
learning about seawater desalination plants. Participants who used integrated textual annotations (i.e., extended cog-
nition) outperformed those without them in terms of recall. This finding suggests that extending cognitive processes
through external aids, such as annotations, can enhance recall performance in XR. While both groups had the similar
levels of interactivity, it is probable that the offloading of important information (i.e., annotations) helped concretize
their knowledge, allowing learners to transform abstract desalination concepts into tangible, understandable experi-
ences.

XR does not simply simulate reality; it offers several advantages over real-world learning: 1) it enables learning in
environments that are dangerous, rare, or hard to recreate in real life; 2) it can scale interactivity cost-effectively; 3) it
can provide on-demand scaffolding; and 4) it can adapt to support individual paths. By providing highly immersive
and interactive environments, XR can leverage learning affordances by allowing users to engage deeply with the
material. Through the lens of XR learning affordances, the ability to manipulate and transform virtual objects (inter-
action, agency) help concretize abstract concepts. Additionally, real-time feedback and multi-angle viewing options
support extended cognition, allowing learners to explore and understand complex spatial relationships dynamically
and in an embodied way. This approach helps learners construct their own understanding through direct interaction,
trial and error, and immediate feedback, which, we argue, are critical components of effective learning.

These examples illustrate how immersive XR environments can leverage 4E cognition principles, combined with the
technological affordances of XR, to enhance learning outcomes. By actively engaging learners' bodies and senses, XR
technologies provide contextually rich experiences that may promote deeper understanding and better skill transfer.

While these theories we have outlined above provide foundations for understanding how learning occurs, they often
lack practical mechanisms for implementation into technological solutions. This is where adaptive training theories
become essential, offering strategies to tailor educational experiences to individual learners' needs and enhance their
engagement and retention. Through adaptive approaches, the relevance and applicability of learned skills are en-
hanced, and learner engagement, retention, and skill transfer may be increased. Combined, these approaches make XR
particularly effective for training in complex environments where traditional methods may fall short.

Adaptive Training

Standardized learning often fails to accommodate individual differences and the varying levels of scaffolding needed
at different stages of a learning progression. While the learning sciences, which draw from psychology, neuroscience,
cognitive science, and educational theory, provide a deep understanding of how people learn, they often lack sufficient
implementation methodologies. Applying these theories in real-world educational settings requires technical ap-
proaches that can effectively translate them into practice. Therefore, a general approach to transforming these theories
into practical technical solutions is needed.

Adaptive training (AT) offers an effective solution that translates theoretical insights into impactful educational prac-
tices, fostering learning environments that are both adaptive and effective. AT is a method of instruction that utilizes
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technology to tailor the learning environment and materials to meet the specific needs and performance levels of each
learner (Arroyo, et al., 2014). This approach aims to optimize the learning experience by providing personalized feed-
back (Koedinger & Corbett, 2001), dialogue (Graesser et al., 2012), resources (Ferilli, et al., 2022), and pathways
(Magalong & Palomar, 2019) based on real-time data and learner interactions. As such, the core idea for AT is to
create a customized learning journey that maximizes efficiency and effectiveness for each individual (i.e., individual-
ized learning). AT systems function by monitoring and analyzing factors such as learners' performance, behaviors,
biometric data, and interactions within the training environment. This data is then used to dynamically adjust the
instructional content, difficulty level, feedback, or pacing to match the specific needs of each learner. By doing so, the
system ensures that the learning experience is tailored to individual progress and challenges, facilitating better reten-
tion and transfer of training to new challenges (Ma et al., 2014).

There are various approaches to implementing AT, each leveraging different technologies and methodologies to help
XR outperform conventional learning. Rule-based systems use predefined rules to adjust training content based on
learner performance. For example, consistently correct answers might lead to increased difficulty, relying on expert-
defined rules to guide adaptation. Machine learning algorithms analyze learner data to identify patterns and predict
needs, providing highly personalized content through data analytics, focusing on automation rather than expert control.
Cognitive tutors simulate human tutors by offering hints, feedback, and guidance based on the learner’s performance
and progression, adapting in real-time to individual needs. Intelligent tutoring systems (ITS) use Al to model learner
knowledge and adapt instruction, aiming to provide personalized pacing, support, and guidance similar to one-on-one
tutoring.

Each of these general approaches can be supplemented by additional technologies that help measure performance to
gain deeper insight into an individual student’s cognitive state. Integrating physiological, neurological, and other types
of sensors can significantly enhance the effectiveness of AT technologies by providing deeper insights into the
learner’s state and enabling more precise adaptations (Folsom-Kovarik, et al., 2013). These supplemental sensors are
expected to be more readily accepted in XR settings, as learners are already wearing technology such as a headset.
Physiological sensors, like heart rate monitors and electrodermal response sensors, provide data on stress levels and
emotional arousal, helping AT adjust content and difficulty to maintain optimal engagement. Eye-tracking devices
monitor attention patterns, enabling the system to tailor the focus and presentation of information to enhance learning.
Neurological sensors, such as electroencephalography (EEG) sensors, measure brain wave activity, providing insights
into cognitive states like attention, concentration, and cognitive load (Sweller, 1988). This informs the system about
when, how, and how much to adapt the complexity and pacing of the material. Functional Near-Infrared Spectroscopy
(fNIRS) measures brain activity through blood flow changes, enabling adjustments in task difficulty and breaks based
on cognitive workload (Causse et al., 2017,). Other types of sensors, including motion sensors like accelerometers and
gyroscopes, detect physical movement, facilitating more interactive learning experiences or recognizing the need for
physical breaks (Ogata & Ogawa, 2023). Wearable technology, such as smartwatches, monitors health metrics like
physical activity, sleep, and stress levels, allowing the adaptive system to tailor learning schedules and intensity based
on overall well-being (Bauer, et al., 2019). Thus, using sensors to monitor physiological and neurological states, AT
systems can keep learners optimally engaged and motivated by preventing boredom and overwhelm. The sensors help
detect or infer aspects of the learner’s cognitive and emotional state, enabling responsive adaptation that enhances
comprehension and retention. The sensors can also provide early detection of fatigue, stress, or disengagement, which
allows for timely interventions such as breaks or motivational prompts, promoting sustained learning. As such, inte-
grating diverse sensor data provides a holistic understanding of each learner, enabling highly personalized and effec-
tive learning experiences.

In summary, AT translates theoretical insights into impactful educational practices by utilizing technology to tailor
learning environments and materials to meet the specific needs and performance levels of each learner. This approach
optimizes the learning experience through personalized feedback, resources, and pathways based on real-time data
and learner interactions. Various technologies (e.g., machine learning algorithms, ITS), modify instruction to enhance
understanding and retention and help individualize learning. Integrating physiological and neurological sensors further
refines this process, providing deep insights into learners' cognitive and emotional states, ensuring personalized and
effective learning experiences.

XR is an excellent technology for embedding AT as it blends physical and digital environments, allowing real-time
interaction with virtual and real-world elements to enhance learner outcomes. XR technologies can collect data from
various sensors and performance inputs, enabling dynamic adjustments of content complexity and presentation based
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on real-time data from learner interactions, cognitive load, and emotional states. This ensures personalized, responsive
training, catering to individual needs while providing immersive and interactive experiences. Furthermore, XR offers
powerful learning affordances for adaptive training by embedding learners in realistic simulated scenarios, applying
4E cognition principles through coupling concepts with physical actions and multi-sensory input. It provides low-risk
virtual spaces for practice and captures rich data on learner actions, behaviors, and physiological responses, making
XR an effective platform for adaptive training.

BRIDGING ADAPTIVE TRAINING FRAMEWORK IN XR AND LEARNING AFFORDANCES

Adaptive training provides a piece of the solution to transform theory into practice, yet it still requires an instructional
technology shell into which it can be inserted. AT frameworks typically involve dynamically adjusting the complexity,
content, and presentation of instructional materials based on real-time data about the learner's performance, cognitive
load, emotional state, and other relevant factors.

The ACTIVE framework provides a way to bridge AT frameworks with XR affordances. This framework suggests
that adaptive instruction should be integrated within XR platforms to dynamically generate personalized training sce-
narios, adapt difficulty levels, provide tailored instructional support, and respond to learner states in real-time based
on the multi-modal data captured. By leveraging the multi-modal data captured within XR environments, such as
learner performance, physiological responses, and emotional states, these adaptive systems can adjust the difficulty
levels and instructional support in real-time, ensuring an optimal learning experience. Overall, the integration of adap-
tive training within XR should not only make learning more engaging and effective but should also ensure that it is
tailored to the unique needs and progress of each learner. This combination leverages the strengths of adaptive training
theories and XR's technological and learning affordances, helping to create a comprehensive framework that bridges
the gap between theoretical insights and practical application, ultimately maximizing learning outcomes.

IMPLEMENTATION OF ADAPTIVE TRAINING IN XR: CASE STUDIES

Our overarching goal is to produce a generalized framework that can be applied across multiple interdisciplinary
domains. To demonstrate the practical application of the ACTIVE framework, we have selected two sample domains
(engineering, medical) and provide two instances of adaptive instruction within each domain. Using the technology
and theory discussed above, we show how the ACTIVE framework could be implemented to enhance learning out-
comes in engineering education as well as improving training in complex medical procedures in the combat medical
domain, showcasing its versatility and effectiveness across different fields.

These case studies illustrate how the ACTIVE framework assists stakeholders in making decisions in the design and
development of effective adaptive XR training systems. As such, the framework helps stakeholders focus on clear
solutions to their training needs. Currently, the framework is not prescriptive in nature and does not specify system
requirements; rather, it offers a perspective for managing the design and development space of adaptive XR.

Engineering Domain

The U.S. Navy teaches Basic Electronics and Electricity (BEE) for surface engineering rates in Apprentice Technical
Training (ATT). ATT is a ~13-week, full-time, classroom and lab course delivered between boot camp and Sailors’
technical or job training in A school (‘A’ school is the initial rating-specific training where sailors learn skills for their
chosen naval career field). ATT is a vital step to prepare Sailors for success in A school and on the job. The funda-
mental knowledge and skills in ATT are prerequisites that lay the groundwork for Sailors to understand and apply
many of A school’s learning objectives. However, ATT faces a number of challenges that can lead to negative learner
outcomes. First, ATT encompasses a large volume of learning objectives, with material presented at a rapid pace. This
can cause some individuals to quickly fall behind. Even a few days of falling behind can force a Sailor to restart ATT
with a later cohort or leave the program altogether (i.e., attrition). The high course volume and swift pace can lead
Sailors to adopt maladaptive learning strategies such as massed practice (i.e., cramming), which is associated with
lower retention of skills and knowledge, increasing the speed of forgetting and skill decay (e.g., Soderstrom & Bjork,
2015). Second, ATT relies on older, simplistic materials. Classroom materials are strictly didactic, with self-study
opportunities having little interactivity or adaptivity, and lab experiences lacking guidance or feedback. Lastly, ATT
presents BEE in an artificial setting making it difficult for learners to perceive its relevance to future job tasks. This
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disconnect can hinder the transfer of training to job settings, even when the differences are minor, such as using a
different version of a tool. Additionally, learners can experience negative training effects when practice circuits differ
slightly from real devices, further hindering effective skill transfer.

The ATT setting provides an opportunity to apply the ACTIVE framework in designing a new, adaptive XR training
experience. For example, using a breadboard—a standard, reusable teaching tool—in exploring basic electronics can
transform abstract ideas into concrete concepts. Breadboards provide tangible, versatile platforms for prototyping and
experimenting with circuits without soldering. This hands-on approach allows students to gain practical experience in
component placement, circuit building, and troubleshooting, helping them transition theoretical knowledge to real-
world applications and fostering a deeper understanding of electronics.

In an XR instantiation, a learner could engage with an interactive virtual breadboard. Unlike traditional computer-
based training (CBT), this virtual breadboard allows students to physically walk around the virtual lab, view compo-
nents from different angles, and interact with them in a realistic manner (embodied, enactive; element A). The immer-
sion provided by XR (element B) makes learners feel as though they are inside a real electronics lab, further enhancing
the sense of presence (element B) and making the experience more authentic (embedded; element A). Additionally,
the XR environment enables dynamic inferactions (element B) such as scaling, rotating, and zooming into objects.
Learners can use hand gestures or voice commands to manipulate the virtual breadboard, experiencing agency (ele-
ment B) in their learning process. Further, they can add virtual annotations to offload information as it is being learned
and/or they are diagnosing (extended; element A). This contrasts with the point-and-click interface of CBT, offering a
more natural and intuitive way to interact with the learning materials (i.e., agency in how they choose to interact). For
instance, a learner might use hand gestures to pick up a virtual resistor, rotate it to read its color bands, and place it on
the breadboard, all while receiving haptic feedback that mimics sensations of interacting with real objects. These
embodied interactions help reinforce learning through the integration of physical movements and the embedded envi-
ronment, which may improve skill acquisition and retention.

The XR system can adapt to the learner's level of competence by highlighting critical parts and providing "clickable"
descriptions. Beginners might see color-coded guides showing where to place components, while advanced learners
might receive complex circuit challenges without hints or additional cues (adaption, feedback; element D). This adap-
tive learning capability ensures that each learner receives the right level of challenge and support. The system could
also track learner performance via relevant metrics (e.g., accuracy, speed, fluidity of task completion; elements C and
E), providing real-time feedback while adjusting task difficulty accordingly (element D). This individualized approach
helps address the challenging pace in ATT, allowing learners to progress at their own pace while still meeting course
objectives. Furthering this example, visualizing the flow of electricity through cross-sectional overlays leverages XR's
ability to represent complex spatial relationships. Learners can see animated electrons moving through the circuit,
with overlays that show real-time data such as voltage and current at various points (extended). It is not only the richer
concretization of abstract concepts but its combination with physical interactivity, that moves this far beyond what
CBT can offer, making invisible phenomena like electrical flow tangible and understandable. These types of visuali-
zations can be further enhanced by allowing learners to manipulate time (agency, manipulation of reality and beyond,
element B), slowing down or speeding up the electrical processes to observe detailed interactions or long-term effects,
providing insights that would be impossible in a physical trainer (element D).

Moreover, XR supports extended cognition by integrating tools like virtual multimeters and oscilloscopes. These tools
can be used in real-time, allowing learners to probe circuits and see immediate feedback, both in terms of instrument
information as well as guided feedback for learners, on their actions. For example, placing a multimeter probe on a
circuit node could instantly display voltage reading combined with explanatory text, helping learners understand the
practical implications of their theoretical knowledge. Additionally, the XR environment could also simulate rare or
dangerous scenarios, such as improper use of a multimeter that would normally damage a circuit, as well as injected
scenario events such as equipment failures or high-voltage situations, allowing Sailors to gain experience in critical
situations without risk.

Medical Domain

In the U.S. Army, Combat Life Savers (CLS) and Combat Medics (designated 68W) are the first responders of the
battlefield, and their training and skill maintenance is of preeminent importance to the military. While the instructors
that train these groups are top-notch, their available tools to represent medical emergencies and practice responses on
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a person, while effective, are somewhat antiquated and could be improved with XR. Current tools include moulage,
computer-based simulations, and field exercises. In the most hands-on case, simulated battlefield wounds are con-
structed from moulage (i.e., mock injuries) such as pre-made rubber wounds with fake blood that instructors apply
during training. The simplicity of the presentation often requires the instructor to describe the wound to the trainee or
remind the trainee during an exercise about the qualities of the wound that are not visually represented in the moulage,
such as how the wound is responding to treatment. This effort by the instructors not only takes away time that could
be spent providing instruction, but it also imposes an additional cognitive load on learners who must remember or
imagine the specifics of these simulated wounds. While this approach doesn’t limit the ability to practice rare or
complex scenarios, it does make it more difficult for learners to contextualize the medical event and experience the
sensory cues that should guide their decisions and actions. While simple, and generally effective, these physical sim-
ulations take considerable time and effort to create, set up, and manage, both before and during the training exercise.
The preparation needed before each exercise, combined with the compressed training schedule of a CLS or 68W
course, means that trainees receive limited hands-on practice in realistic settings. Additionally, while CBT simulations
for CLS and Combat Medics are available, purely virtual training—whether on a 2D computer screen or in a full
virtual reality environment—fails to provide embodied, enactive, embedded, and extended experiences as impactful
as hands-on training that moulage wounds provide. This limitation of CBT underscores the need for a more immersive
and interactive training solution that combines the benefits of both physical and virtual environments.

In terms of training that occurs in field exercises, it is even more simplistic: the state of the art is a “casualty card” that
tells a randomly selected, non-trained “casualty” Soldier how to act given a wound described on the card. Without the
use of moulage, the trainee sees no visible injuries on the actor playing the casualty, possibly increasing the cognitive
load of the learner while reducing the realism and effectiveness of the training. This lack of visual and tactile cues
possibly hampers the trainee's ability to develop diagnostic and treatment skills in authentic contexts. Thus, we argue
that XR has the potential to revolutionize how CLS and 68W train for Tactical Combat Casualty Care (TC3) (i.e.,
prehospital procedures). XR can provide a unique mix of immersive digital simulation mixed with the real-world
environment. For example, in a field exercise, a trainee could approach a casualty role-player or mannequin and see a
simulated wound projected on the casualty. This combination of hands-on, tactile experience in the real world, along-
side simulated, dynamic wounds and casualty responses, has the potential to drastically increase realism, effectiveness,
and retention of medical training. Additionally, it may enhance learner engagement, improve skill transfer to real-
world scenarios, and boost overall training outcomes. Additionally, XR can simulate environmental factors (e.g., low
light conditions, noise, other stressors), providing a more comprehensive and realistic training experience that prepares
CLS and 68W trainees for challenging conditions they may face in the field.

In an XR instantiation a dynamic wound model would be visually rendered, providing cues in the correct position on
the casualty. This requires determining where the wound (and related visual cues such as blood flowing from the
wound) should be placed based and then rendering visual and other wound effects such as the wound changing visually
over time (e.g., based on treatments), audible and sensors cues associated with the wound (e.g., breathing sounds,
pulse, respiration) (immersion, presence, embedded, embodied; elements A and B). The system could also project XR
overlays on instruments the trainees use, such as overlaying an animation on top of the blood pressure gauge to show
the representative blood pressure of the casualty rather than whatever the BP cuff would render from a live casualty
or even a mannequin (extended, abstract to concrete; elements A and B); 2) a treatment recognition system could
automatically recognize the procedures and interventions performed by the trainee, based on user sensors worn by the
trainee and those on the moulage/casualty that can sense hand motions, the use of instruments, and pressure applied
to different locations on the casualty or the wound (measurement, embodied, enactive, agency, elements C and E).
Additionally, the system could use eye-tracking to infer the trainee’s visual attention, decision making, and cognitive
load, providing insights into their diagnostic approach. The treatment recognizer would then provide outputs of the
sensors (e.g., user motions, verbalizations, instruments) and match those signatures against treatment models that
describe what procedure or treatment is being performed. The output of this component is the identification of the
recognized treatment, which is sent to the ITS; and 3) the ITS itself, which adapts the training scenario to the trainee
according to the pedagogic goals database (defined for the scenario ahead of time by the instructor; element C). The
training adaptation module would then respond to the treatments performed by the trainee (or lack thereof), in combi-
nation with pedagogic goals (i.e.,, learning outcomes; element C), to provide coaching or adapt the scenario in different
ways — for instance to increase the level of difficulty for advanced students (i.e., introducing unexpected complications
or secondary injuries), or to interject guidance for struggling students (element D).
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CHALLENGES AND CONSIDERATIONS

Research in immersive XR learning needs to address several challenges, considerations, and future directions to max-
imize its effectiveness and applicability. In this paper, we outlined a multidimensional framework comprised of several
elements aimed at enhancing XR-based training. However, due to the scope and constraints of this paper, not all
elements were fully explored and developed. First, while we discussed the potential benefits of XR and highlighted
some features that justify its use over classroom and non-immersive technologies, we did not fully specify and cate-
gorize these features. Future research should investigate and clearly define these features to better understand their
impact on learning outcomes. Second, while we mentioned blended learning, which combines traditional instruction
with XR, we did not thoroughly explore how to integrate this approach into the ACTIVE framework. Future research
should focus on how blended learning approaches can be effectively applied to the ACTIVE framework, aiming to
optimize the strengths of both traditional and XR methods and improve learning outcomes.

Third, while we discussed learning objectives in XR, we did not align specific learning objectives with training inter-
ventions suited for XR environments. Future work should develop a detailed Training Intervention Matrix, similar to
those constructed by Van Buskirk et al. (2009) and Schatz et al. (2012), to ensure that XR training interventions are
effectively matched to desired learning outcomes. Lastly, although the paper explored some potential measures of
learning, we did not define general and specific measures of learning and skill acquisition that can be automatically
collected from students’ interactions with XR training interventions. Future studies should establish these measures
to facilitate the assessment and improvement of XR training programs. By addressing these areas and limitations,
future studies can further develop the ACTIVE framework, making it a more comprehensive and effective tool for
planning and designing immersive XR learning experiences.

CONCLUSION

The aim of this paper was to synthesize relevant theories that are applicable to the design and development of adaptive
XR training, including practical considerations for assessing when and how learners are meeting learning objectives,
and to outline an adaptive system that can adjust content to best support learner progress. To achieve this, we reviewed
current theories, practical applications, and provided a detailed description of the ACTIVE framework through virtual
case studies. These case studies illustrate how an adaptive XR framework can dynamically adjust to optimize learning
outcomes, ensuring that learners meet their objectives efficiently and effectively.
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